
ar
X

iv
:1

80
2.

04
86

8v
1 

 [
st

at
.M

L
] 

 1
3 

Fe
b 

20
18

SimplE Embedding for Link Prediction in Knowledge Graphs

Seyed Mehran Kazemi * 1 David Poole * 1

Abstract

The aim of knowledge graphs is to gather knowl-

edge about the world and provide a structured

representation of this knowledge. Current knowl-

edge graphs are far from complete. To address

the incompleteness of the knowledge graphs,

link prediction approaches have been developed

which make probabilistic predictions about new

links in a knowledge graph given the existing

links. Tensor factorization approaches have

proven promising for such link prediction prob-

lems. In this paper, we develop a simple ten-

sor factorization model called SimplE, through

a slight modification of the Polyadic Decompo-

sition model from 1927. The complexity of Sim-

plE grows linearly with the size of embeddings.

The embeddings learned through SimplE are in-

terpretable, and certain types of expert knowl-

edge in terms of logical rules can be incorpo-

rated into these embeddings through weight ty-

ing. We prove SimplE is fully-expressive and de-

rive a bound on the size of its embeddings for

full expressivity. We show empirically that, de-

spite its simplicity, SimplE outperforms several

state-of-the-art tensor factorization techniques.

1. Introduction

During the past two decades, several knowledge graphs

(KGs) containing (perhaps probabilistic) facts about

the world have been constructed (Carlson et al., 2010;

Fader et al., 2011; Wu et al., 2012; Dong et al., 2014;

Shin et al., 2015). These KGs have applications in several

fields including natural language processing, search, auto-

matic question answering, recommendation systems, etc.

Due to the enormous number of facts that could be asserted

about our world and the difficulty in accessing and stor-

ing all these facts, KGs are incomplete. However, it is

possible to predict new links in a KG based on the exist-
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ing ones. Link prediction and several other related prob-

lems aiming at reasoning with entities and relationships are

studied under the umbrella of statistical relational learning

(SRL) (Getoor & Taskar, 2007; De Raedt et al., 2016). The

problem of link prediction for KGs is also known as knowl-

edge graph completion. A KG can be represented as a set

of (head , relation , tail ) triples1. The problem of KG com-

pletion can be viewed as predicting new triples based on

the existing ones.

Three of the main categories of SRL approaches to

link prediction include weighted rule learning, graph

random walk, and tensor factorization. Weighted rule

models (De Raedt et al., 2007; Domingos et al., 2008;

Kimmig et al., 2012; Kazemi et al., 2014) typically learn

first-order logic rules that define the structure and the reg-

ularities in the data, and a weight for each rule repre-

senting the confidence of the model in that rule. Graph

random walk approaches (Lao & Cohen, 2010; Lao et al.,

2011; Wang et al., 2016; Das et al., 2017) typically define

a strategy for starting from a node in the graph, (proba-

bilistically) walking on the graph and reaching a desired

node. Tensor factorization approaches (Nickel et al., 2012;

Bordes et al., 2013b; Trouillon et al., 2016; Nguyen et al.,

2016) learn embeddings for entities and relationships and

define a function from the embeddings to whether a relation

exists between a head and a tail entity or not.

Each of the three SRL categories mentioned above has

its own advantages and disadvantages. Several recent sur-

veys and comparative studies describe and compare the ap-

proaches in one or more of these categories on several tasks

(Kimmig et al., 2015; Nickel et al., 2016a; Kazemi et al.,

2017). It has been observed in several works that hybrid

models (models based on a combination of the approaches

in these categories) may result in higher predictive per-

formance compared to models based on approaches in a

single category (Lin et al., 2015a; Neelakantan et al., 2015;

Demeester et al., 2016; Niepert, 2016). However, these hy-

brid approaches generally rely on powerful individual pre-

dictors from each category. Thus, developing better models

in each category results in better hybrid models.

In this paper, we study the third category, namely tensor

1Triples are complete for relations. They are sometimes writ-
ten as (subject , verb, object) or (individual , property , value).
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factorization approaches. We categorize these approaches

into three main classes: translational, deep learning, and

multiplicative. These approaches consider embeddings for

each entity and each relation. To predict whether a relation

holds between a head and a tail entity, they use a function

which takes the embeddings for the two entities and the

relation as input and outputs a number indicating the pre-

dicted probability. Translational approaches (Bordes et al.,

2013b; Ji et al., 2015; Wang et al., 2014; Nguyen et al.,

2016) apply an additive function over the embeddings. The

function in deep learning approaches (Socher et al., 2013;

Dong et al., 2014; Santoro et al., 2017) is typically a (deep)

neural network. Multiplicative approaches (Hitchcock,

1927; Nickel et al., 2012; Yang et al., 2015; Nickel et al.,

2016b; Trouillon et al., 2016) apply a product-based func-

tion over the input embeddings. Details and discussions

of these approaches can be found in several recent surveys

(Nguyen, 2017; Wang et al., 2017).

One of the first multiplicative approaches is the polyadic

decomposition of Hitchcock (1927). This approach learns

one embedding vector for each relation and two embedding

vectors for each entity, one to be used when the entity is the

head and one to be used when the entity is the tail. The two

embedding vectors for entities are learned independently:

observing some entity participates in a relation as the head

does not affect the vector corresponding to the case where

the entity is the tail and vice versa. This independence as-

sumption has caused polyadic decomposition to perform

poorly for KG completion (Trouillon et al., 2017). In this

paper, we develop a multiplicative tensor factorization ap-

proach based on polyadic decomposition that addresses the

independence among the two embedding vectors of the en-

tities. Due to the simplicity of our model, we call it SimplE.

