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We consider probabilistic logic programs (PLPs) for non-extreme distributions. We show 
that in the relational case with fixed populations, PLPs cannot represent many non-extreme 
distributions, even using negations. We introduce negative rule probabilities in PLPs, and 
show they make the language strictly more expressive. In addition, they render negations 
unnecessary: negations in PLPs can be translated to rules with negative probabilities, 
thus avoiding the problem of logical inconsistency. Furthermore, this translation keeps the 
PLP size compact (assuming the number of negations per rule is small). This translation 
algorithm also allows algorithms for exact inference that do not support negations to be 
applicable to PLPs with negations.
The noise probabilities for non-exclusive rules are difficult to interpret and unintuitive to 
manipulate. To alleviate this we define “probability-strengths”, an alternative representation 
for probabilistic values, which results in an intuitive additive algebra for combining rules.
For acyclic propositional PLPs we prove what constraints on the strengths allow for proper 
distributions on the non-noise variables and allow for all non-extreme distributions to be 
represented. We show how arbitrary CPDs can be converted into this form in a canonical 
way.

© 2016 Published by Elsevier Inc.

1. Introduction

In recent years, there is rising interest in combining probabilistic reasoning and logic formalisms. Logic programs have 
the advantage of an intuitive declarative and procedural interpretation [10]. Probabilistic modeling, on the other hand, is 
a well-understood formalism for representing quantified uncertainty. ICL [13,14] is such a combined formalism. ICL allows 
to confine randomness to independent probabilistic “noise variables”, arguing that it is better to invent new hypotheses 
to explain probabilistic dependencies rather than dealing with implicit dependencies implied by the language. A few more 
languages include Prism [16,17], ProbLog [3], and CP-logic [19].

Negations are a way to extend program expressiveness, but they introduce the problem of logical inconsistencies. In this 
paper we prove that even with negations, program expressiveness is limited. We introduce negative noise probabilities as 
an alternative to negations, and show that expressiveness is strictly enhanced relative to using negations, while avoiding 
the problem of logical inconsistencies. Introducing “negative probabilities” means that intermediate probabilistic values are 
allowed to be negative as if that was meaningful, as long as the program’s semantics, the marginal distribution over the 
variables of interest (the non-noise variables) is nonnegative.
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Dıez and Galán [4] used negative probabilities to optimize computation for the noisy-or in probabilistic graphical models. 
Kisynski and Poole [8] examined extending this approach to noisy-or to first order logic. Jha and Suciu [7] examined using 
negative probabilities for answering queries in probabilistic databases. Van den Broeck et al. [18] use negative probabilities 
to allow for skolemization in the presence of existential quantifiers, thus allowing efficient model counting.

Negative probabilities allow the cancellation of evidence. It also allows the cancellation of rules from a program, by 
adding a rule whose “probabilistic strength” is negated. Meert and Vennekens [12] suggested a new language feature of 
negation in the head of rules for CP-logic, that supports a cancellation effect of existing rules.

2. Programs

2.1. Propositional programs

We use capital letters for random variables, and lower-case letters for them being true, e.g., b means B = true. A (prob-
abilistic) rule has the form p : head ←− body, where p is a number in the range [0, 1] representing a probability, head is a 
positive literal, and body is a conjunction of positive or negative literals (excluding head and ¬head). When p = 1, it can be 
omitted, and the rule is called a deterministic rule.

Sometimes, the following convention is adopted: Non-deterministic rules are limited to have the special form pi : ni

(called a probabilistic fact), where each such variable ni is called a noise variable, and ni is not allowed to appear as 
a head of another rule. Adopting this convention does not limit expressiveness, since any rule p : head ←− body can be 
represented using p : n and head ←− n ∧ body, where n is a new (auxiliary) noise variable that is not used in any other 
rule. In this paper, we do not adopt this convention.

A probabilistic logic program (PLP) is a multiset of rules. For convenience, we sometimes treat programs as sets; 
however, unions may produce programs with recurring rules. A program with only deterministic rules is a determinis-
tic program. Programs can be either cyclic or acyclic.

A model is an assignment to all the variables, and is represented as a set of positive literals. We use the stable-model 
semantics [6]. We take the semantics M(D) of a deterministic program D to be the model which is its unique stable model. 
If it does not have a unique stable model, we call the program “(logically) inconsistent”. Inconsistency only arises in cyclic 
programs, when a cycle of rules contains a negation [1].

A deterministic program realization (DPR) for a (propositional) program R is a deterministic program derived from R by 
having every rule pi : headi ←− bodyi either omitted or converted to the deterministic rule headi ←− bodyi . A probabilistic 
program R represents a distribution over its 2|R| DPRs, where, independently, each rule pi : headi ←− bodyi is converted 
to headi ←− bodyi with probability pi or omitted with probability 1 − pi . The unique stable-model semantics provides a 
semantics of a unique model for each DPR. This provides the PLP with a semantics of a distribution over models, which 
represents a joint distribution of the variables P(V). The joint distribution is extreme if the probability of some possible 
model is 0.

We say a program is invalid if its semantics is ill-defined. This can happen in two cases:

1. Using negations, a cyclic program may have a positive probability of (logical) inconsistency; and
2. Using negative probabilities, P(V) may be “improper”. This is defined in Section 2.3.

2.2. Relational programs

The relational setting is a generalization of the propositional setting. The relational setting introduces populations, which 
are sets of individuals. Variables may now be parametrized by logical variables, which refer to individuals from the pop-
ulations. Since rules contain variables, they may also be parametrized by logical variables. A relational (first-order) PLP
is a generalization of PLPs for relational settings, where rules may be parametrized. A grounding is the process of con-
verting a relational PLP to a propositional PLP called a ground PLP. Grounding consists of specifying the individuals in 
each population, and creating (or “instantiating”) “ground” (unparametrized) variables for each possible parametrization of 
a parametrized variable by individuals. Parametrized rules are similarly instantiated, giving ground (unparametrized) rules 
involving the ground variables.

Relational PLPs may also use constants, that refer to specific individuals in the population (determined by the grounding). 
We do not make use of constants in this paper.

The concepts of models, DPRs, and the semantics of a PLP as a joint distribution, are not defined directly for relational 
PLPs; they are only defined for each of its ground (propositional) PLPs.

Since the population may contain individuals not marked by constants, a given relational PLP may be defined once, but 
applied to different populations (unlimited in size), thus giving an unlimited number of different ground PLPs (with different 
numbers of ground variables).

Importantly, relational PLPs imply constraints on the ground PLPs: individuals which are not marked by constants, are 
indistinguishable.
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2.3. Negative rule probabilities

In this paper we propose to use “negative probabilities” for PLP rules. However, since probabilities cannot be negative, 
this necessitates an explanation of what the semantics of such programs is.

The PLP semantics we defined can be thought of as a mathematical function PLPSemantics(·), that receives the description 
of a PLP R (a set of rules with associated probabilities) as input, and outputs its semantics, which is a joint distribution of 
the variables, P(V):

PLPSemantics(R) = P(V)

If we fix the rules but not their probabilities p1, p2, . . . , p|R| , we can describe the semantics as a mathematical function of 
the rule probabilities:

PLPSemantics(p1, p2, . . . , p|R|) = P(V)

We usually think of the rule probabilities p1, . . . , p|R| as having a meaning (the probability of a rule appearing). This mean-
ing usually aids our intuition, but here this meaning ends up getting in our way, because it suggests p1, . . . , p|R| must be 
nonnegative. The crucial insight is that it is not essential to attach a meaning to p1, . . . , p|R| . We can view p1, . . . , p|R| as meaning-
less parameters of some arbitrary probabilistic model, whose semantics is defined by the function PLPSemantics(p1, . . . , p|R|). 
If one views p1, . . . , p|R| as meaningless parameters, one can then use arbitrary (e.g., negative) values for these parameters.

