
Why Rules are Complex:
Real-Valued Probabilistic Logic Programs are not Fully Expressive

David Buchman∗
davidbuc@cs.ubc.ca

http://www.cs.ubc.ca/∼davidbuc
∗Department of Computer Science, University of British Columbia, Vancouver, BC, Canada

David Poole∗
poole@cs.ubc.ca

http://www.cs.ubc.ca/∼poole

Abstract

This paper explores what can and cannot be
represented by probabilistic logic programs
(PLPs). Propositional PLPs can represent any
distribution because they can be acyclic. For
relational domains with fixed populations, the
probabilistic parameters can be derived as the
solutions to polynomial equations. Unfortu-
nately, sometimes they only have complex-
valued solutions. Thus PLPs, even with ar-
bitrarily real-valued parameters, cannot repre-
sent all distributions. Moreover, they cannot
approximate all distributions. Allowing the pa-
rameters to be complex numbers, we present
a natural truly-cyclic canonical representation
that with probability 1 can represent all dis-
tributions for (propositional or) relational do-
mains with fixed populations, and, unlike stan-
dard representations, has no redundant param-
eters.

1 INTRODUCTION

Logic programs have the advantage of an intuitive declar-
ative and procedural interpretation (Kowalski, 2014). On
the other hand, probabilistic modeling is an established
formalism for representing and processing quantified un-
certainty. Much attention has been given to formalisms
combining logic programming with probabilistic model-
ing. One such combination is the family of probabilis-
tic logic programs, including ICL (Poole, 1997, 2000),
Prism (Sato & Kameya, 1997, 2008), ProbLog (De Raedt
et al., 2007), and CP-logic (Vennekens et al., 2009),
which separate uncertainty from logic, by encapsulating
uncertainty into special variables representing indepen-
dent probabilistic noise.

Recently, Buchman & Poole (2016, 2017) demonstrated

that probabilistic logic programs (PLPs) are incapable
of representing some relational distributions, even with
a population size of just two. They showed that intro-
ducing negations (¬’s) to the language does not help, but
allowing negative numeric values as noise probabilities
increases expressiveness and solve the problem (in which
case ¬’s are not needed). They did not, however, exam-
ined whether negative probabilities are sufficient for rep-
resenting arbitrary relational distributions using PLPs.

In this paper, we pick up from where Buchman & Poole
(2017) left off. Table 1 describes some of our results. We
show that for the relational setting, even for fixed popula-
tions, some distributions cannot be represented even us-
ing arbitrary real-valued probabilities (P ∈ (−∞,+∞)).
We prove that, in general, with probability 1 an arbi-
trary relational distribution with fixed populations can be
represented using complex numbers as rule probabilities;
therefore using complex probabilistic values is essential.

Furthermore, we expose a natural truly-cyclic canonical
form for PLPs, the Broadcast Canonical Form (BCF).
BCF is very simple, and it allows to simplify the syntax
of the language. We show BCF perfectly strips the redun-
dancy from PLP rules, while maintaining expressiveness
in both the propositional and the general (relational) set-
ting (with fixed populations) (using complex probabili-
ties, which are required anyway). We also provide solver
algorithms, demonstrating how a BCF PLP representa-
tion can be computed, for modeling a given distribution.

In addition, we provide an algorithm for directly com-
puting probabilities of interpretations, which is efficient
in domains where few variables are true (e.g., applica-
tions modeling rare events, system failures, medical con-
ditions, etc.).

Negative probabilities have been used for optimizing in-
ference or computation (Dıez & Galán, 2003; Kisynski &
Poole, 2009; Van den Broeck et al., 2013). Meert & Ven-
nekens (2014) suggested a new language feature, using
negation in the head of rules in CP-logic, thus facilitat-

Table 1: Properties of languages
range(P) BCF (Def. 1) PLP PLP with ¬’s

General (Rel.) case:
(Almost-)Fully Expressive?:

P ∈ [0, 1] no no no
(fixed popu.) P ∈ (−∞,+∞) no (Thm 2) no (Thm 2)

P ∈ C yes (Thm 5) yes (Thm 5) yes (Thm 5)

Prop. case: #params: (Sec. 6) 2n − 1 < n2n−1 � n3n−1

(Almost-)Fully Expressive?:
P ∈ [0, 1] no no yes
P ∈ (−∞, 1] no yes yes
P ∈ C yes (Thm 4) yes yes

ing expressiveness by supporting a cancellation effect of
existing rules. Complex probabilities (Cox, 1955; Parisi,
1983; Hamber & Ren, 1985; Salcedo, 1997; Zak, 1998;
Hofmann, 2012; Salcedo, 2016) have found use in quan-
tum physics, but much less in the probabilistic modeling
of general, non-quantum data.

2 PROGRAMS

We use uppercase letters for (possibly parametrized)
Boolean variables, and lowercase letters for the corre-
sponding atoms. V represents a set of (unparametrized)
Boolean variables. An interpretation I is an assign-
ment to all variables in V , and it is represented as the
set I ⊆ V of variables that are assigned true (sometimes
we use the set of atoms instead).

A (probabilistic) rule has the form p : head ← body,
where p is a numeric value commonly interpreted as a
probability, head is a (non-negated) atom, and body is a
conjunction of atoms, some of which may be negated.

Due to Buchman & Poole (2017)’s result that negative
probabilities are needed for expressiveness and that ¬’s
do not increase expressiveness, we do not use ¬’s.