We show that SimplE: 1- learns interpretable embeddings,

2- is fully-expressive, 3- is capable of encoding expert

knowledge into its embeddings through parameter shar-

ing (aka weight tying), and 4- performs very well em-

pirically despite its simplicity. We also discuss several

disadvantages of other existing approaches. For instance,

we prove that the existing translational approaches are not

fully-expressive and we identify severe restrictions on what

they can represent. We also show that the function used in

ComplEx (Trouillon et al., 2016; 2017), one of state-of-the-

art approaches, involves redundant computations.

2. Background and Notation

This section introduces our notation and provides the neces-

sary background for readers to follow the rest of the paper.

Let E represent the set of entities and R represent the set

of relations. A triple is represented as (h, r , t), where

h ∈ E in the head, r ∈ R is the relation, and t ∈

E is the tail of the triple. Let ζ represent the set of

all triples that are true in a world, and ζ′ represent the

ones that are false. An example of a triple in ζ can be

(Paris , isCapitalOf ,France) and an example of a triple in

ζ′ can be (Paris , isCapitalOf ,Germany). A knowledge

graph KG is a subset of ζ.

A relation r is reflexive on a set E of entities if (e, r , e) ∈ ζ

for any entity e ∈ E . A relation r is symmetric on a set E of

entities if (e1 , r , e2 ) ∈ ζ ⇐⇒ (e2 , r , e1 ) ∈ ζ for any two

entities e1, e2 ∈ E , and is anti-symmetric if (e1 , r , e2 ) ∈
ζ ⇐⇒ (e2 , r , e1 ) ∈ ζ′. A relation r is transitive on a

set E of entities if (e1 , r , e2 ) ∈ ζ ∧ (e2 , r , e3 ) ∈ ζ ⇒
(e1 , r , e3 ) ∈ ζ for any three entities e1, e2, e3 ∈ E .

An embedding is a function from an entity or a relation to

one or more vectors or matrices of numbers. We represent

the embedding associated with an entity e by E(e) and the

embedding associated with a relation r with E(r).

A tensor factorization model defines two things: 1- the em-

bedding functions for entities and relations, 2- a function

f taking E(h), E(r) and E(t) as input, and generating a

prediction of whether (h, r , t) is in ζ or not. The values of

the embeddings are learned using the triples in a KG.

A tensor factorization model is fully-expressive if given any

ground truth (full assignment of truth values to all triples),

there exists an assignment of values to the embeddings of

the entities and relations that accurately separates the cor-

rect triples from incorrect ones.

Let v, w and x be vectors of length k. We define 〈v, w, x〉 to

be the sum of the element-wise product of the three vectors.

That is, 〈x,w, x〉 =
∑k

j=1 vj ∗ wj ∗ xj , where vj , wj , and

xj represent the jth element of v, w and x respectively.

3. Existing Tensor Factorization Approaches

We describe three general categories of tensor factorization

approaches and some selected models in each category.

3.1. Translational Approaches

Translational approaches define additive functions over em-

beddings. TransE (Bordes et al., 2013b) is one of the first

such approaches. In TransE, the embedding for both enti-

ties and relations is a vector of size k. Let v(e) and v(r) rep-

resent the embedding vectors of an entity e and a relation r

respectively. The dissimilarity function used in TransE for

a triple (h, r , t) is ||v(h)+v(r)−v(t)||i , where ||v||i repre-

sents norm i of vector v (i is typically 1 or 2). The smaller

the value of the norm, the more probable the triple (h, r , t)
being correct. An alternative way of looking at TransE is

that it aims at learning its embedding vectors in a way that

v(h) + v(r) ≈ v(t) for any triple (h, r , t) in the KG.
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Realizing that TransE is quite limited in what it can model,

several works have extended the idea in TransE and made

it more flexible. Most of these works consider extra vec-

tors/matrices in the embeddings of the relations, project

the entity embeddings into relation-specific spaces using

the extra vectors/matrices, and then apply TransE. As an

example, STransE (Nguyen et al., 2016) considers E(r) to

be a vector v(r) plus two matrices Mh(r) and Mt(r). They

define their dissimilarity function as ||Mh(r)v(h)+v(r)−
Mt(r)v(t)||i . That is, they use the matrices to project en-

tity vectors into a new space (projecting head and tail using

different matrices), and then apply TransE. Attempts have

been also made to relax the dissimilarity function. Instead

of enforcing v(h) + v(r) ≈ v(t) as in TransE, Feng et al.

(2016)’s FTransE enforces v(h) + v(r) ≈ αv(t) for some

real numberα. According to FTransE, only the direction of

the v(h)+v(r) matters, not its size. Note that FTransE and

STransE (or other related works) can be combined to cre-

ate the function Mh(r)v(h) + v(r) ≈ αMt(r)v(t). To our

knowledge, this combination is currently one of the most

flexible translational models. In the rest of the paper, we

call this model FSTransE.

3.2. Deep Learning Approaches

Deep learning approaches generally use neural networks to

learn how the embeddings interact. E-MLP (Socher et al.,

2013) considers the embeddings for entities to be vectors v

of size k, and for relations to be a matrix M of size 2k ∗m
and a vector v of size m. To make a prediction about a triple

(h, r , t), E-MLP concatenates the vectors of the entities and

create the vector [v(h); v(t)], and feeds it into a two-layer

neural network whose weights for the first layer are the ma-

trix M(r) and for the second layer are v(r). E-MLP re-

quires (2k+1) ∗m parameters for each relation. ER-MLP

(Dong et al., 2014), the approach used in Google Knowl-

edge Vault, considers the embeddings for both entities and

relations to be single vectors. To make a prediction about

a triple (h, r , t), they concatenate the vectors of the enti-

ties and the relation creating the vector [v(h); v(r); v(t)]
and then feed it through a two layer neural network. In

Santoro et al. (2017), once the entity vectors are provided

by the convolutional neural network and the relation vec-

tor is provided by the long-short time memory network, for

each triple the vectors are concatenated similar to ER-MLP

and are fed into a four-layer neural network. Neural ten-

sor networks (NTN) (Socher et al., 2013) combine E-MLP

with a bilinear part.