We now analyze PLPSemantics(·) as a mathematical function that receives meaningless numerical inputs p1, . . . , p|R| and 
produces the output P(V), and see what happens when some of its inputs are negative. To assign a function the meaning 
of a “distribution”, it must be nonnegative and to sum to 1. A PLP R represents a function over its 2|R| DPRs that we 
previously called a “distribution”, and this leads to a second function P(V) that we call a “joint distribution”. Assume some 
inputs (that we previously called “rule probabilities”) are negative. The first function, which we previously took to represent 
the “probability” of DPRs, may now be negative for some DPRs, but we ignore this fact, as this first function is only used as 
an intermediate computation, and we need not attach a probabilistic meaning to this function. The second function, P(V), 
still sums to 1, but may or may not be nonnegative.

1. If P(V) contain negative probabilities, we cannot attach a probabilistic meaning to it. We then say P(V) and R are
“improper”, and thus R is invalid – i.e., R has ill-defined semantics.

2. If P(V) is nonnegative, then we can attach a probabilistic meaning to it, and the semantics of R is well-defined. We thus 
ignore the meaninglessness of p1, . . . , p|R| and of the intermediate negative “probabilistic” values, since the program has 
a proper joint distribution semantics over the non-noise variables.

Example 1. Consider the probabilistic acyclic program:

R = { p1 : a, p1 = 0.5

p2 : b, p2 = 0.7

p3 : b ←− a } p3 = − 4
3

The program defines an improper “distribution” over the 23 DPRs (the “first function”), since, for example, the “probability” 
of the DPR {a, b ←− a} is negative: P({a,b ←− a}) = 0.5 · (1 − 0.7) · (− 4

3 ) = −0.2 < 0. However, the DPRs {a, b, b ←− a}
and {a, b} have the same unique stable model as {a, b ←− a}, and the sum of their probabilities is positive. If we thus 
only consider the joint distribution over the variables, P(A, B), we find it is proper, and can be described by P(A, B) =
P(A) P(B | A), where P(a) = p1 = 0.5, P(b | ¬a) = p2 = 0.7 and P(b | a) = p2(1 − p3) + (1 − p2)p3 + p2 p3 = 0.3.

Note that P(b | a) = p2(1 − p3) + (1 − p2)p3 + p2 p3 exemplifies how P(b | a), which is a part of the semantics P(V), 
is a mathematical function of the numeric inputs (p1, p2, p3), which does not depend on the inputs having any meaning. 
Substituting the specific values we chose for (p1, p2, p3) happens to yield a proper joint distribution semantics P(V), despite 
p3 = − 4

3 .

Example 2. It is possible to rewrite R from Example 1, using auxiliary variables, so that the only non-deterministic rules are 
probabilistic facts:

R ′ = { p1 : n1, a ←− n1, p1 = 0.5

p2 : n2, b ←− n2, p2 = 0.7

p3 : n3, b ←− n3 ∧ a } p3 = − 4
3

R ′ is improper, since the joint distribution over its variables, P(N1, N2, N3, A, B), is improper. This can easily be seen, by 
noting that P(n3) = − 4

3 < 0. However, if we ignore this fact, and marginalize out the noise variables N1, N2 and N3 (which 
were added as auxiliary variables), we get the same proper distribution P(A, B, C) as in Example 1.
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We call the set of PLPs with no negations and no negative probabilities positive PLPs.1 We call the set of PLPs with no 
negations (but possibly with negative probabilities) negative PLPs. We call the set of PLPs with no negative probabilities but 
possibly with negations PLPs-naf. (We do not name the set of PLPs with both negations and negative probabilities.)

3. Motivating the need for a more expressive language

Consider the following relational cyclic positive PLP, loosely based on [15] and on the ProbLog tutorial2:

0.3 : smokes(X)

0.1 : friends(X, Y )

0.9 : friends(X, Y ) ←− friends(Y , X)

0.6 : susceptible(X)

0.2 : smokes(X) ←− susceptible(X) ∧ friends(X, Y ) ∧ smokes(Y )

friends(chris, sam)

According to this program, there is a baseline of 30% of people with no friends that smoke. Furthermore, 60% of people 
are “susceptible”, and the chance of a susceptible person smoking increases with every smoking friend they have. If X is 
susceptible, then every smoking friend has a probability of 20% of also causing X to smoke. (The increase in P(smokes(X))

is less than 20%, because even if Y causes X to smoke, X may have picked up smoking for other reasons.)
Consider now wanting to model nonconformity instead of susceptibility. The probability a “nonconformist” person 

smokes increases with every non-smoking friend they have (they want to be different than their friends.) The straight-
forward way to change the program to model nonconformity instead of susceptibility gives the following PLP-naf program 
(changes are in bold):

0.3 : smokes(X)

0.1 : friends(X, Y )

0.9 : friends(X, Y ) ←− friends(Y , X)

0.6 : nonconformist(X)

0.2 : smokes(X) ←− nonconformist(X) ∧ friends(X, Y ) ∧ ¬ smokes(Y )

friends(chris, sam)

Unfortunately, the program is not logically consistent, because the negation that was added appears inside a cycle:

0.2 : smokes(chris) ←− nonconformist(chris) ∧ friends(chris, sam) ∧ ¬ smokes(sam)

0.2 : smokes(sam) ←− nonconformist(sam) ∧ friends(sam, chris) ∧ ¬ smokes(chris)

This example demonstrates that:

1. The need of negations for expressiveness arises very naturally in real-world applications.
2. Unfortunately, negations may arise inside cycles, rendering the program logically inconsistent.
3. The example suggests (but not proves) that distributions of practical interest may not be representable by either positive 

PLPs nor valid PLPs-naf.
4. This raises the need for a more expressive language.

In Section 4 we prove that positive PLPs and valid PLPs-naf are indeed not fully expressive, and that negative PLPs can 
express distributions that positive PLPs and valid PLPs-naf cannot.

4. Relational PLPs for fixed populations

We now consider the simplest setting for a relational PLP with fixed populations: a single parametrized variable A(X), 
no constants, and with a population of two: {x1, x2}. We mark a(x1), a(x2) as a1, a2. This simple setting suffices to show 
that:

1 Technically, it should have been called “nonnegative PLPs”; however, rules with probability 0 have no effect.
2 https://dtai.cs.kuleuven.be/problog/tutorial.html#tut_part1_smokers.

https://dtai.cs.kuleuven.be/problog/tutorial.html
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1. Positive PLPs are severely limited, and cannot represent all distributions.
2. Allowing negations does not increase expressiveness.
3. Allowing negative probabilities (with no negations) allows full expressiveness of non-extreme distributions.

This illustrates that relational programs without negative probabilities are limited in their expressiveness, and that neg-
ative probabilities may allow to represent distributions that are not otherwise expressible. Exploring the limits of the 
expressiveness of negative probabilities in the relational setting is left for future work.