A (propositional) probabilistic logic program (PLP)
R is a set of rules. A deterministic program realiza-
tion (DPR) for a (propositional or ground) PLP R is a
deterministic program, whose rules are a subset of R’s.
We use the unique stable-model semantics as the seman-
tics for DPRs. A PLP R defines a distribution over its
DPRs, where each rule p : head ← body independently
appears with probability p or does not appear with prob-
ability 1 − p. Considering that each DPR represents its
stable-model, a PLP represents a distribution over inter-
pretations, i.e., a joint distribution over the variables.

The relational setting introduces populations, which
are sets of individuals, and allows variables to be
parametrized by logical variables (written in uppercase),
which refer to individuals. Rules may thus also become
parametrized. Once populations are fixed, a PLP can be
ground. The ground PLP can be treated as a proposi-
tional PLP.

Relational PLPs may use constants, which refer to spe-
cific individuals. Once there is a constant for every in-
dividual, the PLP can contain rules that refer to any spe-
cific ground variable, and the PLP’s expressiveness be-
comes identical to a propositional PLP’s. The interest-
ing question is what happens when there are individu-
als not specifiable using constants. The PLP’s expres-
siveness is reduced; however, the requirement for be-
ing “(almost-)fully expressive” (defined later) is also re-
duced, since the PLP is only required to be able to repre-
sent distributions that are symmetric w.r.t. unspecifiable
individuals. Therefore, we use no constants in this paper.

Let R be a propositional PLP over variables V , and
V1, V2 ⊆ V . RV1←V2

⊆ R is the PLP over V1 ∪ V2 that
contains all rules in R whose head is in V1 and whose
bodies only contain variables from V2; and RI

def
= RI←I .

In this paper we follow the approach of Buchman &
Poole (2015) for simplifying syntax and semantics, and
implicitly assume that different logical variables cor-
respond to different individuals, thus a rule a(X) ←
b(X)∧ c(Y) actually stands for a(X)← b(X)∧ c(Y)∧
(X 6= Y). There is no loss of generality, as every rule
can be converted to multiple rules in which all logical
variables correspond to different individuals, such that
the overall semantics of the PLP does not change; this
can be shown in a manner analogous to Buchman &
Poole (2015)’s proof for Markov logic networks.

2.1 USING COMPLEX PROBABILITIES

Buchman & Poole (2017) suggested using negative nu-
merical values as rule probabilities. They defined the se-
mantics, which may either be a proper or improper distri-
bution over interpretations; either way, however, the sum
of the interpretations’ probabilities is 1. They also argued
against the perceived meaninglessness of using negative
probabilities, by treating them as meaningless mathe-
matical parameters of a probabilistic model; as long as
the mathematical definition of the PLP’s semantics is a
proper distribution, there is no problem with the nega-
tiveness of some rule “probabilities”. In this paper, we
consider using complex numerical values as rule prob-

abilities. The arguments of Buchman & Poole (2017)
about rule “probabilities” not having to be meaningful as
probabilities, apply here as well. In addition, their anal-
ysis, showing that a PLP’s distribution sums to 1 even if
some rule probabilities are negative, holds also for com-
plex rule probabilities.

2.2 ALMOST-FULL EXPRESSIVENESS

The space of all (proper) distributions over n binary vari-
ables is the standard D-dimensional simplex S〈D〉, where
D = 2n − 1. Let S+

L be the set of all (proper) dis-
tributions that a language L can represent, and S−L =
S〈D〉 \ S+

L . If S−L = ∅, then L has full expressive-
ness. Sometimes, S−L represents one or more (nonlinear)
“6=” constraints on the distribution’s probabilities that
are “(D − 1)-dimensional”, and S+

L has measure 1. We
then say L has almost-full expressiveness. Note that, in
this case, if P ∈ S−L , then L can still represent P, allow-
ing for infinitesimal error. (If this were not the case, then
one could draw a D-dimensional sphere around P, such
that this sphere, with its positive D-dimensional volume,
would be contained in S−L .)

When L is not almost-fully expressive, we say L is
partially-expressive. This may happen when, e.g., S−L is
defined by a “<” constraint on the distribution’s proba-
bilities, leading S−L to have “positive D-dimensional vol-
ume”. This leads to distributions P that cannot even be
approximated (to arbitrary accuracy).

3 THE PROPOSITIONAL CASE

Given a propositional PLP R over variables V , the prob-
ability of an interpretation I ⊆ V is a complicated func-
tion of R’s parameters (i.e., rule probabilities). In gen-
eral, PR(I) can be decomposed into a product of two ex-
pressions: one sets variables in I to true , and one makes
sure variables in V \ I remain false . The following the-
orem makes this intuitive argument mathematically pre-
cise. The “expression that sets variables in I to true”
is not well-defined, so we replace it with the equivalent
“the probability of all variables being true , in another
(‘projected’) PLP RI that only contains the variables I”.

Theorem 1. Let R be a propositional (or grounded) PLP
over variables V , and I ⊆ V be an interpretation. Then:

PR(I) = PRI (I)
∏

(p: head←body)∈R(V \I)←I

(1− p) (1)

PRI (I) = 1−
∑
I′(I

PRI (I ′) (2)

Proof. Equation (2) holds because for all PLPs, the total
probability of all interpretations is always 1 (even with

complex probabilities).

The equation for PR(I) has two components.

1. First, we make sure the variables in V \I remain false
even if variables in I are true . For this, we must make
sure the rules in R(V \I)←I do not appear.

2. Second, we must make sure the variables in I are set
to true . This only depends on the appearance of rules
that completely ignore variables in V \ I . This proba-
bility is identical to PRI (I), which is the probability of
all variables in I being true , when the variables in V \ I
simply do not exist.

Theorem 1 defines a recursive formulation of interpreta-
tion probabilities, by Equation (1) reducing the compu-
tation to a computation in a PLP without the variables
that are false , and Equation (2) reducing the computa-
tion further, to interpretations where fewer variables are
true , for which (1) may again be applied.