3.3. Multiplicative Approaches

Multiplicative approaches define product-based functions

over embeddings. DistMult (Yang et al., 2015), one of the

simplest multiplicative approaches, considers the embed-

dings for each entity and each relation to be a single vector

of size k (v(e) and v(r)) and defines its similarity func-

tion as: f(E(h),E(r),E(t)) = 〈v(h), v(r), v(t)〉. Since

DistMult does not distinguish between head and tail enti-

ties, it can only model symmetric relations. That is, by us-

ing DistMult, one has implicitly made the assumption that

(h, r , t) ∈ ζ ⇐⇒ (t , r , h) ∈ ζ.

To address the symmetry issue in DistMult, ComplEx

(Trouillon et al., 2016) considers the embedding of each

entity and each relation to be a vector of size k of com-

plex (instead of real) numbers. For each entity e (and

similarly for each relation r), E(e) can be represented

as re(e) + im(e)i, where re and im are two vectors

of size k and i is the square root of −1. According to

ComplEx, f(E(h),E(r),E(t)) = Real(
∑k

j=1(rej(h) +
imj(h)i) ∗ (rej(r)+ imj(r)i) ∗ (rej(t)− imj(t)i), where

Real(α+ βi) = α. By changing the sign of im vector for

the tail entity (corresponding to conjugate of a complex

number), ComplEx distinguishes between head and tail en-

tities and allows for modelling asymmetric relations. One

can easily verify that the function used by ComplEx can

be expanded and written as: f(E(h),E(r),E(t)) =
〈re(h), re(r), re(t)〉 + 〈re(h), im(r), im(t)〉 +
〈im(h), re(r), im(t)〉 − 〈im(h), im(r), re(t)〉.

HolE (Nickel et al., 2016b) is another well-known multi-

plicative model, but we do not describe HolE in this paper

as Hayashi & Shimbo (2017) show that HolE is isomorphic

to ComplEx. RESCAL (Nickel et al., 2012) can be also

considered as another multiplicative approach. RESCAL

considers entity embeddings to be vectors of size k and re-

lation embeddings to be vectors of size k∗k. The similarity

function used by RESCAL is the dot-product of the relation

vector to the outer product of the entity vectors.

4. Properties of Tensor Factorization Models

We discuss fully-expressiveness, time complexity and pa-

rameter growth, interpretability, and computation redun-

dancy of several tensor factorization approaches.

4.1. Fully-Expressiveness

Full-expressiveness is an important property of any model

and has been recently the subject of study for several

relational models (see e.g., (Buchman & Poole, 2017;

Trouillon et al., 2017; Wang et al., 2018)).

We mentioned earlier that DistMult is not fully-expressive

as it forces relations to be symmetric. Trouillon et al.

(2017) prove that ComplEx is fully-expressive. In partic-

ular, they prove that any ground truth can be modelled in

ComplEx with embeddings of length at most |E|·|R|. Mod-

els based on deep learning can be made fully-expressive

with enough hidden units, as neural networks are univer-

sal. Wang et al. (2018) prove that TransE is not fully-
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expressive. Here, we prove that not only TransE but also

the more flexible translational approaches are not fully-

expressive. We also identify some of the restrictions of

these models.

Proposition 1. FSTransE is not fully-expressive and has

the following restrictions: 1- If a relation r is reflexive on a

subset S of entities, r must also be symmetric on S, 2- If a

relation r is reflexive on a subset S of entities, r must also

be transitive on S, and 3- If an entity e1 has relation r with

every entity in a subset of entities S and another entity e2
has relation r with one of the entities in S, then e2 must

have the relation r with every entity in S.

Corollary 1. Less flexible variants of translational ap-

proaches such as TransE, FTransE, STransE, TransH

(Wang et al., 2014), TransR (Lin et al., 2015b), etc. are

also not fully-expressive and have the restrictions men-

tioned in Proposition 1.

Proposition 1 identifies severe restrictions on what relations

translational approaches can represent. They cannot repre-

sent any relation not having the properties identified.

4.2. Complexity

As described in Bordes et al. (2013a), to scale to the size of

the KGs we currently have and keep up with their growth, a

relational model must have a linear time and memory com-

plexity. Furthermore, one of the important challenges in de-

signing tensor factorization models is the trade-off between

expressivity and model complexity. Models with many pa-

rameters usually overfit and give poor performance.

The time complexity for TransE is O(k) where k is the

size of the embedding vectors. Adding the projections as in

STransE increases the time complexity to O(k2). Besides

time complexity, the number of parameters to be learned

from data grows quadratically with k. A quadratic time

complexity and parameter growth may arise two issues: 1-

scalability problems, 2- overfitting. Same issues exist for

models such as RESCAL and NTNs that have quadratic or

higher time complexities and parameter growths. DistMult

and ComplEx have linear time complexities and the num-

ber of their parameters grow linearly with k. Therefore,

they scale better and are less prone to over-fitting.

4.3. Interpretability and Redundancy

In DistMult, each element of the embedding vector of the

entities can be considered as a feature of the entity and

the corresponding element of a relation can be considered

as a measure of how important that feature is to the rela-

tion. Such interpretability allows the embeddings learned

through DistMult for an entity (or relation) to be potentially

transferred to other domains. It also allows for incorporat-

ing expert knowledge into the embeddings to some extent.

For instance, if we observe a feature of some certain types

of entities, we can fix one of the elements of the embedding

vector of those entities to the observed value. For many

other models discussed in this paper, it is difficult to pro-

vide an interpretable description.

