
AISpace2: An Interactive Visualization Tool for Learning and Teaching Artificial
Intelligence

Chenliang Zhou,1 Dominic Kuang, Jingru Liu, Hanbo Yang, Zijia Zhang, Alan Mackworth, David Poole2

Department of Computer Science
University of British Columbia

Vancouver, BC, Canada
1chenliang.zhou@qq.com

2poole@cs.ubc.ca

Abstract
AIspace is a set of tools used to learn and teach fundamental
AI algorithms. The original version of AIspace was written in
Java. There was not a clean separation of the algorithms and
visualization; it was too complicated for students to modify
the underlying algorithms. Its next generation, AIspace2, is
built on AIPython, open source Python code that is designed
to be as close as possible to pseudocode. AISpace2, visual-
ized in JupyterLab, keeps the simple Python code, and uses
hooks in AIPython to allow visualization of the algorithms.
This allows students to see and modify the high-level algo-
rithms in Python, and to visualize the output in a graphical
form, aiming to better help them to build confidence and com-
fort in AI concepts and algorithms. So far we have tools for
search, constraint satisfaction problems (CSP), planning and
Bayesian network. In this paper we outline the tools and give
some evaluations based on user feedback.

Introduction
Artificial intelligence (AI) is becoming a more and more
popular and important field in computer science. However,
both teaching and learning AI are not simple for many in-
structors and students, partly because the concepts and al-
gorithms are more abstract and not as straightforward as the
ones the students encountered before in a basic algorithm
course (Greiner and Schaeffer 2001; Hearst 1994).

Several researchers have pointed out that the use of certain
level of multimedia, such as animation and visualization, in
presenting course materials is more effective to capture the
attention from students and thus more helpful in motivat-
ing their interest to learn AI (Naps et al. 2003; Demetri-
adis, Triantfillou, and Pombortsis 2003). Compared to tra-
ditional paper-based learning, strategies that involve com-
puters could help decrease students’ cognitive load (Khalil,
Mansour, and Wilhite 2010) and its outcome is at least as
good as the traditional teaching strategies (Valentine, Belski,
and Hamilton 2017). It is also shown in Zeng’s work (2016)
that computer visualization can promote the understanding
of models in deep learning, a subfield of AI. There is evi-
dence that those visualized AI algorithms, although compli-
cated, could become more accessible and less intimidating

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to students (Kehoe, Stasko, and Taylor 2001). A more spe-
cific experiment has been done to show that the visualization
tools can help students learn and understand search AI algo-
rithms (Naser 2008). Although some experiments have been
conducted to show that animations in learning may bring a
fake feeling of satisfaction, negatively impacting the devel-
opment of learning strategies, they are impressively advan-
tageous for learners to understand dynamic activities, and
can give them more confidence and motivation (Ainsworth
2008). Therefore, to engage students and encourage them to
learn more actively, we built tools so the execution of the
algorithms can be visualized and students can interact with
and control these visualizations.

In 2016, we started a project called AISpace2 (https:
//aispace2.github.io/AISpace2/), an interactive and visualiz-
able pedagogical tool designated to help learn and teach AI
knowledge. In this paper we give an introduction to AIS-
pace2. We first present some background information about
CIspace and AIspace, the previous generations of AISpace2,
since their first launch in 1999 (Poole and Mackworth 2001;
Knoll et al. 2008), and then AIPython (Poole and Mack-
worth 2017a), on which AISpace2 is built. We then talk
about the design approaches adopted in AISpace2 and their
advantages compared to its predecessors. Next, we outline
some important features in AISpace2 followed by some
evaluations of our project based on user feedback. Finally,
we give a plan of our future work, including a summary of
possible improvements and achievements we could make.

Related Work
In this section we briefly talk about the history of CIspace
(Poole and Mackworth 2001), AIspace (Knoll et al. 2008)
and AIPython.