Algorithm 1 is a recursive, bottom-up (dynamic pro-
gramming) algorithm for computing the probability of
any interpretation, based on Theorem 1. (Intermediate
results can be cached, for efficiency.) Note that the re-
cursion is over both interpretations and PLPs.

Algorithm 1 Compute probability of an interpretation.
Input: V : Set of ground variables,

R: ground PLP over V , I ⊆ V : interpretation
Output: computeP(V ,R,I)= PR(I)
if V = ∅ then

return 1
else if I = V then

return 1−
∑

I′(I computeP(V ,R,I
′)

else
return computeP(I,RI,I)

·
∏

(p: head←body)∈R(V \I)←I
(1− p)

end if

While this algorithm takes exponential time in |I|, it can
be useful for small I’s. In addition, its explicit recur-
sive formulation of PR(I) makes it useful for theoretical
analysis. We use it to derive theoretical results.

4 RELATIONAL PLPS OVER {A(X)}

We now consider the simplest setting for a relational PLP
with fixed populations: a PLP having a single variable
A(X). This setting was analyzed by Buchman & Poole
(2017) for n = 2 individuals; we generalize to n > 2.

Every rule in this setting has the following structure (re-
call that all logical variables may be assumed to be dif-
ferent (Section 2)): a(X)← a(Y) ∧ a(Z) ∧ . . .

Thus, for a population of size n, a PLP can be described
parametrically, as a set of n rules (some of which may
have the probability 0):

p0 : a(X)

p1 : a(X)← a(Y1)

p2 : a(X)← a(Y1) ∧ a(Y2)

...
pn−1 : a(X)← a(Y1) ∧ a(Y2) ∧ . . . ∧ a(Yn−1)

We use PR
nt,nf

for the probability a PLP R assigns to
any interpretation where nt variables are true and nf

are false , for n = nt + nf . For example, for n =

3, PR({a(alice), a(bob)}) = PR(a(alice)∧¬a(eve)∧
a(bob)) = PR

2,1.

The following proposition follows directly from Theo-
rem 1, and it generalizes the derivation used for proving
Proposition 1 in Buchman & Poole (2017).
Proposition 1. Given a PLP R involving only A(X),
PR
nt,nf

for all interpretations for all population sizes n
can be computed using the recursive formulae:

PR
0,0 = 1

PR
n,0 = 1−

∑n−1
m=0

(
n
m

)
PR
m,n−m (3)

PR
nt,nf

= PR
nt,0

∏nt

i=0(1− pi)

(
nf ·(nt

i)
)

(4)

4.1 A BACKTRACKING SOLVER

Let Pg > 0 (for Pgoal) be an arbitrary positive distribu-
tion over {A(X)}. Algorithm 2 is a recursive backtrack-
ing solver for finding a PLP R that represents Pg , if one
exists (it is written in rolled-out form). A practical imple-
mentation would cache values, to reduce its complexity.

The idea behind the algorithm is as follows. R repre-
sents Pg , i.e., PR = Pg , if and only if the following n
equations hold: Pg

0,n = PR
0,n, Pg

1,n−1 = PR
1,n−1, . . . ,

Pg
n−1,1 = PR

n−1,1 (the additional equation Pg
n,0 = PR

n,0

is redundant). One can write these equations and use
Proposition 1 to express each PR

nt,nf
using the parame-

ters, {p0, . . . , pn−1}. Ordering the equations by increas-
ing nt’s, each equation contains exactly one parameter
that does not appear in the previous equations. One can
then solve each equation in turn. Each equation is poly-
nomial, and may have multiple solutions. If some equa-
tion has no solutions, one backtracks. Therefore, the al-
gorithm returns a correct PLP representation if one ex-
ists, and “impossible” if one does not exist. There are
two reasons why a solution may not exist:

1. An equation’s solutions may fall outside the allowed
range for rule probabilities. This problem is eliminated
by allowing complex rule probabilities.

2. If PR
nt,0 = 0 for some nt < n, then there is no so-

lution. This, however, only creates lower-dimensional
manifolds that are (potentially) not representable.

Since PR
nt,0 depends on values of previous pi’s com-

puted, backtracking and changing their values may make
it nonzero. Therefore, it might be the case that complex
solutions always exist, and Proposition 2 can be strength-
ened to prove the language is fully expressive. Whether
this is the case is an open problem.

Also note, that since Pg > 0, the pi’s found are not 1,
thus ∀i, (1− pi) 6= 0, and the PLPs found have no deter-
ministic rules.

4.2 REAL-VALUED PLPS: NOT FULLY EXPR.

Buchman & Poole (2017) have shown that all positive
distributions with n = 2 can be represented, if one al-
lows negative probabilities. Whether negative probabil-
ities are enough to represent all positive distributions in
general (for fixed n’s) was left as an open problem. Un-
fortunately, the answer is negative:
Example 1. For n = 3, the following positive distri-
bution cannot be represented using PLPs, even allowing
negative rule probabilities:
Pg
0,3=

1
33 =

1
27 , Pg

1,2=
23

33 =
8
27 , Pg

2,1=
1
54 , Pg

3,0=
1
54

Simulating Algorithm 2, (3) and (4) give:

1
27 = Pg

0,3 = PR
0,3 = PR

0,0

∏0
i=0(1−pi)

(
3(0i)
)
=(1−p0)3(5)

8
27 = Pg

1,2 = PR
1,2 = PR

1,0 ·
∏1

i=0(1− pi)

(
2·(1i)

)
(6)

= p0 · (1− p0)
2(1− p1)

2

PR
2,0 = 1−

∑1
m=0

(
2
m

)
PR
m,2−m (7)

= 1−
(
2
0

)
PR
0,2−

(
2
1

)
PR
1,1

= 1− (1−p0)2 − 2p0(1−p0)(1−p1)
1
54 = Pg

2,1 = PR
2,1 = PR

2,0

∏2
i=0(1− pi)

(
1·(2i)

)
(8)

Solving (5) gives p0 = 2
3 . Substituting into (6) gives

(1 − p1)
2 = 4, so p1 ∈ {−1, 3}. We required p1 < 1,

therefore p1 = −1. Substituting into (7) gives PR
2,0 = 0.