4.1. Relational positive PLPs for fixed populations

The general form of a relational positive PLP with no constants, using only the variable A(X) and with a population of 
two is:{

p1 : a(X), p2 : a(X) ←− a(Y )
}

(1)

which is grounded to the propositional program:

R �¬ = {
p1 : a1, p2 : a1 ←− a2,

p1 : a2, p2 : a2 ←− a1
}

This program is a special case of Example 11 (in Section 8.1), with p3 = p1 and p4 = p2. Example 11 shows that if p1, p2 ∈
[0, 1], then:

P(a1 ∧ a2) ≥ P(a1 | ¬a2)P(a2 | ¬a1) (2)

Thus distributions that violate this constraint cannot be represented, e.g.:

P(¬a1 ∧ ¬a2) = 0.1 P(¬a1 ∧ a2) = 0.4

P( a1 ∧ ¬a2) = 0.4 P( a1 ∧ a2) = 0.1

4.2. Relational PLPs-naf for fixed populations

Allowing negations (but not negative probabilities), the general form of the relational PLP is:
{

p1 : a(X),

p2 : a(X) ←− a(Y ),

p3 : a(X) ←− ¬a(Y )
}

which is grounded to the propositional program:

R¬ = {
p1 : a1, p2 : a1 ←− a2, p3 : a1 ←− ¬a2,

p1 : a2, p2 : a2 ←− a1, p3 : a2 ←− ¬a1
}

If p3 = 0, then there are no negations. If p1 = 1, then P(a1 ∧ a2) = 1, and we need no negations to represent this 
distribution. If p1 < 1, p3 > 0 and p2 < 1, then the following inconsistent DPR has a positive probability:

{
a1 ←− ¬a2,

a2 ←− ¬a1
}

And if p1 < 1, p3 > 0 and p2 = 1, then the following inconsistent DPR has a positive probability:
{

a1 ←− a2, a1 ←− ¬a2,

a2 ←− a1, a2 ←− ¬a1
}

Therefore, no matter what the parameters’ values are, either the program’s distribution can also be represented without 
negations, or the program has a positive probability of inconsistency and is thus invalid; thus for this setting, negations do 
not increase expressiveness.

The poor expressiveness is due to the PLP-naf being a grounding of a relational PLP-naf. A propositional PLP-naf with two 
variables can break the symmetry between the variables, and has six parameters instead of three. This additional flexibility 
allows it to represent any non-extreme distribution (Section 8.2).
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4.3. Relational negative PLPs for fixed populations

We now allow p1 < 0 and/or p2 < 0 in R �¬ . The program gives:

P(¬a1 ∧ ¬a2) = (1 − p1)
2

P(a1 ∧ ¬a2), P(¬a1 ∧ a2) = p1(1 − p1)(1 − p2)

P(a1 ∧ a2) = p2
1 + 2p1(1 − p1)p2

(P(a1 ∧ a2) can be computed from the constraint that the probabilities sum to 1.)
Any non-extreme distribution (we actually only require P(¬a1 ∧ ¬a2) > 0) can thus be represented, by choosing

p1 = 1 − √
P(¬a1 ∧ ¬a2), p1 ∈ [0,1) (3)

for p1 and then

p2 = 1 − P(a1 ∧ ¬a2)

p1(1 − p1)

= 1 − P(a1 ∧ ¬a2)√
P(¬a1 ∧ ¬a2) − P(¬a1 ∧ ¬a2)

(4)

for p2. When p1 = 0, the value of p2 has no effect, and we can choose p2 = 0 to avoid a division by zero. The only 
distribution with P(¬a1 ∧ ¬a2) = 0 that can be represented is P(a1 ∧ a2) = 1. It is represented by choosing p1 = 1.

Example 3. Consider the distribution P′:

P′(¬a1 ∧ ¬a2) = 1
3

P′(a1 ∧ ¬a2), P′(¬a1 ∧ a2) = 1
3

P′(a1 ∧ a2) = 0

I.e., this distribution represents mutual exclusion, ¬(a1 ∧ a2). This distribution violates (2), so it cannot be represented 
without negative probabilities. However, using (3) and (4), we can pick:

p1 = 1 −
√

1
3 = 0.4226

p2 = 1 −
1
3√

1
3 − 1

3

= −0.3660

This gives a program with negative probabilities that represents P′ .

5. Relational PLPs with unbounded populations

We now analyze the setting, in which the populations’ sizes are not fixed or bounded, and a PLP needs to be valid for all 
possible population sizes, i.e., be proper and have probability 0 of inconsistency. This is a more general setting than having 
fixed populations; however, this form of generalization makes this setting more restrictive, because a PLP must be valid for 
all possible groundings simultaneously, thus fewer PLPs can be used.

Using the less restrictive fixed populations setting, we already discovered the disappointing fact that both positive PLPs 
and PLPs-naf have limited expressiveness. We therefore now only consider negative PLPs, to see if their representative supe-
riority carries over to the unbounded-populations setting. Unfortunately, this may not be the case. The following proposition 
shows that in our simple setting, having unbounded populations removes the additional expressiveness that negative prob-
abilities brought.

Proposition 1. If the program 
{

p1 : a(X), p2 : a(X) ←− a(Y ) 
}

is proper for all possible populations, then it can also be 
expressed using nonnegative probabilities.

The proof is in Appendix A.
Proposition 1 contrasts with Section 4.3, where we showed that programs with p2 < 0 can express distributions that 

nonnegative programs cannot, when the population size is 2. Such programs, therefore, are not proper for some population 
size.
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6. Probabilistic strengths

6.1. Summing evidence

Summing evidence refers to having multiple rules with a common head, in which case the probabilistic “evidence” must 
be summed up.

When all rules with a common head have disjoint bodies, the rule probabilities can be interpreted as conditional proba-
bilities. When the bodies are not disjoint, their probabilistic influences must be combined.

Example 4. Let R = { p1 : a, p2 : h, p3 : h ←− a }. Then P(h | a) = 1 − (1 − p2)(1 − p3).

6.2. Summing rules

We defined PLPs to be multisets of probabilistic rules. Some of our results, e.g., the definition of R T and Theorem 5
(and 6) are defined in terms of the unions of PLPs and rules, so they may give PLPs that have multiple rules with a common 
head and a common body. Summing rules refers to having multiple rules with a common head and a common body replaced 
with a single rule, without modifying the PLP’s semantics.

When a program contains multiple rules with the same head and body, p1 : head ←− body, p2 : head ←− body, . . . , they 
can be replaced with the single rule 

(
1 − ∏

i(1 − pi)
) : head ←− body, without a change in semantics.

6.3. Strengths

The math of summing evidence and of summing rules is similar. However, the behavior of the rule probabilities is not 
very intuitive. We propose a different representation for probabilistic values, which we call “probabilistic strengths”, that 
makes the math in both cases additive. This greatly simplifies our subsequent results. Furthermore, strengths also give 
intuition to the meaning of negative probabilities.

In probabilistic models, e.g., in graphical models, it is common to use the log-P representation instead of working directly 
with probabilities. For example, in Markov logic networks [15,5], formulae are annotated with “weights”, which represent 
log-P values. The log-P representation sometimes simplifies the handling of such models, making combination of weighted 
formulae additive. σ (strengths) is the PLP parallel to the log-P representation, making combination of probabilistic rules 
additive.