CIspace
In 1999, Poole and Mackworth launched CIspace (2001), a
set of nine visualization applets aimed at helping to learn
AI concepts and algorithms interactively based on their
textbook Computational Intelligence: A Logical Approach
(1998). The goal of CIspace is to enhance approaches to
learning and teaching AI, which can be further decomposed
into the usability goal and the pedagogical goal (Amershi et



al. 2005a). CIspace has been incorporated into undergradu-
ate courses at many universities and received positive feed-
back from students and instructors (Amershi et al. 2005b).
Experiments show that the CSP applet in CIspace is at least
as good a study tool as the traditional paper-based study, and
that students prefer to study using the applet rather than with
traditional paper-based methods (Amershi et al. 2005b).

AIspace
In 2008, CIspace was renamed as AIspace and its developers
continued on actively developing and releasing new versions
with more and more new features added (Knoll et al. 2008).
Figure 1 shows its applet for CSP. AIspace is more closely
aligned with the textbook of Poole and Mackworth, Artificial
Intelligence: Foundations of Computational Agents (2017b).
In AIspace, customizable applets were introduced, making
the tools easier to use for different levels of users, and help-
ing instructors for online tutorials of a specific AI concept
(Knoll et al. 2008). An evaluation of AIspace was made by
surveying students questions about effectiveness, usability
and enjoyability of the tools and the average score in the
feedback was 3.8 out of 5 (Knoll et al. 2008). This is a de-
sirable result but there is still room for improvement. One
possible improvement is to provide adaptive support, whose
effectiveness is shown in Kardan and Conati’s work (2015).

Figure 1: AIspace CSP Applet

AIPython
AIPython (http://aipython.org) is a high-level implementa-
tion of most of the algorithms found in Poole and Mack-
worth’s Artificial Intelligence: Foundations of Computa-
tional Agents (2017b). It is designed to be as close as pos-
sible to pseudocode. AIPython tries to have a good asymp-
totic complexity, but given a design choice, clarity is pre-
ferred over efficiency. For example, if a set is the correct ab-
straction, it uses the set in Python, even if the set is small

and it probably would have been more efficient to use the
list. AIPython is designed to be able to run independently
in Python 3 with a minimal number of libraries; it enables
students to use it without needing to learn external libraries.
Figure 2 is a page from the code documentation showing the
arc consistency algorithm in AIPython.

Figure 2: Arc Consistency Algorithm in AIPython

AIPython uses a method display(level, *args,
**kwargs) to trace the code (where the level is a thresh-
old for the amount of detail a user wants), and a select
for making selections that do not affect the correctness, but
may affect the efficiency of code. When run in Python, these
just print or select an arbitrary value. These functions pro-
vide hooks that can be used in a visualization or to let a user
select values. AISpace2 does not modify the code, but rede-
fines display and select to allow for interactive visu-
alization of the code.

Design Approaches
Our major goal for AISpace2 is to make the tools in AIspace
more accessible and extendable, and to enable and encour-
age students to actively interact and investigate more deeply,
not only with the visualization, but also with the AIPython
source code in the backend, so that they can understand more
thoroughly the mechanism of each algorithm.

Figure 3 illustrates the overall structure of AISpace2. We
use JupyterLab (Granger and Grout 2016) widgets to repre-
sent our visualizations, which are driven by Vue.js (You et al.
2014) renderers. We use Python files as the backend and use
AIPython as core algorithms. We also use TypeScript (Mi-
crosoft 2012) to handle the frontend events. Additionally,
we have several Python files serving as bridges to enable the
communication between frontend and backend.



Figure 3: AISpace2 Overall Structure

Visualizations in JupyterLab
In order to make AISpace2 more accessible and extendable,
we chose to use JupyterLab (Granger and Grout 2016) wid-
gets to present our frontend visualizations instead of the
downloadable Java applets used in AIspace. This is because
Jupyter (Perez and Granger 2015) provides an environment
for open-source software, especially popular in the fields of
machine learning and artificial intelligence, and services for
interactive computing across dozens of programming lan-
guages.

