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Choosing Individuals and Relations in Logic

First-order logical languages allow many different ways of
representing facts.
E.g., How to represent: “Pen #7 is red.”

red(pen7). It’s easy to ask “What’s red?”
Can’t ask “what is the color of pen7?”

color(pen7, red). It’s easy to ask “What’s red?”
It’s easy to ask “What is the color of pen7?”
Can’t ask “What property of pen7 has value red?”

prop(pen7, color , red). It’s easy to ask all these questions.

With a single relation it can be implicit −→ triples:
〈pen7, color , red〉.

4 David Poole Relational Probabilistic Models
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Universality of prop

To represent “a is a parcel”

prop(a, type, parcel), where type is a special property and
parcel is a class.

prop(a, parcel , true), where parcel is a Boolean property
(characteristic function of the class parcel).

5 David Poole Relational Probabilistic Models
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Triples

To represent tutorial(”StarAI”, nips2017, 1045, hallC ). “the
Star AI tutorial at NIPS 2017 is scheduled at 10:45 in Hall C.”

Let t123 name the offering of the tutorial:

prop(t123, type, tutorial).

prop(t123, title, ”StarAI”).

prop(t123, event, nips2017).

prop(t123, time, 1045).

prop(t123, room, hallC ).

We have reified the booking.

Reify means: to make into an individual.

How can we add extra arguments (e.g., presenters, chair)?

6 David Poole Relational Probabilistic Models
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Triples and Knowledge Graphs

Subject–verb–object
Individual–property–value
triples can be depicted as edges in graphs

t123

NIPS 
2017

event

StarAI

title

10:30 hallC

Long 
Beach 

CCstart time room
in

held at

tutorial type

A modeller or learner needs to invent (reified) objects.
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Triples are universal representations of relations

All relations can be represented in terms of triples:

. . . Pj . . .

. . . . . . . . .
ri . . . vij . . .

. . . . . . . . .

can be represented as

the triple 〈ri ,Pj , vij〉.
ri becomes a reified individual.

Examples of reified individuals: a booking, a marriage, a talk,
a lab report, an event, a party, a meeting, a drink

Challenge for learning: each reified individual has limited data
to learn from; (at most) one value for each property.

prop(Individual ,Property ,Value) is the only relation needed:
〈Individual ,Property ,Value〉 triples, Semantic network, entity
relationship model, knowledge graphs, . . .

8 David Poole Relational Probabilistic Models
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Vector & Tensor Representations of Entities & Relations

Knowledge graphs (semantic networks) are databases of triples

We want to estimate P(〈h, r , t〉)

Polyadic decomposition model (1927): two vector embeddings
for each entity, and one for reach relation

P(〈h, r , t〉) = sigmoid(
∑
f

E0(f , h) ∗ E1(f , r) ∗ E2(f , t))

<h,r,t>

E0(f,h) E1(f,r) E2(f,t)

f

r
th

10 David Poole Relational Probabilistic Models
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Polyadic decomposition variations

Polyadic decomposition doesn’t work very well...

Consider 〈p123, likes,m53〉 and 〈m53, directed by , p534〉.

Requires two embeddings per entity, but head embeddings and
tail embeddings do not interact.

DistMult: share same embedding for head and tail.
Problem: can only represent symmetric relations.

CompleX: the embeddings are complex numbers, tail is the
conjugate of the head embedding

SimpleE: have an embedding for r−1 and learn to predict both
〈h, r , t〉 and

〈
t, r−1, h

〉

11 David Poole Relational Probabilistic Models
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Learning general knowledge vs learning about a data set

Suppose you want to create a model of who is friends with
whom.

Options:

learn general knowledge, e.g., transitivity, how male and female
friendships work, how location affect friendship...
learn specific knowledge about who is friends with who; e.g.,
which particular group of people are generally friends with each
other.

The specific knowledge will tend to be more accurate on that
population, but doesn’t generalize to different populations.

The general knowledge will tend to transfer better.

Which is better depends on the goals and how success is
measured.

Many of the methods try to do both; learn about specific
individuals and general knowledge.

12 David Poole Relational Probabilistic Models
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Challenges of learning knowledge graphs

Evaluating predictions when only positive examples are
provided
Consider the following relations:

Married to

— each person related to 0 or 1 other persons
(with a few exceptions)

Friend of

— each person related to tens or hundreds of others

Knows about

— each person might know about hundreds or
thousands of others. Some people my be known by millions or
billions of others.

