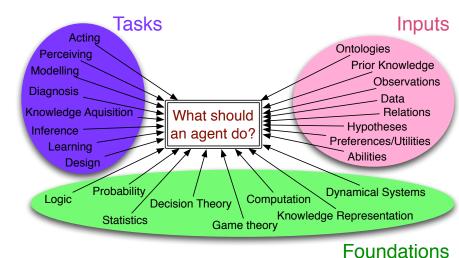
Logic, Probability and Computation: Statistical Relational AI and Beyond

David Poole

Department of Computer Science, University of British Columbia


November 2013

For when I am presented with a false theorem, I do not need to examine or even to know the demonstration, since I shall discover its falsity *a posteriori* by means of an easy experiment, that is, by a calculation, costing no more than paper and ink, which will show the error no matter how small it is...

And if someone would doubt my results, I should say to him: "Let us calculate, Sir," and thus by taking to pen and ink, we should soon settle the question.

-Gottfried Wilhelm Leibniz [1677]

Al: computational agents that act intelligently

David Poole Logic, Probability and Computation: Statistical Relational AI and

Outline

Semantic Science Overview

- Ontologies
- Data
- Hypotheses and Theories
- Models
- 2 Making Decisions
- Relational Probabilistic Models
 Lifted Inference

Existence and Identity Uncertainty

 Semantic web has evolved into the world-wide mind (WWM) — a distributed repository of all knowledge, backed up by the best science available.

- Semantic web has evolved into the world-wide mind (WWM) — a distributed repository of all knowledge, backed up by the best science available.
- The world-wide mind doesn't just accept new knowledge but critically evaluates it and generates new knowledge.

- Semantic web has evolved into the world-wide mind (WWM) — a distributed repository of all knowledge, backed up by the best science available.
- The world-wide mind doesn't just accept new knowledge but critically evaluates it and generates new knowledge.
- Scientists freed from mundane data analysis, develop new hypotheses, interesting questions, and observational data.

- Semantic web has evolved into the world-wide mind (WWM) — a distributed repository of all knowledge, backed up by the best science available.
- The world-wide mind doesn't just accept new knowledge but critically evaluates it and generates new knowledge.
- Scientists freed from mundane data analysis, develop new hypotheses, interesting questions, and observational data.
- World-wide mind is the expert on all questions of truth and makes the best predictions. (Using hypotheses provided by a mix of humans and machine learning).

- Semantic web has evolved into the world-wide mind (WWM) — a distributed repository of all knowledge, backed up by the best science available.
- The world-wide mind doesn't just accept new knowledge but critically evaluates it and generates new knowledge.
- Scientists freed from mundane data analysis, develop new hypotheses, interesting questions, and observational data.
- World-wide mind is the expert on all questions of truth and makes the best predictions. (Using hypotheses provided by a mix of humans and machine learning).
- Public discourse on values (utilities) to determine the best course of actions for individuals, organizations and society.

	2013	2025
-	 need to guess keywords; re-guess until exhaustion 	 2025 keywords + context + ontologies → unambiguous query

2013	2025
 need to guess keywords; re-guess until exhaustion 	• keywords $+$ context $+$ ontologies \rightarrow unambiguous query
 what information found is based on popularity and/or appeal to authority 	

2013	2025
 need to guess keywords; re-guess until exhaustion 	• keywords + context + ontologies \rightarrow unambiguous query
 what information found is based on popularity and/or appeal to authority 	• information based on best evidence available in world

2013	2025
 need to guess keywords; re-guess until exhaustion 	• keywords + context + ontologies \rightarrow unambiguous query
 what information found is based on popularity and/or appeal to authority 	 information based on best evidence available in world
 verify information based on other sites (with different wording) 	 information justified by presenting the evidence for and against it