JupyterLab is the next generation of the Jupyter Notebook
interface. The notebook document format (Kluyver et al.
2016) provided by Jupyter combines explanatory text, math-
ematics, computations and their rich media output and can
be directly run in a browser. This makes the use of AIS-
pace2 more convenient and accessible compared to its pre-
vious versions. Users can edit the code and test it directly
in the browser, save their changes in the notebook file and
share it with others, making it extremely extendable. A prob-
lem with Jupyter Notebook is that all code has to be in one
sequence and input files are hidden. JupyterLab provides a
side file manager panel and allows user to open multiple file
tabs at once. Since we write solvers for different kinds of
problems in separate notebook files, these features of a side
file panel and file tabs make it more convenient for users to
switch between different solvers and algorithms and make
comparisons, and to edit files that are loaded by the note-
book.

Incorporate AIPython as Backend
In order to enable and encourage students to actively interact
and investigate more deeply, we incorporated AIPython into
AISpace2.

We decided to expose the AIPython code to users because
we think there might be many students who find the frontend
visualization too magical and wish to go deeper to investi-
gate what is really going on in the underlying algorithms.
By exploring the backend, we expect that students would
gain more enhanced knowledge about the concepts and algo-
rithms described by the frontend visualization. Furthermore,
users are allowed to modify the backend code because in
many situations students may be curious and asking “what
will happen if ...” and want to try themselves. We expect that

users can gain more solid knowledge by modifying and ex-
perimenting with the backend AIPython code.

In order to let AIPython, which is designed to run inde-
pendently, cooperate better with the frontend, the only mod-
ification to the AIPython code is a @visualize decorator,
which wraps the functions that are to be directly called in
JupyterLab. The @visualize decorator makes those func-
tions automatically run when the JupyterLab widget is ren-
dered and does not make the code less readable. Adding this
decorator is necessary because we need to tell the frontend
which functions are driving the visualization, sending mes-
sages to it and running in parallel with it; otherwise these
functions will block the main thread.

Connect Frontend and Backend
We used TypeScript (Microsoft 2012) and Vue.js (You et
al. 2014) as the frontend languages. In order to connect
the frontend and backend, we redefined the Displayable
classes, redefining display and select, sending sig-
nals to the frontend about which functions are to be visu-
alized and how they should be visualized. For each tool (e.g.
search, CSP, planning, etc.), we implemented a frontend vi-
sualizer and a backend Displayable class. Combined to-
gether, they are responsible for handling the event communi-
cation between the frontend and the backend. This includes
both the controlling events and rendering events. The con-
trolling events are those sent from frontend to backend, trig-
gered when, for example, the user clicks on the Solve but-
ton or a specific node in the JupyterLab widget. The ren-
dering events are those sent back from the backend to the
frontend and are related to the tasks of graph rendering and
message outputting. They are triggered whenever there is a
graph changing or some printout needing to be presented on
the screen.

In order to make the two languages (TypeScript in the
frontend visualizer and Python in the backend AIPython)
communicate with each other successfully and effectively,
we set up bridges between them. For each tool we have a cor-
responding bridge file, responsible for converting a Python
representation of a problem, received from backend, to its
JSON representation and sending it to the frontend visual-
izer, incorporating the necessary information to render it as
a graph, and also reversely, converting JSON to Python.

Features
In this section we outline the main features of AISpace2,
including its problem solvers, controls and problem builders.

Solvers
The solvers are the main tools of AISpace2. For each al-
gorithm we have an associated solver. Figure 4 shows a
CSP solver using the arc consistency code presented in Fig-
ure 2. Because for each kind of problem, there might be
multiple algorithms to solve it, each of which has its own
strengths and weaknesses, AIPython provides the support
for multiple algorithms. For example, in search problems,
it provide solvers for depth-first search, breadth-first search,
A* search, branch-and-bound search, etc., and in CSP, it



provides solvers for the arc consistency algorithm and for
stochastic local search algorithms.

Figure 4: A CSP Solver Using Arc Consistency Algorithm

Students are able to switch between different solvers by
switching between the notebooks, which is made extremely
smooth thanks to the side file panel and file tab functions in
JupyterLab (Granger and Grout 2016). With two tabs open
simultaneously, it is also easier for students to recognize cer-
tain subtle difference between similar algorithms (e.g. for-
ward planning and regression planning), and to compare the
effects of different kinds of problems on the performance of
these algorithms.