Would get along with

— almost everyone gets along with
almost everyone else, but with some exceptions.

Often we compare rankings (ordering), but what if the answer
is “no”?

Difficult to learn about reified entities.

13 David Poole Relational Probabilistic Models



Knowledge Graphs Representation Issues Issues Conclusions and Challenges (Exact) Lifted InferenceTensor Factorization and Neural Network Models

Challenges of learning knowledge graphs

Evaluating predictions when only positive examples are
provided
Consider the following relations:

Married to — each person related to 0 or 1 other persons
(with a few exceptions)
Friend of — each person related to tens or hundreds of others
Knows about — each person might know about hundreds or
thousands of others. Some people my be known by millions or
billions of others.
Would get along with — almost everyone gets along with
almost everyone else, but with some exceptions.

Often we compare rankings (ordering), but what if the answer
is “no”?

Difficult to learn about reified entities.

13 David Poole Relational Probabilistic Models



Knowledge Graphs Representation Issues Issues Conclusions and Challenges (Exact) Lifted InferenceTensor Factorization and Neural Network Models

Challenges of learning knowledge graphs

Evaluating predictions when only positive examples are
provided
Consider the following relations:

Married to — each person related to 0 or 1 other persons
(with a few exceptions)
Friend of — each person related to tens or hundreds of others
Knows about — each person might know about hundreds or
thousands of others. Some people my be known by millions or
billions of others.
Would get along with — almost everyone gets along with
almost everyone else, but with some exceptions.

Often we compare rankings (ordering), but what if the answer
is “no”?

Difficult to learn about reified entities.

13 David Poole Relational Probabilistic Models



Knowledge Graphs Representation Issues Issues Conclusions and Challenges (Exact) Lifted InferenceTensor Factorization and Neural Network Models

Challenges of learning knowledge graphs

Evaluating predictions when only positive examples are
provided
Consider the following relations:

Married to — each person related to 0 or 1 other persons
(with a few exceptions)
Friend of — each person related to tens or hundreds of others
Knows about — each person might know about hundreds or
thousands of others. Some people my be known by millions or
billions of others.
Would get along with — almost everyone gets along with
almost everyone else, but with some exceptions.

Often we compare rankings (ordering), but what if the answer
is “no”?

Difficult to learn about reified entities.

13 David Poole Relational Probabilistic Models



Knowledge Graphs Representation Issues Issues Conclusions and Challenges (Exact) Lifted InferenceTensor Factorization and Neural Network Models

Predicting Properties

Tensor factorization models work well for predicting relations,
but not for predicting properties.
Tensor factorization relies on lower-dimensional
representations, and there isn’t one for properties.

Imagine trying to predict age(P), the age of person P, and
rating(P,M) the rating of person P on movie M.
One of the embeddings of each person can just memorize the
age — no generalization!
— there are too many parameters

We can build relational neural networks to solve this

[Kazemi & Poole, AAAI 2017]

14 David Poole Relational Probabilistic Models
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age — no generalization!
— there are too many parameters

We can build relational neural networks to solve this

[Kazemi & Poole, AAAI 2017]
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Relational Neural Nets (RelNNs)
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Learning a specific hidden property of movies, 
then aggregating over it to learn a general 
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Outline

1 Knowledge Graphs
Tensor Factorization and Neural Network Models

2 Representation Issues
Desiderata
How do relational models relate to probabilistic graphical
models

3 Unique properties of relational models
Learning general knowledge vs learning about a data set
Varying Populations
What can be observed?

4 Conclusions and Challenges

5 (Exact) Lifted Inference
Recursive Conditioning
Lifted Recursive Conditioning
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Desiderata for a Representation

Expressiveness:
Is it expressive enough to solve problem at hand?

Efficient Inference:
Is it efficient in the worst case or average case?
Can it exploit structure (e.g., independencies and symmetries)

Understandability or explainability:
Can people understand the model?
Can a particular prediction be explained?