For ComplEx, a portion of the computations performed to

make predictions is redundant. Consider a ComplEx model

with embedding vectors of size 1 (for ease of exposition).

Suppose the embedding vectors for h, r and t are [α1 +
β1i], [α2 + β2i], and [α3 + β3i] respectively. Then the

probability of (h, r , t) being correct according to ComplEx

is proportional to the sum of the following four terms:

1)α1α2α3 2)α1β2β3 3)β1α2β3 4)− β1β2α3

It can be verified that for any assignment of (non-zero) val-

ues to αis and βis, at least one of the above terms is neg-

ative. This means for a correct triple, ComplEx uses three

terms to overestimate its score and then uses a term to can-

cel the overestimation.

The following example shows how this complexity in Com-

plEx affects its interpretability:

Example 1. Consider a ComplEx model with embeddings

of size 1. Consider entities e1, e2 and e3 with embedding

vectors [1 + 4i], [1 + 6i], and [3 + 2i] respectively, and a

relation r with embedding vector [1 + i].

According to ComplEx, the score for (e1 , r , e3 ) is posi-

tive suggesting e1 probably has relation r with e3 and for

(e2 , r , e3 ) is negative suggesting e2 probably does not have

relation r with e3. Since the only difference between e1
and e2 is that the imaginary part changes from 4 to 6, it is

difficult to associate a meaning to these numbers.

Such complexity in ComplEx led us towards designing a

simpler model. In the next section, we develop simple in-

terpretable models which remove redundant computations

and have half or quarter the number of summations and

multiplications of ComplEx. We show in our experiments

that our models generally outperform ComplEx on stan-

dard benchmarks.

5. SimplE

In polyadic decomposition (Hitchcock, 1927), the embed-

ding for each entity e has two vectors h(e) and t(e), and

for each relation r has a single vector v(r). The similarity

function for a triple (e1 , r , e2 ) is 〈h(e1), v(r), t(e2)〉. One

major problem with polyadic decomposition is that the two

embedding vectors learned for each entity are independent

of each other: observing a correct triple (e1 , r , e2 ) only

updates h(e1) and t(e2), not t(e1) and h(e2).

Example 2. Consider a world with two relations:

likes(p,m) representing if a person p likes a movie m, and
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acted(m, a) representing who acted in which movie. Ob-

servations on likes only update the t vector of movies and

observations on acted only update the h vector. Thus, what

is learned about movies through observations on acted does

not affect the predictions about likes and vice versa.

To account for the independence of the two vectors

for each entity in polyadic decomposition, we intro-

duce SimplE. To introduce SimplE, first we define the

inverse of each relation. For any relation r, we de-

fine the inverse of r as r−1 such that for any two en-

tities e1 and e2, (e1 , r , e2 ) ⇐⇒ (e2 , r
−1 , e1 ).

As an example, (Paris , isCapitalOf ,France) implies

(France, isCapitalOf −1 ,Paris).

SimplE considers the embedding for entities to be similar

to polyadic decomposition (i.e., two vectors for each en-

tity), but considers the embedding for each relation r to be

two (instead of one) vectors, one corresponding to r and

one corresponding to r−1. During training, for each cor-

rect triple (e1 , r , e2 ), SimplE updates the embeddings such

that 〈h(e1), v(r), t(e2)〉 and 〈h(e2), v(r
−1), t(e1)〉 both be-

come larger. During testing, we consider two different

functions as the similarity function for a triple (e1 , r , e2 )
in our experiments: 1- we ignore r−1s and only consider

〈h(e1), v(r), t(e2)〉, 2- we take the average of the two val-

ues 〈h(e1), v(r), t(e2)〉 and 〈h(e2), v(r
−1), t(e1)〉. In our

experiments, we call the first strategy SimplE-ignr and the

second strategy SimplE-avg. The probability of two entities

having a relation can be computed by taking the Sigmoid

of the similarity function.

Note that in SimplE-ignr, to find the score of a triple

only one multiplication is performed between three vec-

tors. This number is 2 for SimplE-avg and 4 for ComplEx.

Thus, with the same number of parameters, SimplE-ignr

and SimplE-avg reduce the computations by a factor of 4
and 2 respectively compared to ComplEx. Thus, ComplEx

is doing redundant computations.

5.1. SimplE is Fully-Expressive

We provide two proofs for fully-expressiveness of SimplE

with different bounds on the size of the embedding vectors.

Proposition 2. For any ground truth over entities E and

relations R, there exists a SimplE model with embedding

vectors of size |E| · |R| that represents that ground truth.

Proposition 3. For any ground truth over entities E and

relations R containing γ true facts, there exists a SimplE

model with embedding vectors of size γ +1 that represents

that ground truth.

Corollary 2. For any ground truth over entities E and rela-

tions R containing γ true facts, there exists a SimplE model

with embedding vectors of size min(|E| · |R|, γ + 1) that

represents that ground truth.

The bound in Corollary 2 is tighter than Trouillon et al.

(2017)’s bound for ComplEx (|E| · |R|), as for some

datasets, γ + 1 may be much smaller than |E| · |R|. Note

that in practice, there are many regularities in the data and

a much lower vector size suffices.

5.2. SimplE & Expert Knowledge

Similar to DistMult, the embeddings of SimplE are inter-

pretable: the entity and relation embeddings can be inter-

preted the same way as DistMult. Also similar to DistMult,

one can incorporate certain types of expert knowledge (e.g.,

an observed feature of some entities) into the embeddings.

However, unlike DistMult and many other models, expert

knowledge in terms of logical rules can be also incorpo-

rated into the embeddings of SimplE by tying the parame-

ters. The following propositions represent three such logi-

cal rules that can be incorporated into SimplE embeddings.