Controls
The controls for the visualization are designed to ensure that
it is easy to use. The controls can be classified into two cat-
egories: main controls and visualization controls.

For all of the solvers, the main interface through which
users can control the visualization is by clicking on nodes
and arcs or using one of the buttons Fine Step, Step
or Auto Solve, located at the bottom of each visualiza-
tion widget. These buttons provide different granularities of
solving a problem to enable different demands from users;
for example, it is easy to imagine the huge gap in the level
of proficiency in the algorithms among users: some students
who just started to learn the material might have little un-
derstanding of the algorithms and they may wish to step into
every detail happening during the process of the algorithm,
while other students or instructors already proficient in the
algorithm may just wish to see an overview of the execution
or a final answer. By providing different granularities we can
satisfy a wide range of users.

Two other convenient functions are Pause and Print
Positions buttons. The Pause button can pause the ex-
ecution of an algorithm between each fine-step during a
step or an auto-solve, providing an opportunity for users
to investigate the intermediate state of the problem. The
Print Positions button prints out the position infor-
mation about the objects in the graph, which can be utilized
by the users when they want to construct a new problem or
modify an existing problem but want the nodes to locate at
the same position when rendered.

Apart from the main controls, there are also various vi-
sualization controls. Some of the important ones are sum-

marized in Table 1. These controls are mainly about dif-
ferent visualization options and can be accessed through
Python. Through tuning these parameters, users can cre-
ate a visualization they desire. Although these controls
are convenient, we choose to hide them from the note-
book interface and users have to go to Displayable
classes in Python to change them because these options
are less related to the AI algorithms and concepts them-
selves and we do not want to distract users from what
they should focus on. We expect that normal users will not
need to worry about these visualization controls and use
the default setup for them. For example, in an A* search
solver, the default setup is show edge costs=True and
show node heuristics=True because in most cases
the users want to observe the edge costs and node heuristics
in the execution of the A* algorithm.

Builders
For each category of problems (search, CSP, etc.), we pro-
vide several predefined sample problems that the user can
load. If the user wants to build a problem themselves, they
can write the Python code to construct instances of the cor-
responding problem classes. However, we noticed that some
students are not familiar with the Python programming lan-
guage and the details of the representations and may find
these difficult, which is undesirable because the major goal
of AISpace2 is to facilitate learning and understanding of
important AI concepts and algorithms instead of learning
how to write code in Python. Therefore, for each kind of
problem, we provide a problem builder to help users con-
struct problems visually, taking advantage of the fact that
the problems we are dealing with can be represented in the
form of a graph. Figure 5 shows a Bayesian network builder,
where the user is setting the conditional probability table for
the variable Grass wet.

Figure 5: Bayesian Network Builder

A user can either choose to create their own problem from
an empty graph, or choose to build upon an existing prob-
lem. In the builders, the user can change the graph by sim-
ply clicking or dragging a node or an edge on the screen.



Table 1: Examples of Visualization Controls
Control Meaning
sleep time The waiting time between each step in auto solving
line width The thickness of edges
text size The font size of the text
detail level The detail level of the information shown on a node
show edge costs Determines whether to show the cost of each edge (only in search related problems)
show node heuristics Determines whether to show the heuristic value inside each node (only in search related problems)
decimal place The decimal place of the query result (only in probability related problems)

They can also perform various operations on the graph in-
cluding adding or deleting a node or an edge, and changing
the attributes (e.g. name) of a node or an edge. Of course,
there are some functions exclusive to each kind of problem.
For example, in a search problem builder the user can set
the heuristic value of a node or the cost of an edge, and in
a Bayesian network builder the user can set the probability
table of a variable, which is represented as a node in the
graph. Once they have created the problem they can use the
provided solvers on it.

Evaluation
AISpace2 is a pedagogical tool, so it is essential that it is
user-friendly and effective in helping users understand the
underlying AI concepts and algorithms. In order to evaluate
the pedagogical effectiveness and usability of AISpace2, we
performed two evaluations on both experienced and inexpe-
rienced AI learners.