2013	2025
 need to guess keywords; re-guess until exhaustion 	• keywords $+$ context $+$ ontologies \rightarrow unambiguous query
 what information found is based on popularity and/or appeal to authority 	 information based on best evidence available in world
 verify information based on other sites (with different wording) 	 information justified by presenting the evidence for and against it
 extract information from text and graphics to make decisions 	 decisions based on evidence and utilities

Believing information

2013	2025
 skeptics throw doubt on science and scientists say "trust us" 	 data is available for all to view; all alternative hypotheses can be evaluated

Believing information

2013	2025
 skeptics throw doubt on science and scientists say "trust us" 	 data is available for all to view; all alternative hypotheses can be evaluated
 politicians campaign on what is true and what they will do 	 politicians campaign on their values

Believing information

2013	2025
 skeptics throw doubt on science and scientists say "trust us" 	 data is available for all to view; all alternative hypotheses can be evaluated
 politicians campaign on what is true and what they will do 	 politicians campaign on their values
 food shopping is based on price and brands 	 food shopping based on optimizing health and well-being (users goals and values, and known risks)

2013	2025
• separation of uncertainty	 uncertainty and ontologies are
and KR issues	integral parts of world-wide mind
— ML ignores ontologies	
— rich representations	
ignore uncertainty	

2013	2025
• separation of uncertainty	 uncertainty and ontologies are
and KR issues	integral parts of world-wide mind
— ML ignores ontologies	
— rich representations	
ignore uncertainty	
 semantic web in its infancy 	 world wide mind being used

2013	2025
• separation of uncertainty	 uncertainty and ontologies are
and KR issues	integral parts of world-wide mind
— ML ignores ontologies	
— rich representations	
ignore uncertainty	
 semantic web in its infancy 	 world wide mind being used
 relational representations 	 rich representations with
starting to be used in ML	uncertainty ubiquitous

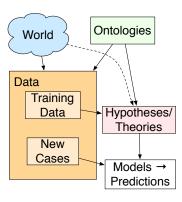
2013	2025
• separation of uncertainty	 uncertainty and ontologies are
and KR issues	integral parts of world-wide mind
— ML ignores ontologies	
— rich representations	
ignore uncertainty	
 semantic web in its infancy 	 world wide mind being used
 relational representations 	 rich representations with
starting to be used in ML	uncertainty ubiquitous
 learning based on one or 	 learning from all data in world
few homogeneous data sets	

2013	2025
• separation of uncertainty	 uncertainty and ontologies are
and KR issues	integral parts of world-wide mind
— ML ignores ontologies	
— rich representations	
ignore uncertainty	
 semantic web in its infancy 	 world wide mind being used
 relational representations 	 rich representations with
starting to be used in ML	uncertainty ubiquitous
 learning based on one or 	 learning from all data in world
few homogeneous data sets	
• data sets usable only by	• data sets published, available,
specialists	persistent and interoperable

Science is the foundation of belief

- If system makes a prediction, we should ask: what evidence is there?
- Not all beliefs are equally valid.
- science: We trust scientific conclusions because they are based on evidence.

Science is the foundation of belief


- If system makes a prediction, we should ask: what evidence is there?
- Not all beliefs are equally valid.
- science: We trust scientific conclusions because they are based on evidence.
- semantic web: make all of the world's knowledge accessible to computers.
- semantic science: use scientific method to make informed predictions (conditioning on all information in the world)

Science as the foundation of world-wide mind

Science can be about anything:

- where and when landslides occur
- where to find gold
- what errors students make
- disease symptoms, prognosis and treatment
- what companies will be good to invest in
- what apartment Mary would like
- which celebrities are having affairs

Semantic Science

- Ontologies represent the meaning of symbols.
- Data that adheres to ontologies are published.
- Hypotheses that make (probabilistic) predictions on data are published.
- Data used to evaluate hypotheses; the best hypotheses are theories.
- Hypotheses form models for predictions on new cases.
- All evolve in time.