Substituting PR
2,0 = 0 into (8) gives PR

2,1 = 0 6= 1
54

irrespective of p2, thus representing Pg is not possible.
Example 2. If we also allow rule probabilities above 1,
the distribution in Example 1 can be represented.

Consider Example 1. This time, we can choose p1 = 3.
Substituting into (7) gives PR

2,0 = 16
9 . (The PLP thus

represents an improper distribution for n= 2; however,
we are trying to model Pg , which is only defined for n=
3. We treat “PR

2,0” as nothing more than a name given
to a meaningless expression used in the formula of PR

2,1.)
Substituting into (8) gives p2 =

127
128 . These {p0, p1, p2}

give {Pg
0,3=P

R
0,3,P

g
1,2=P

R
1,2,P

g
2,1=P

R
2,1}, thus Pg=PR.

Algorithm 2 find PLP(n,Pg,range): Find a PLP representing a given positive relational dist. Pg over {A(X)}.
Inputs: n: Population size Pg: Positive relational distribution over {A(X)}

range: Range allowed for rule probabilities
Output: Either a PLP R for Pg , represented using (p0, p1, . . . , pn−1) / or “impossible”
Write the n equations (symbolically):

(
Pg
0,n=PR

0,n, . . . , Pg
n−1,1=PR

n−1,1
)

loop over the equations in increasing order of nt:
Substitute the expression for PR

nt,nf
given by (4), into the current equation

// Current equation is now: Pg
nt,nf

=PR
nt,0

∏nt

i=0(1− pi)

(
nf ·(nt

i)
)

Evaluate PR
nt,0 numerically using (p0, . . . , pnt−1) according to Proposition 1

if PR
nt,0 = 0 then backtrack // Current equation cannot be solved: Pg

nt,nf
=0 · (

∏
. . .)

Substitute into the equation: nt, nf , Pg
nt,nf

, PR
nt,0, p0, . . . , pnt−1

// Equation is now: positive real number = nonzero number ·(1− pnt
)positive integer

solutionsnt
← the solutions for pnt

that fall inside range // Out of nf (possibly complex) solutions
Try one of solutionsnt , and advance to the next equation. If the next equation backtracks,

try another solution. If all solutions in solutionsnt backtracked, then backtrack.
If all equations were solved then return (p0, . . . , pn−1).

end loop
return “impossible”

In general, p0 and p1 can be computed as functions of
Pg
0,3 and Pg

1,2; PR
2,0 is then computed as a function of

these, and we then get the constraint PR
2,0 6= 0. (If

PR
2,0 = 0, then Pg > 0 cannot be represented.) PR

2,0 6= 0
is therefore a complicated non-linear constraint on the
values of {Pg

0,3,P
g
1,2}. This constraint is unexpected and

surprising. Given a distribution, it is not immediately ob-
vious if this constraint is violated.

Fortunately, however, since the constraint is PR
2,0 6= 0

(and not, say, PR
2,0 > 0), the probability that a “random”

distribution Pg violates this constraint is 0, i.e., this con-
straint has measure 0. It represents a “singularity” of the
language, but the language is still useful, since one can
use an alternative Pg ′ that is infinitesimally close to a Pg

that violates the constraint.

Unfortunately, there are also constraints with positive
“D-dimensional volume”. This is a limitation of the lan-
guage itself, not of any specific program. Adding an arbi-
trary number of new formulae, or allowing probabilities
above 1, does not solve the problem:

Theorem 2. The language of PLPs with generalized
real-valued rule probabilities (P ∈ (−∞,+∞)) is only
partially-expressive, even with fixed population sizes.

Proof. We prove by giving a negative example, with a
single variable A(X) and n = 4. First, we show real-
valued PLPs cannot represent any distribution Pg with:

Pg
0,4 = 1

34 = 1
81 , Pg

1,3 = 24+1
34 = 17

81 , Pg
2,2 > 0

Simulating Algorithm 2, (3) and (4) give:

1
81 = Pg

0,4 = PR
0,4 = PR

0,0

∏0
i=0(1−pi)

(
4(0i)
)
=(1−p0)4(9)

17
81 = Pg

1,3 = PR
1,3 = PR

1,0 ·
∏1

i=0(1− pi)

(
3·(1i)

)
(10)

= p0 · (1− p0)
3(1− p1)

3

PR
2,0 = ... (repeating (7)) (11)

= 1− (1−p0)2 − 2p0(1−p0)(1−p1)

0 < Pg
2,2 = PR

2,2 = PR
2,0

∏2
i=0(1− pi)

(
2·(2i)

)
(12)

= PR
2,0

(
(1− p0)(1− p1)

2(1− p2)
)2

Solving (9) gives p0 ∈ {23 ,
4
3}. We then substitute

into (10) to find p1, then into (11) to compute PR
2,0,

and then into (12) to find p2. Taking p0 = 2
3 gives

p1 = −1.0408 and PR
2,0 = −0.0181. Taking p0 = 4

3

gives p1 = 2.6198 and PR
2,0 = −0.5509. Either way, we

get PR
2,0 < 0, and since (12) is “0 < Pg

2,2 = PR
2,0 ·(...)2”,

Pg cannot be represented using real numbers.