Learnability: Can it be learned from:
heterogenous data
prior knowledge

Modularity:
Can independently developed parts be combined to form
larger model?
Can a larger model be decomposed into smaller parts?
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Directed vs Undirected Probabilistic Graphical Models

Undirected models (Markov networks, factor graphs) represent
probability distributions in terms of factors.

a factor is a non-negative function of a set of variables
variables in a factor are neighbours of each other
each variable in independent of its non-neighbours given its
neighbours.

In directed models, factors represent conditional probabilities:
each variable in independent of its non-descendents given its
parents.

{directed models} ⊂ {undirected models}
Directed (and undirected) models are universal: can represent
any probability distribution over a finite set of variables

Algorithms developed for undirected models work for both.

That does not mean that representations for undirected
models can represent directed models.
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Example

Weighted formulae about a social situation:

−5 : funFor(X )

10 : funFor(X ) ∧ knows(X ,Y ) ∧ social(Y )

If Π includes observations for all knows(X ,Y ) and social(Y ):

P(funFor(X ) | Π) = sigmoid(−5 + 10nT )

nT is the number of individuals Y for which
knows(X ,Y ) ∧ social(Y ) is True in Π.

sigmoid(x) =
1

1 + e−x

Using wighted formulae to define conditional probabilities →
relational logistic regression (RLR).
Using wighted formulae to define distributiuons → Markov
logic networks (MLNs).

21 David Poole Relational Probabilistic Models
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Abstract Example

α0 : q
α1 : q ∧ ¬r(x)
α2 : q ∧ r(x)
α3 : r(x)

If r(x) for every individual x is observed:

P(q | obs) = sigmoid(α0 + nFα1 + nTα2)

nT is number of individuals for which r(x) is true
nF is number of individuals for which r(x) is false

sigmoid(x) =
1

1 + e−x
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Three Elementary Models

r(X)

X

q

r(a2)

q

r(a1) r(an)...

r(X)

X

q

r(a2)

q

r(a1) r(an)...

r(X)

X

q

r(a2)

q

r(a1) r(an)...

(b) (c)(a)

(a)

Näıve Bayes
(b) (Relational) Logistic Regression
(c) Markov (Logic) network

 described by unary and
pairwise factors

— They are identical models when all r ’s are observed.
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Independence Assumptions

r(X)
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r(a1) r(an)...

r(X)

X
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r(a2)

q

r(a1) r(an)...

(b) (c)(a)

Näıve Bayes (a) and Markov network (c): r(ai ) and r(aj)
are independent

given Q
are dependent not given Q.

Directed model with aggregation (b): r(ai ) and r(aj)
are dependent given Q,
are independent not given Q.
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Näıve Bayes (a) and Markov network (c): r(ai ) and r(aj)
are independent given Q
are dependent not given Q.

Directed model with aggregation (b): r(ai ) and r(aj)
are dependent given Q,
are independent not given Q.

24 David Poole Relational Probabilistic Models



Knowledge Graphs Representation Issues Issues Conclusions and Challenges (Exact) Lifted InferenceDesiderata Relationships

Modularity

Directed models are inherently modular.
P(q | r(X )) is defined so that distribution over r(a1) . . . r(an)
is not affected when q is summed out (and not observed)

MLNs are provably not modular: If there is a distribution over
r(a1) . . . r(an) (e.g., they are independent),
P(q | r(X )) cannot be defined in an MLN so that

q depends on the r ’s (P(q | r(X )) 6= P(q)) and
if q is summed out, the distribution over r(a1) . . . r(an) is not
changed.
Why? requires factors on arbitrary subsets of r(a1) . . . r(ak)
— pairwise (or 3-wise or . . . ) interactions are not adequate
— can’t marry the parents

25 David Poole Relational Probabilistic Models
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Cyclic Models

Whether people smoke depends on whether their friends smoke.

MLN:

w : smokes(X )← friends(X ,Y ) ∧ smokes(Y )

(where ← is material implication) is equivalent to

w :true(X ) ∧ true(Y )

−w :¬smokes(X ) ∧ friends(X ,Y ) ∧ smokes(Y )

ICL/Problog

w : smokes(X )←

∃Y

friends(X ,Y ) ∧ smokes(Y )

Probability of smokes goes up as the number of friends
increases!
ICL/Problog cannot represent negative effects: someone is less
likely to smoke if their friends smoke (without there being a
non-zero probability of logical inconsistency)

26 David Poole Relational Probabilistic Models
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Knowledge Graphs Representation Issues Issues Conclusions and Challenges (Exact) Lifted InferenceDesiderata Relationships

Cyclic Models

Whether people smoke depends on whether their friends smoke.