David Poole

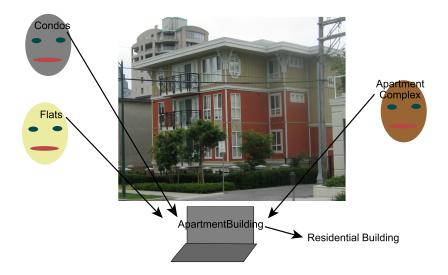
Outline

Semantic Science Overview

Ontologies

- Data
- Hypotheses and Theories
- Models

2 Making Decisions


Relational Probabilistic Models
 Lifted Inference

4 Existence and Identity Uncertainty

Ontologies

- In philosophy, ontology the study of existence.
- In CS, an ontology is a (formal) specification of the meaning of the vocabulary used in an information system.
- Ontologies are needed so that information sources can inter-operate at a semantic level.

Ontologies

Main Components of an Ontology

- Individuals: the objects in the world (not usually specified as part of the ontology)
- Classes: sets of (potential) individuals
- Properties: between individuals and their values

 $\langle Individual, Property, Value \rangle$ triples are universal representations of relations.

Aristotelian definitions

Aristotle [350 B.C.] suggested the definition if a class C in terms of:

- Genus: the super-class
- Differentia: the attributes that make members of the class *C* different from other members of the super-class

"If genera are different and co-ordinate, their differentiae are themselves different in kind. Take as an instance the genus 'animal' and the genus 'knowledge'. 'With feet', 'two-footed', 'winged', 'aquatic', are differentiae of 'animal'; the species of knowledge are not distinguished by the same differentiae. One species of knowledge does not differ from another in being 'two-footed'."

Aristotle, Categories, 350 B.C.

An Aristotelian definition

• An apartment building is a residential building with multiple units and units are rented.

 $A partment Building \equiv Residential Building \&$

NumUnits = *many*&

Ownership = *rental*

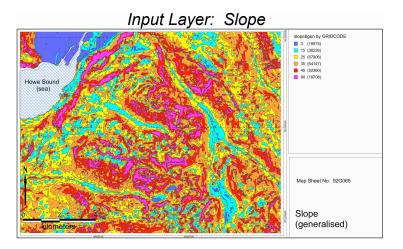
NumUnits : ResidentialBuilding \mapsto {one, two, many} Ownership : Building \mapsto {owned, rental, coop}.

• All classes are defined in terms of properties.

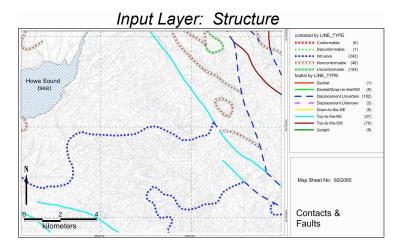
Outline

Semantic Science Overview

- Ontologies
- Data
- Hypotheses and Theories
- Models
- 2 Making Decisions
- Relational Probabilistic Models
 Lifted Inference


4 Existence and Identity Uncertainty

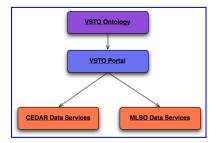
Data


Real data is messy!

- Multiple levels of abstraction
- Multiple levels of detail
- Uses the vocabulary from many ontologies: rocks, minerals, top-level ontology,...
- Rich meta-data:
 - Who collected each datum? (identity and credentials)
 - Who transcribed the information?
 - What was the protocol used to collect the data? (Chosen at random or chosen because interesting?)
 - What were the controls what was manipulated, when?
 - What sensors were used? What is their reliability and operating range?

Example Data, Geology

Example Data, Geology


http://www.vsto.org/

Welcome to the Virtual Solar Terrestrial Observatory

The Virtual Solar Terrestrial Observatory (VSTO) is a unified semantic environment serving data from diverse data archives in the fields of solar, solar-terrestrial, and space physics (SSTSP), currently:

- Upper atmosphere data from the CEDAR (Coupling, Energetics and Dynamics of Atmospheric Regions) archive
- · Solar corona data from the MLSO (Mauna Loa Solar Observatory) archive

The VSTO portal uses an underlying ontology (i.e. an organized knowledge base of the SSTSP domain) to present a general interface that allows selection and retrieval of products (ascii and binary data files, images, piots) from heterogenous external data services.