Since PR
2,0 was computed as a continuous function of p0

and p1, which themselves were computed as continuous
functions of Pg

0,4 and Pg
1,3, an infinitesimal perturbation

of Pg will not be sufficient to make PR
2,0 > 0 and the dis-

tribution representable. Thus, there is a D-dimensional
region of distributions that are not representable.

4.3 COMPLEX PLPS: ALMOST-FULLY EXPR.

We suggest extending the PLP language to support com-
plex rule probabilities.

Proposition 2. 1. The language of PLPs with complex
rule probabilities is almost-fully expressive w.r.t. positive
relational distributions over {A(X)} with a fixed n.
2. The number of PLP representations for every such
distribution is finite.
3. There is at most one such PLP representation where
all parameters are real and < 1.

Proof. 1. We prove by showing that Algorithm 2 finds a
PLP representing (almost) any given Pg . Using complex
probabilities, the only possibility of Algorithm 2 to fail
to find a solution for pnt , is due to PR

nt,0 = 0. The algo-
rithm thus finds a PLP representing Pg if and only if the
following n constraints hold: PR

0,0 6= 0, PR
1,0 6= 0, . . . ,

PR
n−1,0 6= 0. We now show these are lower-dimensional

constraints (with measure 0), thus the language is almost-
fully expressive.

PR
nt,0 is the sum of the probabilities of the DPRs (for

population size nt) in whose minimal stable model all
variables are true . The probability of each DPR D is
the polynomial (

∏
rules ∈D pi) · (

∏
rules/∈D(1− pi)). Each

PR
nt,0 is therefore a polynomial of p0, . . . , pnt−1. Equat-

ing a polynomial to 0 gives a lower-dimensional mani-
fold – unless the polynomial happens to be 0 everywhere.
This, however, is not the case here, because if we set all
rule probabilities to be, say, 0.5, the probability that all
variables become true will be positive.

2. Every equation the algorithm solves has a finite num-
ber of solutions, thus there is a finite number of PLP rep-
resentations for Pg .

3. Every parameter is found by solving an equation
of the form: positive real number = nonzero number
·(1−pnt

)positive integer, i.e., qpositive integer
nt = number, where

qnt = 1 − pnt . qnt cannot have two positive solutions,
thus pnt cannot have two real solutions below 1.

5 BROADCAST CANON. FORM (BCF)

PLPs over {A(X)} have a special property: every rule
has a different body. In general, as we will show, the
number of different possible rule bodies is identical to
the number of degrees of freedom (DoF) the distribution
Pg has. PLPs over {A(X)} have the exact number of
possible rules as the needed DoF, but they cannot rep-
resent all distributions, unless they allow their parame-
ters (rule probabilities) to be complex. PLPs over other
sets of parametrized variables are overparametrized, i.e.,
they contain more possible rules (thus more parameters)
than Pg’s DoF. Overparametrization is inefficient. While
practical PLPs do not simultaneously use all possible
rules, it is possible that the rules they use contain redun-
dancy, which may be unintuitive and difficult to identify.

In the context of learning undirected graphical models
with binary variables from data, parametrizations with
excessive redundant parameters learn graphical models
with excessive parameters (even after pruning un-useful
parameters), that are slower to process, without improv-
ing learning accuracy (Buchman et al., 2012).
Definition 1. A program in the Broadcast Canonical
Form (BCF) Language (or a BCF PLP) is a set of
negation-free non-deterministic rules with the form: p :
body. Its semantics is that of the corresponding PLP,
in which each p : body is replaced with the rules p :
head ← body for all possible heads. (If p = 0, then
these rules simultaneously do not appear.)

Bodies that are equivalent, e.g., a(X)∧b(X) and b(Y)∧
a(Y), are considered the same body. “p : body” repre-
sents a set Sbody of rules p : head ← body in the corre-
sponding PLP. In each of its DPRs, some of the rules in
Sbody may appear, and some might not appear.

BCF is a simplified language, and allows to write PLPs
in succinct form. A BCF PLP is a PLP with tied weights.
We show BCF is a canonical form for PLPs: it is almost-
fully expressive, yet without excessive parameters.

We designate BCF parameters by subscripting them with
the set of the variables in their bodies; e.g., for V =
{A,B,C}, the BCF {p{C} : c, p{B,C} : b ∧ c} corre-
sponds to the PLP {p{C} : a← c, p{C} : b← c, p{B,C} :
a← b ∧ c}.

Since PLPs over {A(X)} can only have a single rule for
every possible body, our results for PLPs over {A(X)}
actually describe results for BCFs over {A(X)}. Sec-
tion 4’s p0 is represented by BCF’s p∅, p1 is represented
by p{A(Y1)}, p2 is represented by p{A(Y1),A(Y2)}, etc.

BCF is very simple, yet highly unintuitive. For exam-
ple, all probabilistic facts have the same probability (!).
The unintuitiveness is because p : head← body is usu-
ally interpreted as a probability that is related to the in-
fluence that body = true has on head. To make sense
of BCF, take p : body to mean a “broadcast message”
that body = true sends to all other variables, that in-
creases (or decreases, for negative p’s) the probabilities
of all other variables. If body = true should influence
some variables but not others, this is achieved using the
combined influence of other rules. The notion of “prob-
abilistic strengths” Buchman & Poole (2017) makes this
influence combination additive and intuitive.