Definition 1. The strength −∞ < σ ≤ ∞ of a probability −∞ < p ≤ 1 is

σ
def= − ln(1 − p).

Therefore, a strength σ represents the probability:

p = 1 − e−σ .

Example 5. R from Example 4 can be represented as R = { σ1 : a, σ2 : h, σ3 : h ←− a }. If we express P(h | a) as σ(h | a), 
we get σ(h | a) = − ln(1 − P(h | a)) = − ln(1 − p2)(1 − p3) = − ln

(
1 − (1 − e−σ2 )

)(
1 − (1 − e−σ3 )

) = σ2 + σ3, thus summing 
evidence becomes additive.

Definition 2. sum(R) is the program R after rules with the same head and body are “summed up”, i.e., replaced with a 
single rule whose strength is the sum of the strengths of the rules summed up.

Proposition 2. Let R be either a positive PLP, a negative PLP, a PLP-naf, or any PLP that does not simultaneously have negations in 
cycles and negative probabilities. Then sum(R) and R have identical semantics.

Proof. Let R2 = R ′ ∪ { σ1 : h ←− body, σ2 : h ←− body } be an arbitrary program, and let R1 = R ′ ∪ { (σ1 + σ2) : h ←−
body }. We now show that R1 has the same semantics as R2. Repeating the argument recursively proves the proposition.

The semantics of R ′ is that of a distribution over 2|R ′ | DPRs. The semantics of R2 is a distribution over 2|R2| = 2|R ′|+2

DPRs. For each DPR D for R ′ with probability PR ′ (D), there are four corresponding DPRs for R2, whose total probability 
sums to PR ′ (D), and which are identical to D with the addition of zero, one or two occurrences of the deterministic rule 
h ←− body. The probability of adding zero occurrences of h ←− body is (1 − p1)(1 − p2) =

(
1 − (1 − e−σ1 )

)(
1 − (1 − e−σ2 )

) =
e−σ1 e−σ2 = e−(σ1+σ2) . With probability 1 − e−(σ1+σ2) we add either one or two occurrences of h ←− body. However, two 
occurrences of a deterministic rule are equivalent to a single occurrence, so the semantics of R2 is identical to that of R1, 
where the rule h ←− body appears with probability 1 − e−(σ1+σ2) . �
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Example 6. Using the strengths notation, sum({ 2
3 : a, 3

4 : a }) = { 1 5
12 : a }.

When R simultaneously contains negations inside cycles and negative probabilities, the semantics of sum(R) and R are 
still identical, except that it is also possible for sum(R) to be strongly consistent while R is not. This is defined and discussed 
in Section 9.1, and especially in Example 17.

Example 5 shows that the influence of rules can be combined with simple addition: Given that body1 and body2 are true, 
then σ1 : h ←− body1 and σ2 : h ←− body2 are equivalent to σ1 + σ2 : h. The same is true for multiple occurrences of the 
same rule: σ1 : r, σ2 : r, . . . can be replaced with 

(∑
i σi

) : r.
Unlike probabilities, “strengths” is interpretable: the strength of a rule represents the amount (or “weight”) of informa-

tion that it provides, which is to be added to the information provided by other rules.
The representation as strengths allows us to derive our main results in this paper much more easily, and our results 

become mathematically simpler and more intuitive.
A few intuitive properties of σ are:

1. σ is monotonically increasing with p.
2. σ = 0 corresponds to p = 0.
3. σ > 0 corresponds to p > 0.
4. σ = ∞ corresponds to p = 1 (deterministic rules.) This is intuitive, as a deterministic rule is equivalent to an infinite 

number of occurrences of a probabilistic rule.
5. σ < 0 corresponds to p < 0.
6. p > 1 cannot be represented using a strength σ .

6.4. Negative strengths

A probability p < 0 corresponds to a strength σ < 0. Using σ -notation, negative probabilities become intuitive: They 
allow to subtract the weights of evidence, or to subtract rule weights.

Example 7. Let R contain a rule σ : r. Then adding the new rule −σ : r to R is equivalent to removing σ : r from R , i.e., 
the new and old rules cancel out.

Without the representation as strengths, it is not immediately clear what negative probabilities mean. In particular, it is 
not trivial whether and how rules can cancel out.

Example 8. Let R contain a rule p : r. Then adding the new rule − p
1−p : r to R is equivalent to removing p : r from R , i.e., 

the new and old rules cancel out.

σ = −∞, which corresponds to P = −∞, is not allowed, because it makes the semantics ill defined (adding positive and 
negative infinities). Therefore, adding a new rule cannot cancel out a deterministic rule.

7. Representing CPDs inside acyclic propositional PLPs

This section refers only to propositional (non-relational) PLPs, even when this is not stated explicitly.
Acyclic propositional PLPs can be interpreted as Bayesian networks. The set of all rules that have a variable H as their 

head can be seen as a specification of the conditional probability distribution (CPD) of H given (a subset of) the variables 
that precede it in the ordering, called its “parents”.

7.1. Acyclic propositional PLPs-naf can represent all CPDs

We represent an assignment to A1, . . . , An using the set {ai : Ai = true}. Using negations, it is easy to represent any CPD 
P(h | A1, . . . , An). The simplest approach is to create 2n rules, one for each possible assignment s:

P(h | s) : h ←−
∧
ai∈s

ai ∧
∧
a j /∈s

¬a j

Using negations, however, CPD representation is not unique.

Example 9. The sets of rules { p : h ←− a, p : h ←− ¬a ∧ b } and { p : h ←− b, p : h ←− ¬b ∧ a } are equivalent, since 
both represent the disjunctive rule p : h ←− a ∨ b.
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Algorithm 1 Convert CPD to rules.
Input: CPD P(h | A1, . . . , An) < 1, represented as σ(h | s) < ∞
Output: set of rules R representing the CPD
S ← set of all subsets of {a1, . . . ,an}
R ← ∅
while S �= ∅ do

s ← some minimal subset in S
(i.e., s ∈ S , but no proper subsets of s are in S)

σs ← σ(h | s) − ∑
s′⊂s σs′

rules ←
(
σs : h ←− ∧

s

)

R ← R ∪ {rules}
S ← S \ s

end while
return R

7.2. Acyclic propositional positive PLPs cannot represent all CPDs

Without negations (or negative probabilities), however, acyclic programs cannot represent some CPDs. For example, non-
monotonic CPDs cannot be represented. A CPD is monotonic if changing some Ai from false to true can only increase 
P(h | A1, . . . , An).

Example 10. An positive acyclic PLP cannot represent the CPD P(b | ¬a) = 0.7, P(b | a) = 0.3.

The reason is that a rule b ←− a ∧ (. . .) increases P(b | a) without changing P(b | ¬a), and a rule b ←− (. . .) in which a
does not appear increases both P(b | a) and P(b | ¬a). Positive acyclic PLPs, therefore, cannot represent non-monotonic CPDs, 
where P(b | a) < P(b | ¬a).

7.3. Representing CPDs without negations using negative PLPs

Negative rule probabilities in acyclic programs allow to express CPDs that cannot be otherwise expressed without nega-
tions. For example, the non-monotonic CPD P(B | A) of Example 10 is represented in Example 1.

Given a set of positive literals L, we use 
∧

L for 
∧

l∈L l, and 
∧¬L for 

∧
l∈L ¬l.

The following theorem characterizes when using negative probabilities in negation-free rules defines a proper CPD.