MLN:

w : smokes(X )← friends(X ,Y ) ∧ smokes(Y )

(where ← is material implication) is equivalent to

w :true(X ) ∧ true(Y )

−w :¬smokes(X ) ∧ friends(X ,Y ) ∧ smokes(Y )

ICL/Problog

w : smokes(X )← ∃Y friends(X ,Y ) ∧ smokes(Y )

Probability of smokes goes up as the number of friends
increases!
ICL/Problog cannot represent negative effects: someone is less
likely to smoke if their friends smoke (without there being a
non-zero probability of logical inconsistency)

26 David Poole Relational Probabilistic Models



Knowledge Graphs Representation Issues Issues Conclusions and Challenges (Exact) Lifted InferenceDesiderata Relationships

Cyclic Directed Models

Make model acyclic, by totally ordering variables.
Destroys exchangeability. Symmetries are not preserved.

(Relational) dependency networks: directed model,

BA

P(A,B) has 3 degrees of freedom,
P(A | B),P(B | A), uses 4 numbers; typically inconsistent.
resulting distribution means stationary (equilibrium)
distribution of Markov chain.

27 David Poole Relational Probabilistic Models
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Outline

1 Knowledge Graphs
Tensor Factorization and Neural Network Models

2 Representation Issues
Desiderata
How do relational models relate to probabilistic graphical
models

3 Unique properties of relational models
Learning general knowledge vs learning about a data set
Varying Populations
What can be observed?

4 Conclusions and Challenges

5 (Exact) Lifted Inference
Recursive Conditioning
Lifted Recursive Conditioning
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Learning general knowledge vs learning about a data set

Suppose you want to create a model of who is friends with
whom.

Options:

learn general knowledge, e.g., transitivity, how male and female
friendships work, how location affect friendship...
learn specific knowledge about who is friends with who; e.g.,
which particular group of people are generally friends with each
other.

The specific knowledge will tend to be more accurate on that
population, but doesn’t generalize to different populations.

The general knowledge will tend to transfer better.

Which is better depends on the goals and how success is
measured.

Many of the methods try to do both; learn about specific
individuals and general knowledge.

29 David Poole Relational Probabilistic Models
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Canonical polyadic tensor factorization model

Tensor factorixation models — which learn vectors for
individuals — tend to not learn generalized knowledge but
about the particular individuals

Lifted graphical models (MLNs, RLR, Problog) learn general
knowledge through training weights (and structure) and
specific knowledge through conditioning.

Still open research problem

30 David Poole Relational Probabilistic Models
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What happens as Population size n Changes: Simplest case

α0 : q
α1 : q ∧ ¬r(x)
α2 : q ∧ r(x)
α3 : r(x)

Weighted formulae define distribution:

PMLN(q | n) = sigmoid( α0 + n log(eα2 + eα1−α3) )

Weighted formulae define conditionals:

PRLR(q | n) =
n∑

i=0

(
n
i

)
sigmoid(α0+iα1+(n−i)α2)(1−pr )ipn−i

r

Mean-field approximation:

PMF (q | n) = sigmoid(α0 + nprα1 + n(1− pr )α2)
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Population Growth: P(q | n)

0 5 10 15 20 25 30 35 40
n
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1.0
P
(q

)

relational logistic
mean field
MLN

All: P(q | n)→ 0 or 1 as n→∞
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Challenges of varying populations

Example: The Movielens 100k dataset contains data about
rated(P,M,R,T ) meaning person P gave movie M a rating
of R at time T .
Plus user demographic and movie information.

Number of ratings per user is between 20 (arbitrary threshold)
and 737; average of 106

Number of ratings per movie is between 1 and 583; average of
59

Predicting age from ratings is difficult:
With some high counts we can’t assume movies produce
independent evidence
With many low counts we need to regularize (and can’t
measure dependence)
There is 100 times as much ratings information as age
information

Bigger datasets have even more variability.

34 David Poole Relational Probabilistic Models
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Observed P(25 < Age(u) < 45 | n), where n is number of movies
watched from the Movielens dataset.