Experiment One: Controlled Experiment on CSP
Study
One of the main goals of AISpace2 is to help students under-
stand the AI concepts and algorithms clearly. Hence we con-
ducted a controlled experiment on knowledge gain of a spe-
cific AI algorithm, the arc consistency algorithm for CSPs,
to evaluate the pedagogical effectiveness of AISpace2. This
experiment also collected some user feedback about using
AISpace2, helping evaluate the usability of AISpace2 to
some extent.

20 voluntary undergraduate students from universities
in Canada and China who have never taken AI courses
were invited to participate in this experiment. We first ran-
domly classified them into two groups: AISpace2 group and
non-AISpace2 group, each of ten. Then we provided them
with textbook material that contains the required knowl-
edge about CSP and arc consistency algorithm (sections 4.1-
4.5 in Artificial Intelligence: Foundations of Computational
Agents (Poole and Mackworth 2017b)). In addition, students
in the AISpace2 group were provided with our AISpace2
CSP tool (they were first instructed about the installation and
the use of AISpace2) when learning the required textbook
material, whereas students in the non-AISpace2 group, as a
control group, were not provided with extra materials.

All 20 students were then asked to complete the quiz of
the same content testing on five concepts about CSP and arc
consistency algorithm: variable, constraint, constraint net-
work, arc consistency and domain splitting (Figure 6). The

quiz contained six questions, each worth one mark, totaling
a full mark of six. We did not allow the use of AISpace2 dur-
ing the quiz as this would trivialize the quiz questions. We
recorded the average scores for each group.

Figure 6: CSP Quiz for Experiment One

After the quiz, they filled in a self-assessment sheet where
they rated their understanding of the corresponding concepts
on a five-level Likert scale, with a rating of 1 meaning that
they completely did not understand and a rating of 5 mean-
ing that they completely understood. We recorded the aver-
age self-assessment score for each group in Table 2. Finally,
the participants in the AISpace2 group were asked about the
time they spent in learning how to use AISpace2, and all
participants were asked about their study preferences. The
options for study preference for the AISpace2 group were
“textbook only,” “AISpace2 only” and “textbook with AIS-
pace2,” whereas the options for the the non-AISpace2 group
were “textbook only” and “textbook with other study aid.”
The results are shown in Figure 7.

For the quiz score, the median was 4 for both groups.
However, the average score for the AISpace2 group (4.6)
was notably higher than the average score for the non-
AISpace2 group (3.9). Furthermore, we can see from Ta-
ble 2 that students in the AISpace2 group seemed to have
a better understanding of all five concepts in CSP and arc
consistency algorithm than the non-AISpace2 group. This
might indicate that study with AIspace2 was more effec-
tive in helping them understand AI concepts, at least those



Table 2: Average Self-Assessment Score on Five Concepts in CSP

Group Variables Constraints Constraint network Arc consistency Domain splitting
AISpace2 group 4.7 4.7 4.8 4.6 4.5
Non-AISpace2 group 4.6 4.4 4.2 4.2 4.0

Figure 7: Pie Charts for Feedback on AISpace2 and Quiz

about CSP and arc consistency algorithm, than the tradi-
tional way of textbook only. We also noticed that for rel-
atively abstruse concepts such as constraint networks, arc
consistency and domain splitting, the difference between av-
erage self-assessment score was even greater. For example,
the average self-assessment score for the simple concept of
variables in the AISpace2 group was only 0.1 higher than
the non-AISpace2 group, but this gap increased to 0.5 for
the concept of domain splitting. This suggests that for basic
concepts, textbook alone may suffice, but when it comes to
the abstruse one, it would probably be better to equip learn-
ers with some other study aid to help digest the knowledge.

Moreover, we can see from Figure 7 that in the non-
AISpace2 group, about three quarters of the participants pre-
ferred to study with some other aid along with a textbook,
and this is where we hypothesize that AISpace2 could play
the crucial role. However, about 60 percent of students spent
one hour or more in getting themselves familiar with AIS-
pace2, which is slightly more than we expected. This might
suggest that we need a more detailed and accessible tutorial
to guide the users.