Theorem 1. Consider a set R of negation-free probabilistic rules (possibly with negative probabilities), in which the head is h and the 
bodies are conjunctions of subsets of {a1, . . . ,an}. Let σs be the probabilistic strength of the rule h ←− ∧

s, where s ⊆ {a1, . . . ,an}. 
Then R represents a “proper” CPD (i.e., ∀s, P(h | s) ∈ [0, 1]) if and only if:

∀s ⊆ {a1, . . . ,an},
∑
s′⊆s

σs′ ≥ 0.

Proof. Given an assignment s, P(h | s) is determined by the sum of the influences of all rules whose body is true. The body 
of h ←− ∧

s′ is true if and only if s′ ⊆ s, so the combination of the rules’ influences gives 
∑

s′⊆s σs′ . If 
∑

s′⊆s σs′ < 0 then 
P(h | s) < 0, but if 

∑
s′⊆s σs′ ≥ 0, then P(h | s) ∈ [0, 1]. �

Theorem 2. Using negative rule probabilities, any CPD P(h | A1, . . . , An) < 1 can be expressed without negations.

Proof. P(h | A1, . . . , An) can be specified using 2n probabilities, each specifying P(h | s) for another assignment s. We repre-
sent each P(h | s) < 1 as σ(h | s) < ∞. The theorem then follows from the correctness of Algorithm 1. �
Proof of Correctness of Algorithm 1. The algorithm creates 2n rules, each corresponding to a subset of {a1, . . . ,an}. Given 
a joint assignment represented by s, the combination of the rules’ influences on h is 

∑
s′⊆s σs′ , as shown in the proof for 

Theorem 1. Among these 2|s| rules, the algorithm creates rules last, and sets σs in a way that assures that 
∑

s′⊆s σs′ =
σ(h | s), thus the CPD is correctly represented. �
7.3.1. Sparsity

If the algorithm creates rules for which σs = 0, these rules have no effect and can be pruned. Therefore, when the CPD 
has structure, the algorithm may create significantly fewer than 2n effective rules. For example, if H never depends on some 
Ai , then all rules whose body contains ai end up having σ = 0 and can be pruned. In the case of noisy-or, there are only n
rules left.
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7.4. Canonical CPD form

Unlike PLPs-naf, negative PLPs represent each CPD in a unique way.

Corollary 1. Algorithm 1 provides a canonical form for representing CPDs without negations.
It is the only form a CPD can be represented without negations (without having multiple occurrences of the same rule).

Note the clear mathematical similarity of this canonical form to the “canonical parametrization” for undirected discrete 
probabilistic graphical models [9,11,2].

8. General (cyclic) propositional PLPs

This section refers only to propositional (non-relational) PLPs, even when this is not stated explicitly.

8.1. Propositional positive PLPs cannot represent all distributions

In Section 7.2 we showed acyclic propositional positive PLPs cannot represent all CPDs. We now show general proposi-
tional positive PLPs cannot represent all distributions. Characterizing which distributions can be expressed is complicated. 
(The motivation for avoiding negations is that negations may create logical inconsistencies in cyclic PLPs.)

Example 11. Consider a general-form positive PLP with two variables:

R = {
p1 : a, p2 : a ←− b,

p3 : b, p4 : b ←− a
}

p1, p2, p3, p4 ∈ [0,1]
Then, assuming P(¬a ∧ ¬b) > 0:

P( a ∧ ¬b)

P(¬a ∧ ¬b)
= p1(1 − p3)(1 − p4)

(1 − p1)(1 − p3)
≤ p1

1 − p1

(1 − p1)P(a ∧ ¬b) ≤ p1 P(¬a ∧ ¬b)

p1 ≥ P(a ∧ ¬b)

P(a ∧ ¬b) + P(¬a ∧ ¬b)

= P(a | ¬b)

And similarly:

p3 ≥ P(b | ¬a).

Also,

P(a ∧ b) = p1 p3 + p1(1 − p3)p4 + (1 − p1)p2 p3

thus if the rule probabilities p1, p2, p3, p4 are nonnegative, then:

P(a ∧ b) ≥ p1 p3

therefore:

P(a ∧ b) ≥ P(a | ¬b)P(b | ¬a)

This inequality rules out representing some distributions. For instance, for the distribution

P(¬a ∧ ¬b) = 0.1 P(¬a ∧ b) = 0.4

P( a ∧ ¬b) = 0.4 P( a ∧ b) = 0.1

the inequality implies 0.1 = P(a ∧ b) ≥ P(a | ¬b) P(b | ¬a) = 0.8 · 0.8 = 0.64, so it cannot be represented by a positive PLP.
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8.2. Propositional PLPs-naf and negative PLPs can represent all non-extreme distributions

Proposition 3. Propositional negative PLPs can represent any non-extreme joint distribution.

Proof. Define an arbitrary ordering among the variables. The joint distribution can be written as P(V 1, . . . , Vn) = ∏n
i=1 P(V i |

V 1, . . . , V i−1). According to Theorem 2, each CPD can be expressed using probabilistic rules without negations. Since this 
creates an acyclic program, the joint distribution is the product of the CPDs. �

By the same argument, PLPs-naf can also represent all non-extreme distributions.

8.3. Unintuitive properties of cyclic programs

The first part of this section might be surprising to readers less experienced with cyclic PLPs. The second part investigates 
the extension to negative probabilities, giving a surprising result. The overall goal of this section is to provide insight and 
intuition, which may help the reader understand the intricacies of proofs in Section 9.

8.3.1. Complex rule interactions
Given a program R , we use PR(· · · ) for its joint distribution, and Rh for the set of all rules whose head is h. Rh can 

be seen as defining a CPD PRh (h | inputs). For acyclic programs R , their joint distribution PR(· · · ) reflects this CPD, i.e., 
PR(h | inputs) = PRh (h | inputs). For cyclic programs, this is not the case.

Example 12. Consider R of Example 11 with:

p1 = p3 = 1
3 p2 = p4 = 1

4

R defines a CPD PRa (A | B) for which PRa (a | ¬b) = p1 = 1
3 and PRa (a | b) = 1 − (1 − p1)(1 − p2) = 1

2 . Similarly, R also 
defines a CPD PRb (B | A) for which PRb (b | ¬a) = 1

3 and PRb (b | a) = 1
2 . There is a joint distribution that matches PRa (B | A)

and PRb (B | A), and it is:

P(¬a ∧ ¬b) = 0.4 P(¬a ∧ b) = 0.2

P( a ∧ ¬b) = 0.2 P( a ∧ b) = 0.2

However, R actually represents:

PR(¬a ∧ ¬b) = 4
9 = 0.444 PR(¬a ∧ b) = 1

6 = 0.167

PR( a ∧ ¬b) = 1
6 = 0.167 PR( a ∧ b) = 2

9 = 0.222

thus PR(A | B) �= PRa (A | B) and PR(B | A) �= PRb (B | A), so the cyclic program represents CPDs that are different than those 
described by its rules in isolation.

8.3.2. Complex rule interactions with negative probabilities
Furthermore, with negative rule probabilities, PR(V) may even be improper, even when all CPDs PRh (h | inputs) are proper 

and a proper joint distribution exists that matches these CPDs.