VSTO Data Access

Data is theory-laden

• Sapir-Whorf Hypothesis [Sapir 1929, Whorf 1940]: people's perception and thought are determined by what can be described in their language. (Controversial in linguistics!)

Data is theory-laden

- Sapir-Whorf Hypothesis [Sapir 1929, Whorf 1940]: people's perception and thought are determined by what can be described in their language. (Controversial in linguistics!)
- A stronger version for information systems:

What is stored and communicated by an information system is constrained by the representation and the ontology used by the information system.

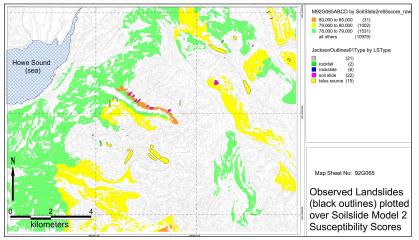
- Ontologies come logically prior to the data.
- Data can't make distinctions that can't be expressed in the ontology.
- Different ontologies result in different data.

Outline

Semantic Science Overview

- Ontologies
- Data
- Hypotheses and Theories
- Models
- 2 Making Decisions
- Relational Probabilistic Models
 Lifted Inference

④ Existence and Identity Uncertainty


Hypotheses make predictions on data

Hypotheses are procedures that make prediction on data. Theories are hypotheses that best fit the observational data.

- Hypotheses can make various predictions about data:
 - point probabilities: probability you will be run over tomorrow is 0.002
 - ...
- Probabilistic predictions are what is needed for decision making and can be learned from data.

Example Prediction from a Hypothesis

Test Results: Model SoilSlide02

Applying hypotheses to new cases

- Hypotheses are often narrow, e.g., prognosis of people with a lung cancer.
- Hypotheses are general in the sense that they can be adapted to different cases.

Applying hypotheses to new cases

- Hypotheses are often narrow, e.g., prognosis of people with a lung cancer.
- Hypotheses are general in the sense that they can be adapted to different cases.
- How can we compare hypotheses that differ in their generality?
- Hypothesis A makes predictions about all cancers.
 Hypothesis B makes predictions about lung cancers.
 Should the comparison between A and B take into account A's predictions on non-lung cancer?

Applying hypotheses to new cases

- Hypotheses are often narrow, e.g., prognosis of people with a lung cancer.
- Hypotheses are general in the sense that they can be adapted to different cases.
- How can we compare hypotheses that differ in their generality?
- Hypothesis A makes predictions about all cancers.
 Hypothesis B makes predictions about lung cancers.
 Should the comparison between A and B take into account A's predictions on non-lung cancer?
- What about C: if lung cancer, use B's prediction, else use A's prediction?

Models

- A model is an ensemble of hypotheses applied to a particular case.
 - E.g., if lung cancer, use B's prediction, else use A's prediction
 - Can use sophisticated methods to determine which hypothesis to use.
 - Judge hypotheses by how well they fit into models.
 - Models can be judged by simplicity.
 - Hypothesis designers don't need to game the system by manipulating the generality of hypotheses

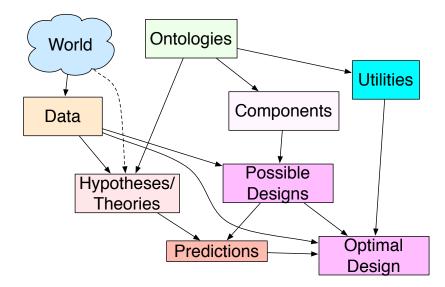
Dynamics of Semantic Science

- New data and hypotheses are continually added.
- Anyone can design their own ontologies.
 - People vote with their feet what ontology they use.
 - Need for semantic interoperability leads to ontologies with mappings between them.
- Hypotheses engineered + learned
- Ontologies evolve with hypotheses:
 - A hypothesis learns useful unobserved features
 - \longrightarrow add these to an ontology
 - \longrightarrow other researchers can refer to them
 - \longrightarrow reinterpretation of data
- Ontologies can be judged by the predictions of the hypotheses that use them
 - role of a vocabulary is to describe useful distinctions.