Experiment Two: Student Evaluation of AISpace2
Tools
As convenience, accessibility and extensibility are among
the major concerns of AISpace2 design, in the second ex-
periment we asked undergraduate students who have taken
an AI course that used AISpace to compare the effectiveness
of AISpace2 and AIspace.

The aim of this is to evaluate the improvements, if any, in
AISpace2 over AIspace and also draw a brief picture to see
the potential deficiencies to address in the future.

16 undergraduate students participated in this experiment.
They were first instructed about the installation and the use
of AISpace2. They rated AISpace2 experience compared
to their previous experience on AIspace on four categories
of problems (search, CSP, planning and Bayesian network)
in two indices (effectiveness and convenience) on a five-

level Likert scale, where a rating of 1 means the experience
was much poorer than AIspace experience and a rating of 5
means much better.

The result is recorded in Table 3. We then also asked and
recorded whether they would use AISpace2 in place of AIs-
pace as a study aid tool. The participants could respond on
a five-level Likert scale, where a rating of 1 means they def-
initely would not and a rating of 5 means they definitely
would.

We can see from Table 3 that the overall feedback received
from participants was positive. The grand average was 4.6
out of 5, which means that in general our users thought that
their AISpace2 experience was notably better than AIspace
experience. The average rating for the effectiveness index
was also 4.6 and that for the convenience index was slightly
lower (4.5). We can see from the participants’ comments that
this may be partly due to the “complicated installation pro-
cess” as opposed to a simple download for AIspace. Despite
the installation, the other comments were mostly encourag-
ing, which was consistent with the participants’ average rat-
ing of 4.6.

When looking at the different categories of problems from
the table, we can see that AISpace2 received most approval
for Bayesian networks (4.7), which benefited from its high-
est average in convenience index (4.8), 0.3 higher than the
average convenience index among all categories. This re-
veals that to improve AISpace in the future work, it might
be beneficial to analyze the tools for Bayesian networks. It
should also be brought to the attention that our tools for plan-
ning problem received the lowest mark in both effectiveness
(4.4) and convenience indices (4.3); this might be attributed
to, as pointed out by some participants, the slow perfor-
mance of visualization when they transformed a planning
problem, represented in the form of Stanford Research Insti-
tute Problem Solver (STRIPS) (Fikes and Nilsson 1971), to
a CSP and set the horizon (the number of actions expected to
finish the planning task) to a high value because this trans-
formation would create a CSP with a huge constraint net-



Table 3: Ratings on AISpace2 Experience Compared to AIspace

Index Search CSP Planning Bayesian Summary
µ=4.8 µ=4.5 µ=4.4 µ=4.6 µ=4.6

Effectiveness σ=0.2 σ=0.3 σ=0.2 σ=0.2 σ=0.1
n=16 n=16 n=16 n=16 n=64
µ=4.4 µ=4.6 µ=4.3 µ=4.8 µ=4.5

Convenience σ=0.5 σ=0.2 σ=0.3 σ=0.2 σ=0.6
n=16 n=16 n=16 n=16 n=64
µ=4.6 µ=4.6 µ=4.4 µ=4.7 µ=4.6

Sum σ=0.4 σ=0.3 σ=0.3 σ=0.2 σ=0.3
n=32 n=32 n=32 n=32 n=128

Note: µ=average, σ=standard deviation, n=sample size

work. This issue might also happen in other solvers when
there are too many nodes or arcs in the graph, and we would
work on this in the future to seek a way to optimize the per-
formance in this situation.

For their willingness to choose AISpace2 in place of AIs-
pace, 50 percent of students rated 4, meaning that they would
probably consider using AIspace2 as an aid tool instead of
AIspace, and the rest 50 percent rated 5, meaning that they
definitely would choose AISpace2. This result implies that
the vast majority of students would think there are signifi-
cant improvements in AISpace2, which to some extent ver-
ifies its pedagogical effectiveness and convenience, at least
in the scope of materials used in the introductory AI course.
This indicates that we could be ready to launch AISpace2 in
real classes in the near future.