6 BCF AND OTHER CANONICAL
FORMS FOR PROPOSITIONAL PLPS

As noted in Section 5, PLPs for the simplest relational
setting (Section 4) are actually BCF PLPs. We now de-

velop BCF for the simplest (i.e., propositional) multi-
variable case. The development and results are similar
to those of Section 4.

In the propositional setting, there are n variables, V =
{V1, . . . , Vn}, and 2n possible joint assignments (i.e., in-
terpretations). A (“proper”) joint distribution is a non-
negative real function summing to 1, over all interpreta-
tions, thus it has 2n − 1 DoF. An “improper” joint dis-
tribution is a function summing to 1, which may contain
negative, or even complex, numbers.

PLPs have one DoF for each possible rule (or two DoF,
for complex rule probabilities). ¬-free (real-valued)
PLPs thus have n2n−1 DoF (see Table 1), because each
rule specifies which variable appears in its head, and the
subset of the n − 1 remaining variables that appears in
its body. ¬-free PLPs thus have excessive DoF, yet are
only partially expressive. Allowing negative probabili-
ties does not add DoF, but it makes ¬-free PLPs fully
expressive. (It may also allow the representation of im-
proper distributions.) The PLP, however, is still over-
parametrized.

(Real-valued) PLPs with ¬’s have n3n−1 DoF, because
each variable (other than the head variable) may ei-
ther appear in the body, not appear, or appear negated.
PLPs with ¬’s are fully expressive, but extremely over-
parametrized. (They may also be logically inconsistent.)

For PLPs with ¬’s, there is a systematic way (a “canoni-
cal form”) to represent any given distribution: Order the
variables arbitrarily V1, . . . , Vn, and code each P(vi |
v1, . . . , vi−1) using one rule for each joint assignment to
(v1, . . . , vi−1), with vi as its head. For ¬-free PLPs with
negative probabilities there is a similar systematic way,
where each P(vi | v1, . . . , vi−1) is coded using one rule
for each conjunction of subsets of {v1, . . . , vi−1}, with
vi as its head. For both languages, there are a large but
finite (n!) distinct PLPs that can be considered canonical
representations for the given distribution. This finiteness
is meaningful: In general, a single redundant real-valued
parameter may give ∞ ways for representing any dis-
tribution, thus the finiteness means there are no redun-
dant parameters. For both languages, each of the canon-
ical PLP representations only uses a (different) subset of
2n − 1 rules out of the n2n−1 or n3n−1 available rules.

We embrace complex rule probabilities, since they are
needed in the general, relational case. We now ask:
Allowing complex probabilities, which new systematic
ways are there, for representing any given distribution?

We suggest a new systematic way, BCF, to parametrize
¬-free propositional PLPs using 2n − 1 complex rule
probabilities that, for non-extreme distributions, is
almost-fully expressive. For some (but not all) distribu-

tions, BCF provides a unique canonical BCF PLP that
only involves real probabilities in (−∞, 1). In general,
BCF provides any given distribution with a finite num-
ber of (complex-valued) canonical BCF PLP representa-
tions. (2n−1 complex rule probabilities have 2 ·(2n−1)
DoF, but they are not overparametrized. This is because
PLPs with complex rule probabilities are fully expres-
sive w.r.t. complex (improper) distributions, thus adding
2n−1 DoF to the specification of the distribution.) BCF,
however, simplifies the language, and requires no arbi-
trary ordering. BCF’s lack of ordering means that its
canonical PLPs are truly cyclic, instead of the Bayes-
net semantics of the other two canonical forms. BCF’s
semantics is intriguing, and not fully understood.

Propositional BCF PLPs have 2n − 1 possible parame-
ters: {ps : s (V }. pV is excluded (it has no effect).
We sometimes subscript by the set of atoms, e.g., p{a}
instead of p{A}.

Theorem 3 is the adaptation of Theorem 1 to BCF. It may
be expressed as an algorithm, similar to Algorithm 1.

Theorem 3. Let R be a propositional BCF PLP over
variables V , and I ⊆ V be an interpretation. Then:

PR(I) = PRI (I)
∏
s⊆I

(1− ps)
|V \I| (13)

PRI (I) = 1−
∑
I′(I

PRI (I ′)

6.1 A BCF BACKTRACKING SOLVER

Algorithm 3 is the adaptation of Algorithm 2 to BCF in
the propositional case. Let Pg be a positive distribution
over V , and let R be a BCF PLP over V . R represents
Pg , i.e., PR = Pg , if and only if the following 2n −
1 equations hold: {Pg(s) = PR(s) : s (V }. (The
additional equation Pg(V) = PR(V) is redundant.)

Example 3. For two variables, V = {A,B}, the 2n − 1
equations Pg(V) = PR(V) are:

Pg(∅) =PR∅(∅)
∏

s⊆∅ (1−ps)2= (1−p∅)2

Pg(a) =PR{A}(a)
∏

s⊆{A}(1−ps)
1= p∅(1−p∅)(1−p{a})

Pg(b) =PR{B}(b)
∏

s⊆{B}(1−ps)
1= p∅(1−p∅)(1−p{b})

The algorithm solves one equation after another, and
gives the general solution:

p∅=1±
√
Pg(∅), p{a}=1− Pg({a})

p∅(1−p∅)
, p{b}=1− Pg({b})

p∅(1−p∅)

There is always a solution in real probabilities below 1,
and another solution in real probabilities above 1.