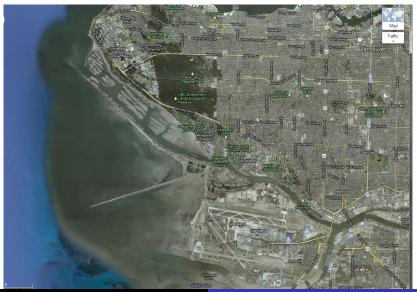
29

Outline

1 Semantic Science Overview

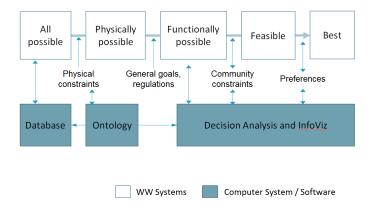

- Ontologies
- Data
- Hypotheses and Theories
- Models

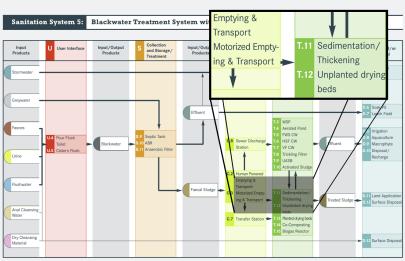
2 Making Decisions


Relational Probabilistic Models
 Lifted Inference

④ Existence and Identity Uncertainty

Decision Making


Wastewater Management


David Poole

Logic, Probability and Computation: Statistical Relational AI and

Decision Making applied to Wastewater Management

Traditional Design Space

24 Eawag-Sandec - Sanitation Systems System Template 5 - Blackwater Treatment System with Infiltration

Visualizing Design Space

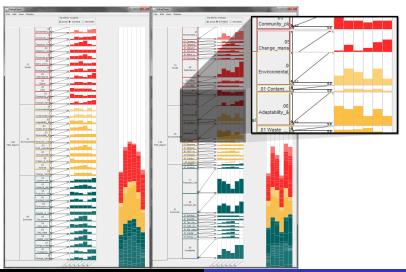
Desiderata:

- hierarchical can drill down into details but are not overwhelmed by details
- show the diversity of possible solutions.
- as simple as possible but no simpler
- explore feasible solutions and infeasible solutions

Traditional Utility Tradeoffs

Fidelis Resource Group, Integrated Resource Recovery Study, for Metro Vancouver, 2011

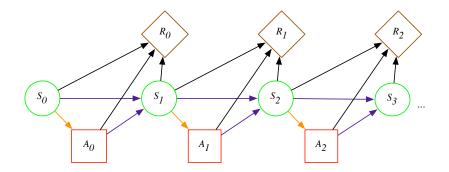
				Sce	nario		
	Net totals:	1	2	3	4	5	6
	Economic	17 🔻	-	5▲	7	5▼	13▼
	Rank	#6	#3	#2	#1	#4	#5
	Environmental	7 🔻	-	3▲	2▲	3▼	21▼
	Rank	#5	#3	#1	#2	#4	#6
	Social	13▼	-	_	4▼	1▲	_
	Rank	#6	#2	#2	#5	#1	#2
		45▼	-	11▼	29▼	13▼	52▼
	A	8▲	-	19▲	34▲	6▲	18▲
	Net total	37 🗸	_	8 🛦	5	7 🗸	34▼
	Rank	#6	#3	#1	#2	#4	#5
uation item	Primary account					А	s at: 1 Mar 2001
Change management	Economic	•••	-	•		A	
Complexity	Economic		-		V V		
Energy independence	Economic	••	-			•	****
Capital cost	Economic		-				****
Net value	Economic		-			•	****
Jobs	Economic	A	-			•	••
Tax burden	Economic	••				* *	****
Supplier & competitive readiness	Economic	-	-	-	-	-	
Earthquake risk	Economic	_	_	_	_	_	•••
Contract risk	Economic	•	-		****	•	
Projection risk	Economic		-			-	
Finance risk	Economic	• •	-	A		-	••
System risk	Economic	• •	-	_	_	-	
Change management	Environmental		_	_	_	_	• •
Airshed	Environmental		_			•	• •
Creeks & streams	Environmental		_	_	_	_	_
Groundwater	Environmental	_	_	_	_	_	T
GHG reduction	Environmental		_			_	****
Reduced water consumption	Environmental	_	-	-	_	-	_
Renewable fuel use	Environmental		_	_	_	_	_