Dont use:

w : middle age(U)← rated(U,M) ∧ foo(M)

then P(middle age(U))→ 0 or 1 as number of movies increases.
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then P(middle age(U))→ 0 or 1 as number of movies increases.
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Example of polynomial dependence of population

α0 : q
α1 : q ∧ true(X )
α2 : q ∧ r(X )
α3 : true(X )
α4 : r(X )
α5 : q ∧ true(X ) ∧ true(Y )
α6 : q ∧ r(X ) ∧ true(Y )
α7 : q ∧ r(X ) ∧ r(Y )

In RLR and in MLN, if all r(ai ) are observed:

P(q | obs) = sigmoid(α0 + nα1 + n1α2 + n2α5 + n1nα6 + n21α7)

r(X ) is true for n1 individuals out of a population of n.

36 David Poole Relational Probabilistic Models
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Danger of fitting to data without understanding the model

RLR can fit sigmoid of any polynomial.

Consider sigmoid of a polynomial of degree 2:

0 20 40 60 80 100
n

0.0

0.2

0.4

0.6

0.8

1.0

va
lu
e

−0.01n2 +−0.2n+8

0.01n2 +−1n+16

37 David Poole Relational Probabilistic Models



Knowledge Graphs Representation Issues Issues Conclusions and Challenges (Exact) Lifted Inferencelearning Varying Populations observations

Outline

1 Knowledge Graphs
Tensor Factorization and Neural Network Models

2 Representation Issues
Desiderata
How do relational models relate to probabilistic graphical
models

3 Unique properties of relational models
Learning general knowledge vs learning about a data set
Varying Populations
What can be observed?

4 Conclusions and Challenges

5 (Exact) Lifted Inference
Recursive Conditioning
Lifted Recursive Conditioning
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Observation Protocols

Example: we want to predict the probability that Sam will like
a apartment.

Observation: there is a pink bedroom.

The protocol of how the observation was obtained matters:

Was it a pink sensor that reported what was pink?

Was it reporting the first thing it observed?

Was it reporting the most unusual feature of the apartment?

Was it telling us the most positive aspect of the apartment?

Did it know that Sam was interested in whether there was a
pink bedroom?

Was it reporting the colour of each bedroom?

There are unboundedly many possible relations in a real-world
object such as a house.

39 David Poole Relational Probabilistic Models
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Observation Protocols

Observe a triangle and a circle touching. What is the probability
the triangle is green?

P(green(x)

|triangle(x) ∧ ∃y circle(y) ∧ touching(x , y))

The answer depends on how the x and y were chosen!

40 David Poole Relational Probabilistic Models
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Protocol for Observing

P(green(x) | triangle(x) ∧ ∃y circle(y) ∧ touching(x , y))

| | |
select(x) select(y) select(x , y)
| | |

select(y) select(x)
| |

3/4 2/3 4/5

A logical formula does not provide enough information to
determine the probabilities.
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Data

Real data is messy!

Multiple levels of abstraction

Multiple levels of detail

Sometimes observations are abstract and lifted
e.g., “3 people out of 300 in the audience asked a question”.

Uses the vocabulary from many ontologies
Rich meta-data:

Who collected each datum? (identity and credentials)
Who transcribed the information?
What was the protocol used to collect the data? (Chosen at
random or chosen because interesting?)
What were the controls — what was manipulated, when?
What sensors were used? What is their reliability and
operating range?
What is the provenance of the data; what was done to it when?

Errors, forgeries, . . .
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Outline

1 Knowledge Graphs
Tensor Factorization and Neural Network Models

2 Representation Issues
Desiderata
How do relational models relate to probabilistic graphical
models

3 Unique properties of relational models
Learning general knowledge vs learning about a data set
Varying Populations
What can be observed?

4 Conclusions and Challenges

5 (Exact) Lifted Inference
Recursive Conditioning
Lifted Recursive Conditioning
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Take Home

Exchangeability and dependence on population size distinguish
relational models from non-relational models

Relational models are different from normal graphical models

Challenges that relational models tackle:

Heterogeneity: information about individuals varies greatly in
kind and amount
Representations should

let people state their prior knowledge,
let them understand what they stated, and
let them understand the posterior models (given evidence).