Example 4. Consider running a solver like Algorithm 3,
to find a general (non-BCF) PLP for V = {A,B}. Let

Algorithm 3 find prop BCF PLP(V ,Pg): Find a BCF PLP representing a given pos. propositional dist. Pg .
Inputs: V : The set of variables Pg: Positive distribution over V
Output: BCF PLP for Pg , represented using {ps : s (V } / or “impossible”
Write the 2n − 1 equations (symbolically): {Pg(I) = PR(I) : I (V }.
loop over the equations in (any) increasing partial-order of I:

Substitute the expression for PR(I) given by (13)
// Current equation is now: Pg(I) = PRI (I)

∏
s⊆I(1− ps)

|V \I|

Evaluate PRI (I) numerically using {ps : s (I} according to Theorem 3
if PRI (I) = 0 then backtrack
Substitute into the equation: nt, nf , Pg(I), PRI (I), {ps : s (I}
// Equation is now: positive real number = nonzero number ·(1− pI)

positive integer

solutionsI ← the solutions for pI // |V \ I| ≥ 1 (possibly complex) solutions
Try one of solutionsI , and advance to the next equation. If the next equation backtracks,

try another solution. If all solutions in solutionsI backtracked, then backtrack.
If all equations were solved then return {ps : s (V }.

end loop
return “impossible”

the rule probabilities be {pa, pb, pa←b, pb←a}. Its first
equation would be:

Pg(∅) = . . . = (1− pa)(1− pb)

In general, since PLPs are over-parametrized, equations
may simultaneously introduce multiple new parameters.
PLPs using only A(X) are a special case: they are not
over-parametrized, so this does not happen. BCF is
a technique for resolving the over-parametrization, by
effectively forcing simultaneous new parameters to be
equal, thus transforming equations to have a single new
variable, thus getting rid of the PLP’s excessive DoF.

BCF has tied weights, thus fewer potential parameters;
however, it is still almost-fully expressive:
Theorem 4. 1. The language of BCF PLPs with complex
rule probabilities is almost-fully expressive for positive
propositional distributions.
2. The number of BCF representations for every such
distribution is finite.
3. There is at most one such BCF representation where
all parameters are real and < 1.

Proof. The proof is very similar to Proposition 2’s, only
it relies on Algorithm 3 instead of Algorithm 2, and the
constraints are {PRI (I) 6= 0 : I (V } instead of
{PR

nt,0 6= 0 : nt ∈ {0, . . . , n− 1}}.

7 GENERAL RELATIONAL BCF PLPS

We now generalize Sections 4 and 6 to general relational
PLPs, given fixed populations.
Theorem 5. 1. The language of BCF PLPs with complex
rule probabilities is almost-fully expressive for positive

relational distributions with fixed population sizes.
2. The number of BCF representations for every such
distribution is finite.
3. There is at most one such BCF representation where
all parameters are real and < 1.

Proof. The proof follows from the correctness of Algo-
rithm 4; we only outline the differences with the special
cases presented in Sections 4 and 6.

The first step is to ground the PLP, according to the given
population sizes. Similarly to Algorithm 3, we write all
equations Pg(I) = PR(I) for the ground PLP, and or-
der them in increasing partial-order of I (and omit the
last one). Here, however, the ground PLP is exchange-
able w.r.t. swapping individuals. Swapping two indi-
viduals causes multiple pairs of ground variables to be
swapped. Therefore, some interpretations are equivalent.
Pg is equal for equivalent interpretations, and the PLP
has no rule that can distinguish among them; therefore,
they give identical equations, and we only keep the first
occurrence of each equation. (This was implicitly done
by Algorithm 2, which wrote n equations, although there
are 2n interpretations for V = {A(X1), . . . , A(Xn)}.)

The number of equations that remain after removing du-
plicate equations is the number of Pg’s DoF. Pick an ar-
bitrary I; we need to show that Pg(I) = PR(I) has ex-
actly one new parameter that did not occur in previous
equations. This parameter is pI , which represents the
probability of all rules with the form head ←

∧
v∈I v.

The equations are in increasing partial-order of I , so∧
v∈I v was false for their corresponding interpretations,

and pI did not appear in them. It is also not the case
that there was a second new parameter that appears in

Algorithm 4 find BCF PLP(V ,Pg): Find a BCF PLP representing a given general pos. (rel.) distribution Pg .
Inputs: V : The set of ground variables Pg: Positive distribution over V
Output: BCF PLP for Pg / or “impossible”
Write the 2|V | − 1 equations (symbolically): {Pg(I) = PR(I) : I (V }.
Remove recurring equations (keep only the first of each)
loop over the equations in (any) increasing partial-order of I:

Substitute the expression for PR(I) given by (13)
Evaluate PRI (I) numerically using {ps : s (I} according to Theorem 3
if PRI (I) = 0 then backtrack
Substitute into the equation: nt, nf , Pg(I), PRI (I), {ps : s (I}
solutionsI ← the solutions for pI // |V \ I| ≥ 1 (possibly complex) solutions
Try one of solutionsI , and advance to the next equation. If the next equation backtracks,

try another solution. If all solutions in solutionsI backtracked, then backtrack.
If all equations were solved then return {ps : s (V }.

end loop
return “impossible”

Pg(I) = PR(I) but not before. Every parameter is asso-
ciated with a body, which is a conjunction. If a parameter
contains a ground variable not in I , it will not have an ef-
fect on PR(I), and thus not appear. If it is a proper sub-
set I ′ (I , then the parameter already appeared before,
in the equation for I ′.

The proof of Theorem 5 also shows that the number of
possible parameters a BCF PLP has, i.e., the number of
different rule bodies a PLP may have, is identical to the
number of DoF a relational distribution has.

8 CONCLUSIONS

It is perhaps alarming for one to investigate much ef-
fort into uncovering why a learning algorithm fails to
learn a probabilistic model from data, even given very
large amounts of data and a large number of very flexi-
ble rules, only to discover that the fault is not the algo-
rithm’s; rather, the underlying language is simply inca-
pable of representing the distribution of the data, even
approximately.