Proposition 4. Let r be a relation such that (e1 , r , e2 ) ∈
ζ ⇐⇒ (e2 , r , e1 ) ∈ ζ for any two entities e1 and e2 (i.e.

r is symmetric). This property of r can be encoded into

SimplE by tying the parameters v(r−1) to v(r).

Proposition 5. Let r be a relation such that (e1 , r , e2 ) ∈
ζ ⇐⇒ (e2 , r , e1 ) ∈ ζ′ for any two entities e1 and e2 (i.e.

r is anti-symmetric). This property of r can be encoded

into SimplE by tying the parameters v(r−1) to the negative

of v(r).

Proposition 6. Let r1 and r2 be two relations such that

(e1 , r1 , e2 ) ∈ ζ ⇐⇒ (e2 , r2 , e1 ) ∈ ζ for any two entities

e1 and e2. This property of r1 and r2 can be encoded into

SimplE by tying the parameters v(r−1
1 ) to v(r2) and v(r−1

2 )
to v(r1).

5.3. From DistMult to SimplE to ComplEx

Consider a dataset where some (but not all) certain types of

entities participate in asymmetric relations. In such cases,

DistMult may not be appropriate as it can only model sym-

metric relations. A complex-valued embedding vector may

not as well be appropriate as it contains more parameters

than necessary. Using SimplE for such a dataset, it is possi-

ble to model the asymmetric relations and not have more pa-

rameters than necessary by considering two (head and tail)

vectors only for those entities that participate in asymmet-

ric relations, and tie the parameters of head and tail vectors

for the other entities.

6. Experiments and Results

We compare SimplE empirically with several other tensor

factorization models. We show that despite the simplicity

of SimplE, it performs very well. We also design an experi-

ment which validates our proofs in Section 5.2 empirically.
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Table 1. Statistics on WN18 and FB15k datasets.

Dataset |E| |R| #train #valid #test

WN18 40,943 18 141,442 5,000 5,000

FB15k 14,951 1,345 483,142 50,000 59,071

6.1. Datasets

We conducted experiments on two standard benchmarks:

WN18 a subset of Wordnet (Miller, 1995), and FB15k a

subset of Freebase (Bollacker et al., 2008). We used the

same train/valid/test sets as in Bordes et al. (2013b). The

statistics on these datasets are available in Table 1.

6.2. Evaluation Metrics

To measure and compare the performances of different

models, for each test triple (h, r , t) once we compute the

score of (h′, r , t) triples for all h′ ∈ E and calculate the

ranking rankh of the triple having h, and once we compute

the score of (h, r , t ′) triples for all t′ ∈ E and calculate the

ranking rankt of the triple having t. Then we compute the

mean reciprocal rank (MRR) of these rankings as the mean

of the inverse of the rankings:

MRR =
1

2 ∗ |tt|

∑

(h,r ,t)∈tt

1

rankh
+

1

rankt
(1)

where tt represents the test triples.

Bordes et al. (2013b) identified an issue with the above pro-

cedure for calculating the MRR (hereafter referred to as

raw MRR). For a test triple (h, r , t), since there can be

several entities h′ ∈ E for which (h′, r , t) holds, measur-

ing the quality of a model based on its ranking for (h, r , t)
may be flawed. That is because two models may rank the

test triple (h, r , t) to be second, when the first model ranks

a correct triple (e.g., from train or validation set) (h′, r , t)
to be first and the second model ranks an incorrect triple

(h′′, r , t) to be first. Both these models will get the same

score for this test triple when the first model should get a

higher score.

To address this issue, Bordes et al. (2013b) proposed a mod-

ification to raw MRR. For each test triple (h, r , t), instead

of finding the rank of this triple among triples (h′, r , t) for

all h′ ∈ E (or (h, r , t ′) for all t′ ∈ E), they proposed to

calculate the rank among triples (h′, r , t) only for h′ ∈ E
such that (h′, r , t) 6∈ train ∪ valid ∪ test. Following

Bordes et al. (2013b), we call this measure filtered MRR.

We also report hit@k measures. The hit@k for a model

is computed as the percentage of test triples whose ranking

(computed as described earlier) is less than or equal k.

6.3. Learning SimplE Models

To learn a SimplE model, we use stochastic gradient de-

scent with mini-batches. In each learning iteration, we it-

eratively take in a batch of positive triples from the KG,

then for each positive triple in the batch we generate n

negative triples by corrupting the positive triple. We use

Bordes et al. (2013b)’s procedure to corrupt positive triples.

The procedure is as follows. For a positive triple (h, r , t),
we randomly decide to corrupt the head or tail. If the head

is selected, we replace h in the triple with an entity h′ ran-

domly selected from E − {h} and generate the corrupted

triple (h′, r , t). If the tail is selected, we replace t in the

triple with an entity t′ randomly selected from E − {t}
and generate the corrupted triple (h, r , t ′). We generate

a labelled batch LB by labelling positive triples as +1 and

negatives as −1.

Once we have a labelled batch, following Trouillon et al.

(2016) we optimize the L2 regularized negative log-

likelihood of the batch:

min
θ

∑

((h,r ,t),l)∈LB

softplus(−l · φ(h, r , t)) + λ||θ||22 (2)

where θ represents the parameters of the model (the param-

eters in the embeddings), l represents the label of a triple, λ

is the regularization hyper-parameter, and softplus(x) =
log(1 + exp(x)). While several previous works (e.g.,

TransE, TransR, STransE, HolE, etc.) consider a margin-

based loss function, Trouillon & Nickel (2017) show that

the margin-based loss function is more prone to overfitting

compared to log-likelihood.