Summary
The two experiments examined performance of AISpace2
on students with or without experience in AI, revealing a rel-
atively comprehensive assessment. Experiment One showed
that AISpace2 provides a powerful and effective assistance
in learning concepts of CSP and arc consistency algorithm
and students are willing to use it accompanying the textbook.
The self-assessment scores also give an encouraging result.
However, as noted in the work of Ainsworth (2008), the use
of the animations could bring a fake feeling of satisfaction
hence a biased assessment of confidence. Therefore, the ef-
fectiveness of AISpace2 as a pedagogical tool still needs to
be supported by more empirical evidence given by a long-
term assessment such as its performance on assignments and
exams.

Experiment Two collected feedback on AISpace2 from
students already having some experience in AI. We can see
that the feedback is highly positive (average 4.6 out of 5) and
this is also consistent with the results of Experiment One.

Future
In the future, in addition to continuous maintenance, our fo-
cus would be placed on two major aspects: improvement and
innovation. As mentioned in the evaluation section, although
AISpace2 received positive feedback, long-term examina-
tion and assessment are necessary. Therefore, our first goal
is to launch AISpace2 in real classes. Based on feedback

from students and instructors such as students’ performance
on assignments and exams, we should be able to find where
we need to improve. Also, as noted in the evaluation section,
we may need to simplify the installation process more and
to optimize the visualization performance when the graph
is very big. We are also considering launching AISpace2
on JupyterHub (Milligan 2017), a customizable and flexible
platform using JupyterLab but requiring a simpler process of
installation, making the use of AISpace2 more convenient.

The second major goal in the near future is to introduce
new features to AISpace2. Currently, AISpace2 supports
various algorithms in search, CSPs, planning and Bayesian
networks. Apart from these basic topics, we plan to add
more advanced ones such as neural networks, deep learning,
Markov models, etc.

AISpace2 is a pedagogical tool aimed at assisting AI
learners to visually comprehend AI concepts, models and
algorithms. It is based on its previous generation, AIspace,
but aims to improve the usability and effectiveness, and will
be continually developed with new features. The usability
and effectiveness of AISpace2 has been qualitatively inves-
tigated in our two experiments, and we believe that after its
launch in real classes in the near future, the empirical results
could provide more constructive advice. As AI is becom-
ing an indispensable field of computer science, we foresee
that AISpace2, designed as an effective learning tool to help
understand AI knowledge, will benefit many students and
teachers.

Acknowledgments

The AISpace2 project has been financially supported by the
University of British Columbia (UBC) through its Science
Undergraduate Research Experience Award (SURE) and by
the Natural Sciences and Engineering Research Council of
Canada (NSERC) through its Undergraduate Student Re-
search Awards (USRA) and discovery grants. The AISpace2
project has been designed, developed and maintained by
teams of students and faculty in the Department of Computer
Science at UBC. We sincerely thank the AISpace2 contribu-
tors including Richard Chiang and Anna Zheltukhina. We
also thank the anonymous participants of the two experi-
ments to help our evaluations.