Example 13. Consider R of Example 11 with:

p1 = p3 = 0.7 p2 = p4 = − 4
3

where PRa (a | ¬b) = 0.7, PRa (a | b) = 0.3, PRb (b | ¬a) = 0.7 and PRb (b | a) = 0.3. These CPDs are proper, and there is a proper 
joint distribution that matches these CPDs:

P(¬a ∧ ¬b) = 0.15 P(¬a ∧ b) = 0.35

P( a ∧ ¬b) = 0.35 P( a ∧ b) = 0.15

However, R actually represents a different joint distribution, which is improper, since PR(a, b) = p1 p3 + p1(1 − p3)p4 +
(1 − p1)p3 p2 = − 1

12 < 0.

9. Compact expressiveness of propositional negative PLPs

This section refers only to propositional (non-relational) PLPs, even when this is not stated explicitly.
This section is the most mathematically involved section in this paper. Its main goal is to define the translation of 

PLPs-naf to negative PLPs and to prove this translation preserves the semantics and does not blow up the PLP’s size. This is 
achieved in Theorem 6, at the very end of this section. The rest of this section builds up gradually towards Theorem 6.
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9.1. Strong consistency

When PLPs contain negations inside cycles, there is a non-zero probability of logical inconsistency. When PLPs simulta-
neously contain negations inside cycles and negative probabilities, there is also a possibility of having multiple inconsistent 
DPRs, some with positive probability and some with negative probability, while their total probability is 0. In other words, 
it is possible to have probability 0 of inconsistency, while having positive probability for some inconsistent DPRs.

Definition 3. A program R is strongly consistent if any logically inconsistent DPR of R has probability 0.

Thus P(inconsistency) = 0 is a necessary condition for strong consistency, but it is not sufficient for PLPs that simul-
taneously contain negations inside cycles and negative probabilities. A PLP-naf program has no negative probabilities, and 
is thus strongly consistent if and only if it is logically inconsistent with probability 0. A deterministic program is strongly 
consistent if and only if it is logically consistent.

Example 14. Consider the program R:

R = { a ←− b,

σ : b ←− ¬a,

−σ : b ←− ¬a ∧ ¬c }, σ > 0

σ represents the probability 1 −e−σ , and −σ represents the probability 1 −e−(−σ) . The DPR {a ←− b} is logically consistent, 
and its probability is (1 − (1 − e−σ ))(1 − (1 − e−(−σ))) = 1. The other three DPRs are logically inconsistent, and their 
probabilities are eσ − 1 > 0, e−σ − 1 < 0 and 2 − eσ − e−σ < 0, which sum to 0. The total probability of logical inconsistency 
is 0, but R is not strongly consistent.

We mark R1 ≡ R2 if programs R1 and R2 are both strongly consistent and represent the same (proper or improper) joint 
distribution. Note that if R1 ≡ R2, then R1 is proper if and only if R2 is proper. Also note that R1 ≡ R2 does not imply 
R ∪ R1 ≡ R ∪ R2.

Example 15. { b ←− a } ≡ ∅, because M({ b ←− a }) = ∅ = M(∅).
However, if we add the rule a to both, we get non-equal programs: { b ←− a } ∪ { a } �≡ ∅ ∪ { a }. This is because 

M({ b ←− a } ∪ { a }) = {a, b} �= {a} = M(∅ ∪ { a }).

Note that a proper program may have an improper distribution over DPRs.

Example 16. R = { p : b ←− a }, p = −2 has an improper distribution over its two DPRs: P({ b ←− a }) = −2, P(∅) = 3. 
However, R is proper, since its distribution over models is nonnegative:

P(¬a ∧ ¬b) = 1 P(¬a ∧ b) = 0

P( a ∧ ¬b) = 0 P( a ∧ b) = 0

Example 17. R = { a ←− b, σ : b ←− ¬a, −σ : b ←− ¬a } is not strongly consistent. R has three logically inconsistent 
DPRs; the sum of their probabilities, however, is 0.

Summing up R ’s rules gives the equivalent sum(R) = { a ←− b } which is strongly consistent and proper. Summing up 
rules, therefore, may remove inconsistent DPRs that cancel each other out in probability.

9.2. Consistency-maintaining orderings (CMOs)

The results in this section are needed for proving Theorem 6 in the next section.

Definition 4. A consistency-maintaining ordering (CMO) for a program R is an ordering (r1, r2, . . .) of R ’s rules, such that 
for all i, the sub-program Ri

def= {r1, r2, . . . , ri} is strongly consistent.

Example 18. (b, a ←− b, b ←− ¬a) is a CMO for R = {a ←− b, b ←− ¬a, b}, but (a ←− b, b ←− ¬a, b) is not a CMO.

Theorem 3. Every logically consistent propositional deterministic program has a CMO.
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Algorithm 2 Find CMO.
Input: A logically consistent propositional deterministic program R
Output: A CMO for R
ordering ← ()

while ∃r ∈ R \ ordering, such that:
(1) all positive literals in r’s body are heads of rules in

ordering, and
(2) all negative literals in r’s body are not in M(R) do

append( ordering, r )
end while
append( ordering, remaining rules) (in arbitrary order)
return ordering

Proof. We show Algorithm 2 produces a CMO.
By induction, during the while loop, each rule ri added has a body which is evaluated to true, and its head is in M(R), 

and adding ri does not make the bodies of previous rules false. Therefore, during the while loop, each sub-program Ri is 
consistent, and M(Ri) is the set of the literals in the heads of its rules.

After the while loop, each remaining rule ri being added has a body which is evaluated to false, and therefore does not 
change the program semantics, i.e., Ri ≡ Ri−1. �

For negation-free programs, the algorithm can be simplified, by dropping condition (2). Therefore the algorithm does not 
need to assume R is consistent. The correctness of the algorithm thus also proves that all positive deterministic programs 
are consistent and have a CMO.

We extend Theorem 3 to probabilistic programs:

Theorem 4. Every strongly consistent propositional program R has a CMO.

Proof. Let D ⊆ R be the subset of deterministic rules in R . R is strongly consistent, and D is a non-zero-probability DPR 
of R , so D is consistent. By Theorem 3, D has a CMO. We define R ’s ordering as D ’s ordering, followed by all probabilistic 
rules at an arbitrary order.

Consider some Ri . If Ri only contains deterministic rules, then it is strongly consistent because it is part of D ’s CMO. 
Otherwise, each non-zero-probability DPR D ′ of Ri is also a DPR of R (where all rules in R \ Ri are not used.) R is strongly 
consistent, so all such D ′ ’s are consistent, therefore Ri is strongly consistent. �
9.3. Translations

With negations, cyclic programs may become logically inconsistent, when there is a negation in a rule cycle. However, 
this still leaves a wide array of possible logically consistent programs, that are expressive enough to be useful. For example, 
consider programs composed of negation-free cyclic components, and an acyclic structure containing negations that connects 
the components.

Section 8.2 showed that negative PLPs can represent all (non-extreme) distributions. Negations are therefore not essential 
for representing non-extreme joint distributions. However, negative PLPs would not be an attractive alternative to PLPs-naf, if 
they required an exponential number of rules to represent compact PLPs-naf. To better motivate using negative probabilities 
instead of negations, we show this is not the case, by showing a translation from PLPs-naf to negative PLPs, that does not 
blow up exponentially.