We implemented SimplE in TensorFlow (Abadi et al.,

2016)2. We tuned our hyper-parameters over the valida-

tion set. We used the same search grid on embedding size

and λ as Trouillon et al. (2016) to make our results directly

comparable to their results. We fixed the maximum number

of iterations to 1000 and the batch size to 100. We set the

learning rate for WN18 to 0.1 and for FB15k to 0.05 and

used adagrad to update the learning rate after each batch.

Following Trouillon et al. (2016), we generated one nega-

tive example per positive example for WN18 and 10 neg-

ative examples per positive example in FB15k. We com-

puted the filtered MRR of our model over the validation set

every 50 iterations for WN18 and every 100 iterations for

FB15k and selected the iteration that resulted in the best

validation filtered MRR. The best embedding size and λ

values on WN18 for SimplE-ignr were 200 and 0.001 re-

spectively, and for SimplE-avg were 200 and 0.03. The

best embedding size and λ values on FB15k for SimplE-

ignr were 200 and 0.03 respectively, and for SimplE-avg

were 200 and 0.1.

2Code: https://github.com/Mehran-k/SimplE

https://github.com/Mehran-k/SimplE
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Table 2. Results on WN18 and FB15k. Best results are in bold.

WN18 FB15k

MRR Hit@ MRR Hit@

Model Filter Raw 1 3 10 Filter Raw 1 3 10

PD 0.075 0.058 0.049 0.080 0.125 0.326 0.152 0.219 0.376 0.532
TransE 0.454 0.335 0.089 0.823 0.934 0.380 0.221 0.231 0.472 0.641
TransR 0.605 0.427 33.5 87.6 94.0 0.346 0.198 21.8 40.4 58.2

DistMult 0.822 0.532 0.728 0.914 0.936 0.654 0.242 0.546 0.733 0.824
NTN 0.53 − − − 66.1 0.25 − − − 41.4

STransE 0.657 0.469 − − 93.4 0.543 0.252 − − 79.7
ER-MLP 0.712 0.528 0.626 0.775 0.863 0.288 0.155 0.173 0.317 0.501
ComplEx 0.941 0.587 0.936 0.945 0.947 0.692 0.242 0.599 0.759 0.840

SimplE-ignr 0.939 0.576 0.938 0.940 0.941 0.700 0.237 0.625 0.754 0.821
SimplE-avg 0.942 0.588 0.939 0.944 0.947 0.727 0.239 0.660 0.773 0.838

6.4. Baselines

We compare SimplE with several existing tensor factoriza-

tion approaches. Our baselines include polyadic decompo-

sition (PD), TransE, TransR, DistMult, NTN, STransE, ER-

MLP, and ComplEx. Given that we use the same data splits

and objective function as ComplEx, we report the results of

PD, TransE, DistMult, and ComplEx from Trouillon et al.

(2016). We report the results of TransR and NTN from

(Nguyen, 2017), and ER-MLP from (Nickel et al., 2016b)

for further comparison.

6.5. Entity Prediction Results

Table 2 shows the results of our experiments. It can be

viewed that both SimplE-ignr and SimplE-avg do a good

job compared to the existing baselines on both datasets. On

WN18, SimplE-ignr and SimplE-avg perform as good as

ComplEx, a state-of-the-art tensor factorization model. On

FB15k, SimplE-avg outperforms the existing baselines and

gives state-of-the-art results among tensor factorization ap-

proaches. SimplE-avg (and SimplE-ignr) work especially

well on this dataset in terms of filtered MRR (which is the

criteria we optimizing for) and hit@1.

The table shows that models with many parameters (e.g.,

NTN and STransE) do not perform well on these datasets as

they probably overfit. The table also shows that multiplica-

tive approaches tend to have better performances compared

to translational and deep learning approaches. Even Dist-

Mult, the simplest multiplicative approach, outperforms

many translational and deep learning approaches, despite

not being fully-expressive. We believe the simplicity of em-

beddings and the scoring function is a key property for ten-

sor factorization approaches, and SimplE shows high per-

formance due to its simplicity and fully-expressiveness.

6.6. Incorporating Expert Knowledge

When expert knowledge is available, we might expect that

a knowledge graph might not include redundant informa-

tion because it is implied by expert knowledge and so the

methods that do not include the background knowledge can

never learn it.

In section 5.2, we showed how expert knowledge in terms

of rules can be incorporated into SimplE embeddings. To

test this empirically, we conducted an experiment on WN18

in which we incorporated several rules (see Appendix B)

into the embeddings as outlined in Propositions 4, 5, and 6.

Then, for the relations for which we had a rule, we only

kept the triples of that relation in the training data that were

necessary for making predictions on test triples. This re-

duced the number of train triples from (approx.) 141K to

(approx.) 36K , almost 75% reduction in size, and reduced

the number of entities from 40943 to 23880. Note that

this experiment provides an upper-bound on how much ex-

pert knowledge can improve the performance of a SimplE

model. The goal of this experiment is to validate empiri-

cally that expert knowledge can be incorporated into Sim-

plE models to improve their performance.

We trained SimplE-ignr and SimplE-avg (with tied param-

eters according to the rules) on this new training dataset

with the best hyper-parameters found in the previous ex-

periment. We refer to these two models as SimplE-ignr-

exp and SimplE-avg-exp. We also trained another SimplE-

ignr and SimplE-avg models on this dataset, but without

incorporating the rules into the embeddings. For sanity

check, we also trained a ComplEx model over this new

dataset. We allowed all these five models a fixed number

of iterations to train, and then reported their performance

on the test set. We found that the filtered MRR for SimplE-

ignr, SimplE-avg, and ComplEx were respectively 0.219,

0.220, and 0.208. For SimplE-ignr-exp and SimplE-avg-



SimplE Embedding for Link Prediction in Knowledge Graphs

exp, the filtered MRRs were both 0.892. In terms of hit@k

measures, SimplE-ignr gave 0.217, 0.218 and 0.220 for

hit@1, hit@3 and hit@10 respectively. These numbers

were 0.217, 0.219, and 0.222 for SimplE-avg, and 0.201,

0.216 and 0.218 for ComplEx. For SimplE-ignr-exp, these

numbers were 0.905, 0.906 and 0.906, and for SimplE-avg-

exp they were 0.906, 0.907, 0.907. The obtained results val-

idate that expert knowledge can be incorporated into Sim-

plE embeddings efficiently to improve its performance.