Learn general knowledge as well as about particular individuals

Use the meta-data of how data was collected

Model protocol used to generate the observations

Also model what is not observed (e.g., because it was
redundant information, unimportant, false or unknown)
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Outline

1 Knowledge Graphs
Tensor Factorization and Neural Network Models

2 Representation Issues
Desiderata
How do relational models relate to probabilistic graphical
models

3 Unique properties of relational models
Learning general knowledge vs learning about a data set
Varying Populations
What can be observed?

4 Conclusions and Challenges
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Why Exact Inference?

Why do we care about exact inference?

Gold standard

Size of problems amenable to exact inference is growing

Learning for inference

Basis for efficient approximate inference:

Rao-Blackwellization
Variational Methods
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. . . unless it can represent and exploit symmetry.
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Example: lifted inference

Consider determining the guilt of someone fitting the
description of a person who committed a crime.

Suppose the probability of someone at random matching the
description is one in a million.

The probability this person committed the crime depends on
how many people there are:

If there were a thousand other people, it is very unlikely there
was someone else who committed the crime.
If there was a population of 10 million, then we would expect
that there would be 10 people who fit the description, and so
the probability that this suspect was guilty would be around
10%.

We don’t need to reason about all of the other individuals
separately, but can count over them.
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Example: lifted inference

Suppose someone is giving a presentation, and three people
out of 100 people in the audience asked a question (so 97
people were observed to not ask a question).

A reasonable model about the eloquence of the speaker might
depend on the questions asked

each of the people who didn’t ask a question, their silence
might depend on the questions asked, but not on the
questions not asked.

Rather than reasoning separately about each person who was
observed to not ask a question, it is reasonable to just count
over them.
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Example: lifted inference

The spread of a malaria (or other diseases) may depend on
the number of people and the number of mosquitoes.

Individual mosquitoes are important in such a model, but we
don’t want to model each mosquito separately.
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Lifted Inference

Idea: treat those individuals about which you have the same
information as a block; just count them.

Use the ideas from lifted theorem proving - no need to ground.

Potential to be exponentially faster in the number of
non-differentialed individuals.

Relies on knowing the number of individuals (the population
size).
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Outline

1 Knowledge Graphs
Tensor Factorization and Neural Network Models

2 Representation Issues
Desiderata
How do relational models relate to probabilistic graphical
models

3 Unique properties of relational models
Learning general knowledge vs learning about a data set
Varying Populations
What can be observed?

4 Conclusions and Challenges
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Inference via factorization in graphical models
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Recursive Conditioning

Computes sum (partition function) from outside in

Input:

Context - assignment of values to variables

Set of factors

Output: value of summing out other variables (partition function)

Evaluate a factor as soon as all its variables are assigned

Cache values already computed

Recognize disconnected components

Recursively branch on a variable
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Variable Elimination and Recursive Conditioning

Variable elimination is the dynamic programming variant of
recursive conditioning.

Recursive Conditioning is the search variant of variable
elimination

They do the same additions and multiplications.

Complexity O(nr t), for n variables, range size r , and
treewidth t.
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Weighted Formula

A Weighted formula is a pair 〈F , v〉 where

F a formula on parametrized random variables

v number

Example:
〈X 6= Y ∧ likes(X ,Y ) ∧ rich(Y ), 0.001〉
〈likes(X ,X ) ∧ rich(X ), 0.7〉
. . .

62 David Poole Relational Probabilistic Models



Knowledge Graphs Representation Issues Issues Conclusions and Challenges (Exact) Lifted InferenceRecursive Conditioning Lifted Recursive Conditioning

Lifted Recursive Conditioning

LiftedRC (Context,WeightedFormulas)

Context is a set of assignments to random variables and
counts to assignments of instances of relations. e.g.:

{¬a, #X f (X ) ∧ g(X ) = 7,

#X f (X ) ∧ ¬g(X ) = 5,

#X¬f (X ) ∧ g(X ) = 18,

#X¬f (X ) ∧ ¬g(X ) = 0}

WeightedFormulas is a set of weighted formulae, e.g.,

{ 〈¬a ∧ ¬f (X ) ∧ g(X ), 0.1〉 ,
〈a ∧ ¬f (X ) ∧ g(X ), 0.2〉 ,
〈f (X ) ∧ g(Y ), 0.3〉 ,
〈f (X ) ∧ h(X ), 0.4〉}
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Evaluating Weighted Formulae