Definition 5. An arbitrary propositional rule

r = σ : h ←−
∧

r+ ∧
∧

¬r−

is called translatable if σ < ∞ or r− = ∅.
If r is translatable, then the translated rule rT is a set of 2|r−| negation-free rules:

rT def=
{
(−1)|L|σ : h ←−

∧
r+ ∧

∧
L : L ⊆ r−

}

Definition 6. If all rules in a propositional program R are translatable, then R is called translatable, and the translated 
program RT is:

RT def= sum
(⋃

r∈R

rT )
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In other words, programs are translatable if deterministic rules have no negations.

Theorem 5. Let R be a set of negation-free propositional rules, and r be a translatable rule σ : h ←− ∧
r+ ∧ ∧¬r− . If R ∪ {r} is 

strongly consistent, then R ∪ {r} ≡ R ∪ rT .

The proof is in Appendix A. It is complex because R is cyclic, so adding rules to R may create complex “interactions” 
with rules in R .

Given an existing program with negations in bodies of non-deterministic rules, we now show how one can construct an 
equivalent negation-free program, using negative probabilities.

Theorem 6. If R is a strongly consistent translatable propositional program, then R T is a strongly consistent negation-free (proposi-
tional) program and RT ≡ R.

Furthermore, |RT | ≤ ∑
i 2ki ≤ 2k|R|, where ki is the number of negations in rule ri , and k = maxi ki .

Proof. R is strongly consistent, so by Theorem 4 it has a CMO. R can be thus formed by iteratively adding rules, while 
maintaining strong consistency throughout. For every rule ri with ki negations being added, since ri is translatable, Theo-
rem 5 gives a set of 2ki negation-free rules, such that adding them instead of ri gives a strongly consistent program with 
the same semantics. Repeating this replacement for all rules, we get a negation-free program with the same semantics, with 
|sum(

⋃
r∈R rT )| ≤ ∑

i 2ki ≤ 2k|R| rules. �
10. Compact expressiveness of relational negative PLPs with fixed populations

Theorem 6, the main result of the previous section, can be extended to relational PLPs with fixed populations. In this 
section we give an outline of this extension.

The basic insight as to why Theorem 6 holds in the relational case is as follows. Given fixed populations, a relational PLP 
R can be seen as a compact description of a ground (propositional) PLP Rground , with specific symmetries among the rule 
probabilities, i.e., some rule probabilities are equal. For example, if x7 and x8 are individuals in the population that are not 
assigned constants, and the rules a(x7) ←− b and a(x8) ←− b appear in Rground , then their probabilities are equal. This is be-
cause every rule in R which involves a(X), is grounded in Rground to rules involving a(x7) and a(x8), with equal probabilities. 
We can apply Theorem 6 to Rground , and find a ground (propositional) translated PLP Rground

T such that Rground
T ≡ Rground . 

Since the translation operation does not break the symmetries (equalities among rule probabilities) implied by the relational 
PLP R , these also hold for Rground

T ; thus Rground
T can be described using a more compact, relational, PLP, using first-order 

rules.
Performing the translation on the ground model gives insight as to why Theorem 6 can be extended to the relational 

case, but it is not efficient. It is much more efficient to perform a lifted translation, i.e., to perform the translation directly 
on the relational model.

To translate a PLP liftedly, one must define how a first-order rule is translated. Let R contain a single rule, the first-order 
rule r = σ : h ←− ¬a(X). Let the population be x1, . . . , xn . r is “instantiated” n times in Rground , to rground,1, . . . , rground,n . 
Each grounded rule rground,i = (

σ : h ←− ¬a(xi)
)

is translated into

rground,i
T = {

σ : h, −σ : h ←− a(xi)
}

The rule σ : h is added n times to Rground
T , once for each ground rule being translated. Therefore,

Rground
T =

{
nσ : h

}
∪

{
− σ : h ←− a(xi) : i ∈ {1, . . . ,n}

}

thus the lifted translation of the first-order rule r is

rT = {
nσ : h, −σ : h ←− a(x)

}
This lifted translation is very similar to the translation of propositional rules, only here the weight of the rule h was also 
multiplied by n, the population’s size. In general, the definition of rule translation can be extended to first-order rules, by 
multiplying by (powers of) population sizes.

Our results, generalized to the relational setting:

Theorem 7. Given fixed populations, if R is a strongly consistent translatable (relational) PLP, then R T is a strongly consistent negation-
free program and RT ≡ R.

Furthermore, |RT | ≤ ∑
i 2ki ≤ 2k|R|, where ki is the number of negations in (first-order) rule ri , and k = maxi ki .

Corollary 2. Given fixed populations, if R is a (relational) PLP-naf which is consistent with probability 1 and has no negations in 
deterministic rules (only in probabilistic ones), then R can be converted to an equivalent negation-free (relational) program R T , in a 
lifted manner.
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11. Conclusions

PLPs with nonnegative probabilities and without negations are lacking in the distributions they can represent. Allowing 
negations solves this problem in the propositional setting, but not in the relational setting. Unfortunately, a simple, intuitive 
real-world relational example suggests that the lack of PLP representational power comes up not only in esoteric cases, but 
also in real-world applications. Being aware of representational shortcomings of the language is crucial for users, to prevent 
wasted efforts trying to learn or represent distributions that the language cannot represent.

We introduced negative rule probabilities, and suggest using them in lieu of negations.
In the propositional setting, negative rule probabilities can represent any non-extreme distribution that can be repre-

sented using negations. Furthermore, a translation algorithm proves that the size of a program with negative probabilities is 
larger by at most a factor of 2k than an equivalent program using negations, where k is the maximal number of negations 
per rule, which is frequently a small number.

We analyzed the relational setting, when the populations are given (fixed) (the populations may be much larger than 
the set of constants available). The translation algorithm can be extended to first-order (relational) PLPs for this setting, 
and done in an efficient lifted manner (without grounding), while maintaining the PLP’s semantics and limiting the growth 
in the PLP’s size. Furthermore, in this setting, using negative probabilities is not only not inferior to using negations, but 
negative probabilities are also capable of representing distributions that cannot be represented otherwise, thus are more 
expressive languages.

In addition, for acyclic programs, we completely characterized the conditions for avoiding probabilistic improperness 
using negative probabilities, and showed how any non-extreme CPD can be expressed.

We also highlighted some of the unintuitive properties of general (cyclic) programs, and highlighted consistency-
maintaining orderings.

Many of our results involve mathematical analysis that involves summing evidence or summing recurring rules. We 
presented probabilistic strengths, a new representation for probabilities in PLPs. Strengths provide deeper insights into PLPs, 
where rule algebra becomes additive; they are the PLP equivalent of the log-P notation of graphical models such as Markov 
logic networks. Strengths also make the concept of negative probabilities simpler and more intuitive.

As a result of the translation algorithm, exact inference in logically consistent probabilistic cyclic programs containing 
negations can be carried out by translating the program to a negation-free program using negative probabilities, and em-
ploying exact inference algorithms that do not support negations. In other words, our work allows to extend the scope of 
exact inference algorithms that do not support negations, to be applicable to programs with negations.

One major open problem is characterizing conditions on the rule probabilities of general (cyclic) PLPs for ensuring proper-
ness.

Another open problem is finding useful extensions to the language that can increase the expressiveness of PLPs in the 
relational case, when population sizes are not bounded.