7. Conclusion

We proposed a simple interpretable fully-expressive tensor

factorization model for knowledge graph completion. We

showed that our model, called SimplE, performs very well

empirically and has several interesting properties. For in-

stance, we showed that expert knowledge in terms of log-

ical rules can be incorporated into SimplE by tying the

embeddings. In future, SimplE can be improved or may

help improve relational learning in several ways including:

1- building ensembles of SimplE models as (Kadlec et al.,

2017) do it for DistMult, 2- adding SimplE to the relation-

level ensembles of Wang et al. (2018), 3- explicitly mod-

elling the analogical structures of relations as in Liu et al.

(2018), 4- using Dettmers et al. (2018)’s 1-N scoring ap-

proach to generate all negative triples that can be gen-

erated for a positive triple by corrupting its head or tail

(Trouillon et al. (2016) show that generating more nega-

tive examples per positive example improves accuracy),

and 5- combining SimplE with (or use SimplE as a sub-

component in) techniques from other categories of rela-

tional learning as Rocktäschel & Riedel (2017) do it with

ComplEx.
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Appendix A: Proof of Propositions

Proposition 1. FSTransE is not fully-expressive and has

the following restrictions: 1) If a relation r is reflexive on

a subset S of entities, r must also be symmetric on S, 2)

If a relation r is reflexive on a subset S of entities, r must

also be transitive on S, and 3) If an entity e1 has relation r

with every entity in a subset of entities S and another entity

e2 has relation r with one of the entities in S, then e2 must

have the relation r with every entity in S.

Proof. For any entity e, let h(e) = Mh(r)v(e) and t(e) =
Mtv(e). In the ideal situation, for a triple (e1 , r , e2 ) to

hold, we must have h(e1) + v(r) = αt(e2) for some α.

To prove (1), let e1 and e2 be two entities in S. A re-

lation r being reflexive on S suggests: h(e1) + v(r) =
α1t(e1) and h(e2) + v(r) = α2t(e2). Now we must prove

(e1 , r , e2 ) ⇐⇒ (e2 , r , e1 ). Suppose (e1 , r , e2 ) holds.

Then we know: h(e1)+ v(r) = α3t(e2). We can conclude:

h(e2)+v(r) = α2t(e2) =
α2

α3
α3t(e2) =

α2

α3
(h(e1)+v(r))

=
α2

α3
α1t(e1) = α4t(e1), (α4 =

α2α1

α3
)

The above equality proves that (e2 , r , e1 ) holds. Going

from (e2 , r , e1 ) to (e1 , r , e2 ) is similar.

To prove (2), let e1, e2, and e3 be three entities in S. A

relation r being reflexive suggests: h(e1)+v(r) = α1t(e1),
h(e2) + v(r) = α2t(e2), and h(e3) + v(r) = α3t(e3).
Now we must prove (e1 , r , e2 )∧ (e2 , r , e3 ) ⇒ (e1 , r , e3 ).
Suppose (e1 , r , e2 ) and (e2 , r , e3 ) hold. Then we know:

h(e1) + v(r) = α4t(e2) and h(e2) + v(r) = α5t(e3). We

can conclude:

h(e1)+v(r) = α4t(e2) =
α4

α2
α2t(e2) =

α4

α2
(h(e2)+v(r))

=
α4

α2
α5t(e3) = α6t(e3), (α6 =

α4α5

α2
)

The above equality proves (e1 , r , e3 ) holds.

To prove (3), let e3 and e4 be two entities in S, and let e2
have relation r with e3. We prove e2 must have relation

r with e4 as well. We know: h(e1) + v(r) = α1t(e3),
h(e1) + v(r) = α2t(e4), and h(e2) + v(r) = α3t(e3). We

can conclude:

h(e2) + v(r) = α3t(e3) =
α3

α1
α1 =

α3

α1
(h(e1) + v(r))

=
α3

α1
α2t(e4) = α4t(e4), (α4 =

α3α2

α1
)

The above equality proves (e2 , r , e4 ) holds.

Proposition 2. For any ground truth over entities E and

relations R, there exists a SimplE model with embedding

vectors of size |E| · |R| that represents that ground truth.

Proof. With embedding vectors of size |E| ∗ |R|, for each

entity ei we define hn(ei) = 1 if n mod |E| = i and 0
otherwise, and for each relation rj we define vn(rj) = 1 if

n div |E| = j and 0 otherwise (see Fig 1).

Then for each ei and rj , the product of h(ei) and v(rj) is 0
everywhere except for (j ∗ |E|+ i)-th element. So for each

entity ek, we set tj∗|E|+i(ek) to be 1 if (ei , rj , rk) holds

and −1 otherwise.

Proposition 3. For any ground truth over entities E and

relations R containing γ true facts, there exists a SimplE

model with embedding vectors of size γ +1 that represents

that ground truth.