Before using a language for an application domain, it is
therefore advisable to become aware of any limitations
the language may have.

A concerning result (Buchman & Poole, 2016, 2017) has
recently emerged, demonstrating cases where PLPs are
incapable of representing some relational distributions,
in which ¬’s do not help, but using negative rule proba-
bilities allows the distributions to be represented.

We follow in their footsteps, and investigate general re-
lational settings (with fixed populations). We discovered
that, even for a population of size four, PLPs are lack-
ing in their expressiveness, and negative probabilities (or

probabilities above 1) do not solve the problem; however,
allowing complex probabilities makes PLPs “complete”,
allowing PLPs to represent any distribution (with proba-
bility 1). This is due to a mathematical structure under-
lying PLPs, in which rule probabilities are determined as
solutions of polynomial equations.

We have also provided an algorithm for directly comput-
ing the probability of an interpretation. The algorithm
is efficient when few variables are true . Extending this
algorithm, and investigating its usefulness in various ap-
plications, is beyond the scope of this paper.

After realizing that complex probabilities are unavoid-
able, we investigate the question: what is a natural
canonical model for PLPs? We expose BCF – a sim-
plified language for representing PLPs, that strips the
redundancy among PLP rules by tying their weights
(thus avoiding redundant parameters), while maintaining
full expressiveness. We also provide solver algorithms,
showing how arbitrary relational distributions can be
converted into BCF PLPs.

This work raises a few intriguing questions, that sug-
gest that further deep insights may be around the corner.
These include questions such as: What is the meaning
of complex probabilities? What insights or intuitions are
there, for the general interaction of rules with complex
probabilities? And: what are further insights and intu-
itions for BCF? Is there a complimentary (dual) canoni-
cal form to BCF, which is more intuitive?

References

Buchman, David and Poole, David. Representing aggre-
gators in relational probabilistic models. In Proceed-
ings of the 29th AAAI Conference on Artificial Intelli-
gence (AAAI), 2015.

Buchman, David and Poole, David. Negation without
negation in probabilistic logic programming. In KR,
pp. 529–532, 2016.

Buchman, David and Poole, David. Negative proba-
bilities in probabilistic logic programs. International
Journal of Approximate Reasoning, 83:43–59, 2017.

Buchman, David, Schmidt, Mark W., Mohamed, Shakir,
Poole, David, and de Freitas, Nando. On sparse, spec-
tral and other parameterizations of binary probabilistic
models. Journal of Machine Learning Research - Pro-
ceedings Track, 22:173–181, 2012.

Cox, David R. A use of complex probabilities in the
theory of stochastic processes. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society, vol-
ume 51, pp. 313–319. Cambridge University Press,
1955.

De Raedt, L., Kimmig, A., and Toivonen, H. ProbLog:
A probabilistic Prolog and its application in link dis-
covery. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI-2007),
pp. 2462–2467, 2007.

Dıez, Francisco J and Galán, Severino F. An efficient
factorization for the noisy max. International Journal
of Intelligent Systems, 18(2):165–177, 2003.

Hamber, Herbert W and Ren, Hai-cang. Complex proba-
bilities and the Langevin equation. Physics Letters B,
159(4-6):330–334, 1985.

Hofmann, Holger F. Complex joint probabilities as
expressions of reversible transformations in quantum
mechanics. New Journal of Physics, 14(4):043031,
2012.

Kisynski, Jacek and Poole, David. Lifted aggrega-
tion in directed first-order probabilistic models. In
Proc. Twenty-first International Joint Conference on
Artificial Intelligence (IJCAI-09), pp. 1922–1929,
Pasadena, California, 2009.

Kowalski, Robert. Logic for Problem Solving, Revisited.
BoD–Books on Demand, 2014.

Meert, Wannes and Vennekens, Joost. Inhibited effects
in cp-logic. In European Workshop on Probabilistic
Graphical Models, pp. 350–365. Springer, 2014.

Parisi, Giorgio. On complex probabilities. Physics Let-
ters B, 131(4-6):393–395, 1983.

Poole, D. The independent choice logic for modelling
multiple agents under uncertainty. Artificial Intelli-
gence, 94:7–56, 1997. special issue on economic prin-
ciples of multi-agent systems.

Poole, D. Abducing through negation as failure: stable
models in the Independent Choice Logic. Journal of
Logic Programming, 44(1–3):5–35, 2000.

Salcedo, LL. Representation of complex probabilities.
Journal of Mathematical Physics, 38(3):1710–1722,
1997.

Salcedo, LL. Gibbs sampling of complex-valued distri-
butions. Physical Review D, 94(7):074503, 2016.

Sato, T. and Kameya, Y. PRISM: A symbolic-statistical
modeling language. In Proceedings of the 15th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-97), pp. 1330–1335, 1997.

Sato, T. and Kameya, Y. New advances in logic-based
probabilistic modeling by PRISM. In De Raedt, L.,
Frasconi, P., Kersting, K., and Muggleton, S. (eds.),
Probabilistic Inductive Logic Programming, volume
LNCS 4911, pp. 118–155. Springer, 2008.

Van den Broeck, Guy, Meert, Wannes, and Darwiche,
Adnan. Skolemization for weighted first-order model
counting. arXiv preprint arXiv:1312.5378, 2013.

Vennekens, Joost, Denecker, Marc, and Bruynooghe,
Maurice. CP-logic: A language of causal probabilistic
events and its relation to logic programming. TPLP, 9
(3):245–308, 2009.

Zak, Michail. Incompatible stochastic processes and
complex probabilities. Physics Letters A, 238(1):1–7,
1998.