Another open problem is how approximate inference can be efficiently carried out in cyclic probabilistic programs with 
negative probabilities. There is no guarantee that an approximate computation will remain a good approximation when 
some probabilities are negative.
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Appendix A

A.1. Proof of Proposition 1

Proof. Let the population size be n, let us mark the variables {a(X)} by a1, . . . ,an , and let Pnt ,n f be the probability of any 
specific model where nt of the variables are true and n f are false, for n = nt + n f . (The probabilities of all such models are 
equal, due to symmetry.)

Let n = m + 1, and consider the model 
(∧m

i=1 ai
) ∧ ¬am+1. The probability of this model is Pm,1. Let us analyze Pm,1 as 

having two components:

1. First, some combination of rules must simultaneously appear, to set a1, . . . , am to true. Since am+1 is false, rules involving 
am+1 are irrelevant to this analysis. Therefore, the probability of setting a1, . . . , am to true is equal to Pm,0, which is the 
probability of all m variables being true in a different grounded PLP which only has m ground variables.

2. Second, some rules must not appear, to ensure am+1 is not set to true. For this, the rules am+1 and am+1 ←−
a1, . . . , am+1 ←− am must not appear. The probability of these rules not appearing is (1 − p1)(1 − p2)

m .

We thus received

Pm,1 = (1 − p1)(1 − p2)
m Pm,0
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This can be generalized to:

A(nt)
def= (1 − p1)(1 − p2)

nt > 0

Pnt ,n f = (1 − p1)
n f (1 − p2)

ntn f Pnt ,0 = A(nt)
n f Pnt ,0 (5)

We require the PLP to be proper, i.e., Pnt ,n f ∈ [0, 1] for all nt and n f . Since P1,0 = p1, we get p1 ∈ [0, 1]. For the program 
not to be expressible using nonnegative probabilities, we must pick p2 < 0. We must also pick p1 ∈ (0, 1), because for 
p1 ∈ {0, 1}, p2 has no effect and can be set to 0.

In general, for any n:

1 =
∑

model

Pn(model) =
n∑

nt=0

(
n

nt

)
Pnt ,n−nt =

n∑
nt=0

(
n

nt

)
A(nt)

n−nt Pnt ,0

Case 1: ∃n′
t,

(
Pn′

t ,0 > 0 and A(n′
t) ≥ 1

)
. If the distribution is proper for all n’s, then for any n ≥ n′

t :

1 ≥
(

n

n′
t

)
A(n′

t)
n−n′

t Pn′
t ,0

≥
(

n

n′
t

)
Pn′

t ,0

For large-enough n’s, the RHS becomes greater than 1; thus, the program is not proper for all n’s.

Case 2: ∀nt,
(

Pnt ,0 = 0 or A(nt) < 1
)

. Since (1 − p1) ∈ (0, 1) and (1 − p2) > 1, an integer threshold n∗
t exists such that:

∀nt < n∗
t , A(nt) < 1

∀nt ≥ n∗
t , A(nt) ≥ 1

Therefore Pnt ,0 = 0 for all nt ≥ n∗
t , so:

1 =
n∗

t −1∑
nt=0

(
n

nt

)
A(nt)

n−nt Pnt ,0 ≤
n∗

t −1∑
nt=0

(
n

nt

)
A(nt)

n−nt ≤
n∗

t −1∑
nt=0

nnt A(nt)
n−nt

Taking the limit:

1 ≤ lim
n→∞

n∗
t −1∑

nt=0

nnt A(nt)
n−nt =

n∗
t −1∑

nt=0

lim
n→∞nnt A(nt)

n−nt = 0

Therefore, this case cannot happen. �
A.2. Proof of Theorem 5

Proof. First, consider the case where R is deterministic. Since R is deterministic and negation-free, it has a unique stable 
model M(R).

If σ = ∞, then since r is translatable, r must be negation-free, so rT = {r}.
If h ∈ M(R), then adding r to R does not change R ’s semantics. Adding rT to R also does not change R ’s semantics, thus 

R ∪ {r} ≡ R ∪ rT .
Similarly, if r+ � M(R), or if σ = 0, then neither adding r or rT to R has any effect.
We can now assume that r+ ⊆ M(R), h /∈ M(R), σ �= 0, and σ < ∞.

(Note that rT contains 2|r−| rules, and the semantics of R ∪ rT is that of the (possibly improper) distribution over 22|r−|

deterministic programs.)

Define: rT ′ def=
{

(−1)|L|σ : h ←−
∧

r+ ∧
∧

L

: L ⊆ r− ∩ M(R)

}
⊆ rT

Since R ∪ rT and R ∪ rT ′ are negation-free, they are strongly consistent (because all their DPRs are logically consistent.) We 
now show that R ∪ rT ′ ≡ R ∪ rT . If r− ∩ M(R) = r− , this is trivial. Otherwise, let l ∈ r− \ M(R). For every L ⊆ r− that contains 
l, adding the corresponding rule rL to R never changes the semantics of the program. This is because rL ’s only effect is to 
set H to true; however, since l is false, rL ’s body is false. The only way for rL ’s body to be true is when another rule r′ ∈ rT

that is also added to R sets H to true, and setting H to true causes rules in R to then set l to true. However, in this scenario, 
H is already true due to r′ , so adding rL has no effect. (This is true even if rL ’s probability is negative.)
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We still need to show R ∪ {r} ≡ R ∪ rT ′ . For each of the rules being added by rT ′ , the body is true in M(R), and cannot 
change to false due to the addition of other rules in rT ′ , because all rules in R ∪ rT ′ are negation-free. Therefore, they have 
the same effect as the bodyless rule h, thus

R ∪ rT ′ ≡ R ∪
{
(−1)|L|σ : h : L ⊆ r− ∩ M(R)

}

Since these rules are identical, we can sum them up:

R ∪ rT ′ ≡ R ∪ {
σ ′′ : h

}
, σ ′′ def=

∑
L⊆r−∩M(R)

(−1)|L|σ

Case 1: If r− ∩ M(R) �= ∅, then adding r to R has no effect. Let l ∈ r− ∩ M(R):

σ ′′ =
∑

L⊆r−∩M(R)\{l}

(
(−1)|L| + (−1)|L∪{l}|

)
σ

=
∑

L⊆r−∩M(R)\{l}

(
(−1)|L| − (−1)|L|

)
σ = 0

Thus adding rT ′ to R has no effect either, so R ∪ rT ′ ≡ R . (The rules cancel each other’s effect when added to R .)
Case 2: If r− ∩ M(R) = ∅, then adding r to R sets H to true (with strength σ .) Then, due to the (negation-free) rules 

in R , some other variables may become true as well. Since R ∪ {r} is strongly consistent, none of the variables in r− may 
becomes true. Therefore:

R ∪ {
r
} ≡ R ∪ {

σ : h
}

Since r− ∩ M(R) = ∅,

R ∪ rT ′ ≡ R ∪
{∑

L⊆∅
(−1)|L|σ : h

}

= R ∪ {
(−1)|∅|σ : h

}
= R ∪ {

σ : h
} ≡ R ∪ {

r
}

Finally, consider the case that R is probabilistic. In this case, R ’s semantics is a distribution over 2|R| deterministic 
programs Di . For any Di that has non-zero probability, Di ∪ {r} is strongly consistent. Di is deterministic, therefore our 
proof so far implies that Di ∪ {r} ≡ Di ∪ rT . Therefore, R ∪ rT is also strongly consistent, and R ∪ {r} ≡ R ∪ rT . �
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