References
Ainsworth, S. 2008. How Do Animations Influence Learn-
ing. Current Perspectives on Cognition, Learning, and In-
struction: Recent Innovations in Educational Technology
That Facilitate Student Learning 37–67.
Amershi, S.; Arksey, N.; Carenini, G.; Conati, C.; Mack-
worth, A.; Maclaren, H.; and Poole, D. 2005a. Designing
CIspace: Pedagogy and Usability in a Learning Environment
for AI. ACM SIGCSE Bulletin 37(3):178–182.
Amershi, S.; Arksey, N.; Carenini, G.; Conati, C.; Mack-
worth, A.; Maclaren, H.; and Poole, D. 2005b. Foster-
ing Student Learning and Motivation: An Interactive Edu-
cational Tool for AI. Technical report, Citeseer.
Demetriadis, S.; Triantfillou, E.; and Pombortsis, A. 2003.
A Phenomenographic Study of Students’ Attitudes Toward
the Use of Multiple Media for Learning. In Proceedings of
the 8th Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’03, 183–187. New
York, NY, USA: ACM.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence 2(3-4):189–208.
Granger, B., and Grout, J. 2016. JupyterLab: Building
Blocks for Interactive Computing. Slides of Presentation
Made at SciPy 2016.
Greiner, R., and Schaeffer, J. 2001. AIxploratorium: A Vi-
sion for AI and the Web. In In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence Workshop
on Effective Interactive AI Resources. Citeseer.
Hearst, M. A. 1994. Preface: Improving Instruction of In-
troductory AI. In Improving Instruction of Introductory Ar-
tificial Intelligence: Papers from the AAAI Fall Symposium.
Kardan, S., and Conati, C. 2015. Providing Adaptive Sup-
port in an Interactive Simulation for Learning: An Exper-
imental Evaluation. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems,
3671–3680. ACM.
Kehoe, C.; Stasko, J.; and Taylor, A. 2001. Rethinking
the Evaluation of Algorithm Animations as Learning Aids:
An Observational Study. International Journal of Human-
Computer Studies 54(2):265–284.
Khalil, M. K.; Mansour, M. M.; and Wilhite, D. R.
2010. Evaluation of Cognitive Loads Imposed by Tradi-
tional Paper-Based and Innovative Computer-Based Instruc-
tional Strategies. Journal of Veterinary Medical Education
37(4):353–357.
Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B. E.;
Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J. B.;
Grout, J.; Corlay, S.; et al. 2016. Jupyter Notebooks - a
Publishing Format for Reproducible Computational Work-
flows. In ELPUB, 87–90.
Knoll, B.; Kisynski, J.; Carenini, G.; Conati, C.; Mackworth,
A.; and Poole, D. 2008. AIspace: Interactive Tools for
Learning Artificial Intelligence. In Proceedings of the AAAI
2008 AI Education Workshop, 3.

Microsoft. 2012. TypeScript. https://www.typescriptlang.
org.
Milligan, M. 2017. Interactive hpc gateways with jupyter
and jupyterhub. In Proceedings of the Practice and Expe-
rience in Advanced Research Computing 2017 on Sustain-
ability, Success and Impact, 63. ACM.
Naps, T.; Cooper, S.; Koldehofe, B.; Leska, C.; Rößling, G.;
Dann, W.; Korhonen, A.; Malmi, L.; Rantakokko, J.; Ross,
R. J.; Anderson, J.; Fleischer, R.; Kuittinen, M.; and Mc-
Nally, M. 2003. Evaluating the Educational Impact of Visu-
alization. ACM SIGCSE Bulletin 35(4):124–136.
Naser, S. S. A. 2008. Developing Visualization Tool for
Teaching AI Searching Algorithms. Information Technology
Journal, Scialert 7(2):350–355.
Perez, F., and Granger, B. E. 2015. Project Jupyter: Compu-
tational Narratives as the Engine of Collaborative Data Sci-
ence. Retrieved September 11(207):108.
Poole, D. L., and Mackworth, A. K. 2001. CIspace: Tools
for Learning Computational Intelligence. In Proceedings of
the Workshop on Effective Interactive AI Resources.
Poole, D., and Mackworth, A. 2017a. AIPython: Python
Code for Artificial Intelligence: Foundations of Computa-
tional Agents. aipython.org.
Poole, D. L., and Mackworth, A. K. 2017b. Artificial Intel-
ligence: Foundations of Computational Agents. Cambridge
University Press.
Poole, D.; Mackworth, A.; and Goebel, R. 1998. Computa-
tional Intelligence: A Logical Approach. Oxford University
Press.
Valentine, A.; Belski, I.; and Hamilton, M. 2017. Devel-
oping Creativity and Problem-Solving Skills of Engineering
Students: A Comparison of Web- and Pen-and-Paper-Based
Approaches. European Journal of Engineering Education
42(6):1309–1329.
You, E.; Kadyan, R.; Wedrychowski, D. G.; Drasner, S.; Wu,
P.; Eduardo; An, P.; et al. 2014. Vue.js. https://vuejs.org.
Zeng, H. 2016. Towards Better Understanding of Deep
Learning with Visualization. The Hong Kong University of
Science and Technology.