Figure 1. h(e)s and v(r)s in Proposition 2.
h(e0) 1 0 0 . . . 0 1 0 0 . . . 0 . . . 1 0 0 . . . 0

h(e1) 0 1 0 . . . 0 0 1 0 . . . 0 . . . 0 1 0 . . . 0

h(e2) 0 0 1 . . . 0 0 0 1 . . . 0 . . . 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h(e|E|−1) 0 0 0 . . . 1 0 0 0 . . . 1 . . . 0 0 0 . . . 1

v(r0) 1 1 1 . . . 1 0 0 0 . . . 0 . . . 0 0 0 . . . 0

v(r1) 0 0 0 . . . 0 1 1 1 . . . 1 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v(r|R|−1) 0 0 0 . . . 0 0 0 0 . . . 0 . . . 1 1 1 . . . 1
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Table 3. Rules Used in Section 6.6.
Rule Number Rule

1 (e1 , hyponym , e2 ) ∈ ζ ⇐⇒ (e2 , hypernym , e1 ) ∈ ζ
2 (e1 ,member meronym, e2 ) ∈ ζ ⇐⇒ (e2 ,member holonym, e1 ) ∈ ζ
3 (e1 , instance hyponym , e2 ) ∈ ζ ⇐⇒ (e2 , instance hypernym , e1 ) ∈ ζ
4 (e1 , has part , e2 ) ∈ ζ ⇐⇒ (e2 , part of , e1 ) ∈ ζ
5 (e1 ,member of domain topic, e2 ) ∈ ζ ⇐⇒ (e2 , synset domain topic of , e1 ) ∈ ζ
6 (e1 ,member of domain usage , e2 ) ∈ ζ ⇐⇒ (e2 , synset domain usage of , e1 ) ∈ ζ
7 (e1 ,member of domain region , e2 ) ∈ ζ ⇐⇒ (e2 , synset domain region of , e1 ) ∈ ζ
8 (e1 , similar to, e2 ) ∈ ζ ⇐⇒ (e2 , similar to, e1 ) ∈ ζ

Proof. We use induction to prove this proposition. Let

γ be zero (base of the induction). We can have embed-

ding vectors of size 1 for each entity and relation, setting

the value for entities to 1 and for relations to −1. Then

〈h(ei), v(rj), t(ek)〉 is negative for every entities ei and ek
and relation rj . So there exists embedding vectors of size

γ + 1 that represents this ground truth.

Let’s assume for any ground truth where γ = n − 1
(1 ≤ n ≤ |R||E|2), there exists an assignment of values

to embedding vectors of size n that represents that ground

truth (assumption of the induction). We must prove for any

ground truth where γ = n, there exists an assignment of

values to embedding vectors of size n + 1 that represents

this ground truth.

Let (ei , rj , ek ) be one of the n true facts. Consider a modi-

fied ground truth which is identical to the ground truth with

n true facts, except that (ei , rj , ek ) is assigned false. The

modified ground truth has n− 1 true facts and based on the

assumption of the induction, we can represent it using some

embedding vectors of size n. Let q = 〈h(ei), v(rj), t(ek)〉
where h(ei), v(rj) and t(ek) are the embedding vectors

that represent the modified ground truth. We add an ele-

ment to the end of all embedding vectors and set it to 0.

This increases the vector sizes to n+1 but does not change

any scores. Then we set h(ei) to 1, v(rj) to 1, and t(ek) to

q + 1. This ensures that 〈h(ei), v(rj), t(ek)〉 > 0 for the

new vectors, and no other score is affected.

Proposition 4. Let r be a relation such that (e1 , r , e2 ) ∈
ζ ⇐⇒ (e2 , r , e1 ) ∈ ζ for any two entities e1 and e2 (i.e.

r is symmetric). This property of r can be encoded into

SimplE by tying the parameters v(r−1) to v(r).

Proof. If (e1 , r , e2 ) ∈ ζ, then a SimplE model makes

〈h(e1), v(r), t(e2)〉 and 〈h(e2), v(r
−1), t(e1)〉 positive. By

tying the parameters v(r−1) to v(r), we can conclude

that 〈h(e2), v(r), t(e1)〉 and 〈h(e1), v(r
−1), t(e2)〉 also be-

come positive. Therefore, the SimplE model predicts

(e2 , r , e1 ) ∈ ζ.

Proposition 5. Let r be a relation such that (e1 , r , e2 ) ∈
ζ ⇐⇒ (e2 , r , e1 ) ∈ ζ′ for any two entities e1 and e2 (i.e.

r is anti-symmetric). This property of r can be encoded

into SimplE by tying the parameters v(r−1) to the negative

of v(r).

Proof. If (e1 , r , e2 ) ∈ ζ, then a SimplE model

makes 〈h(e1), v(r), t(e2)〉 and 〈h(e2), v(r
−1), t(e1)〉 pos-

itive. By tying the parameters v(r−1) to the negative

of −v(r), we can conclude that 〈h(e2), v(r), t(e1)〉 and

〈h(e1), v(r
−1), t(e2)〉 become negative. Therefore, the

SimplE model predicts (e2 , r , e1 ) ∈ ζ.

Proposition 6. Let r1 and r2 be two relations such that

(e1 , r1 , e2 ) ∈ ζ ⇐⇒ (e2 , r2 , e1 ) ∈ ζ for any two entities

e1 and e2. This property of r1 and r2 can be encoded into

SimplE by tying the parameters v(r−1
1 ) to v(r2) and v(r−1

2 )
to v(r1).

Proof. If (e1 , r1 , e2 ) ∈ ζ, then a SimplE model makes

〈h(e1), v(r1), t(e2)〉 and 〈h(e2), v(r
−1
1 ), t(e1)〉 positive.

By tying the parameters v(r−1
2 ) to v(r1) and v(r2) to

v(r−1
1 ), we can conclude that 〈h(e1), v(r

−1
2 ), t(e2)〉 and

〈h(e2), v(r2), t(e1)〉 also become positive. Therefore, the

SimplE model predicts (e2 , r2 , e1 ) ∈ ζ.

Appendix B: Rules Used in Section 6.6

The rules used for the experiment in Section 6.6 can be

found in Table 3.