Context:

{¬a, #X f (X ) ∧ g(X ) = 7,

#X f (X ) ∧ ¬g(X ) = 5,

#X¬f (X ) ∧ g(X ) = 18,

#X¬f (X ) ∧ ¬g(X ) = 0}

WeightedFormulas:

{ 〈¬a ∧ ¬f (X ) ∧ g(X ), 0.1〉 ,
〈a ∧ ¬f (X ) ∧ g(X ), 0.2〉 ,
〈f (X ) ∧ g(Y ), 0.3〉 ,
〈f (X ) ∧ h(X ), 0.4〉}

LiftedRC (Context,WeightedFormulas) returns:

0.118 ∗ 1 ∗ 0.312∗25 ∗ LiftedRC (Context, {〈f (X ) ∧ h(X ), 0.4〉})
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Branching

Context:

{¬a, #X f (X ) ∧ g(X ) = 7,

#X f (X ) ∧ ¬g(X ) = 5,

#X¬f (X ) ∧ g(X ) = 18,

#X¬f (X ) ∧ ¬g(X ) = 0}

WeightedFormulas: {〈f (X ) ∧ h(X ), 0.4〉 , . . . }
Branching on H for the 7 “X” individuals s.th. f (X ) ∧ g(X ):
LiftedRC (Context,WeightedFormulas) =

7∑
i=0

(
7

i

)
LiftedRC ({¬a, #X f (X ) ∧ g(X ) ∧ h(X ) = i ,

#X f (X ) ∧ g(X ) ∧ ¬h(X ) = 7− i ,
#X f (X ) ∧ ¬g(X ) = 5, . . . },

WeightedFormulas)
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Recognizing Disconnectedness

q(X)

r(X,Y)

X

Y

q(a1)

r(a1, a1) r(a1, an)...

q(an)

r(an, a1) r(an, an)...

...

Relational Model Grounding

s(X,Y) s(a1, a1) s(a1, an) s(an, a1) s(an, an)

Weighted formulae WeightedFormulas:

{ 〈{s(X ,Y ) ∧ r(X ,Y )}, t1〉
〈{q(X ) ∧ r(X ,Y )}, t2〉}

LiftedRC (Context,WeightedFormulas)

= LiftedRC (Context,WeightedFormulas{X/c})n

...now we only have unary predicates
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Observations and Queries

Observations become the initial context.
Observations can be ground or lifted.

P(q|obs) =
LiftedRC (q ∧ obs,WFs)

LiftedRC (q ∧ obs,WFs) + LiftedRC (¬q ∧ obs,WFs)

calls can share the cache

“How many?” queries are also allowed
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Complexity

As the population size n of undifferentiated individuals increases:

If grounding is polynomial — instances must be disconnected
— lifted inference is constant in n (taking rn for real r)

Otherwise, for unary relations, grounding is exponential and
lifted inference is polynomial.

If non-unary relations become unary, above holds.

Otherwise, ground one individual from population, recurse.
Sometimes this domain recursion is linear, but is typically
exponential (as is grounding the population).

Always exponentially faster than grounding everything.
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What we can and cannot lift

We can lift a model that consists just of

〈{f (X ) ∧ g(Z )}, α4〉

or just of

〈{f (X ,Z ) ∧ g(Y ,Z )}, α2〉

or just of

〈{f (X ,Z ) ∧ g(Y ,Z ) ∧ h(Y )}, α3〉

We cannot lift (still exponential) a model that consists just of:

〈{f (X ,Z ) ∧ g(Y ,Z ) ∧ h(Y ,W )}, α3〉

or

〈{f (X ,Z ) ∧ g(Y ,Z ) ∧ h(Y ,X )}, α3〉
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Compilation

The computation reduces to products and sums

The structure can be determined at compile time

Orders of magnitude faster than lifted recursive conditioning

Often abstracted as weighted model counting (WMC)
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Take Home

Lifted inference exploits symmetries (“for all”)

Instead of considering which individuals a predicate is true for,
count how many individuals it is true for, and determine
appropriate probabilities.

Always exponentially better in the number of undifferentiated
individuals than grounding everything.

Open problem: finding a dichotomy of those problems we
know we can lift and those we know it is impossible to lift.
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