Table 17: Triple Bottom Line Evaluation

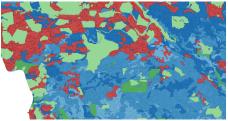
David Poole

Logic, Probability and Computation: Statistical Relational AI and

Finding Optimal Designs


Value Charts: [Jeanette Bautista and Giuseppe Carenini, 2008]

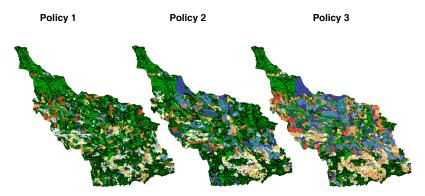
David Poole


Logic, Probability and Computation: Statistical Relational AI and

Markov Decision Processes

Planning in Forestry

Example Map of Age Feature


Age of trees in cell.

0-25	26-50	51-75	76-100	101-150	150-

Scale for 10 Binary Features and Binary Actions

Number of	at each cell	entire landscape
actions	2	$2^{1000} \approx 10^{300}$
states	2^{10}	$(2^{10})^{1000} \approx 10^{3000}$

Resulting Plans

Decade in which cell was harvested

0	-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100

Outline

Semantic Science Overview

- Ontologies
- Data
- Hypotheses and Theories
- Models

2 Making Decisions

Relational Probabilistic Models
 Lifted Inference

4 Existence and Identity Uncertainty

Relational Learning

- Often the values of properties are not meaningful values but names of individuals.
- It is the properties of these individuals and their relationship to other individuals that needs to be learned.
- Relational learning has been studied under the umbrella of "Inductive Logic Programming" as the representations are often logic programs.

Example: trading agent

What does Joe like?

Individual	Property	Value
joe	likes	resort_14
joe	dislikes	resort_35
resort_14	type	resort
resort_14	near	<i>beach_</i> 18
<i>beach_</i> 18	type	beach
<i>beach_</i> 18	covered_in	WS
WS	type	sand
WS	color	white

Values of properties may be meaningless names.

Example: trading agent

Possible theory that could be learned:

 $prop(joe, likes, R) \leftarrow$ $prop(R, type, resort) \land$ $prop(R, near, B) \land$ $prop(B, type, beach) \land$ $prop(B, covered_in, S) \land$ prop(S, type, sand).

Joe likes resorts that are near sandy beaches.

• But we want probabilistic predictions.

Independent Choice Logic

- A language for first-order probabilistic models.
- Idea: combine logic and probability, where all uncertainty in handled in terms of Bayesian decision theory, and a logic program specifies consequences of choices.
- Parametrized random variables are represented as logical atoms, and plates correspond to logical variables.

Independent Choice Logic

- An alternative is a set of ground atomic formulas. *C*, the choice space is a set of disjoint alternatives.
- \mathcal{F} , the facts is a logic program that gives consequences of choices.
- *P*₀ a probability distribution over alternatives:

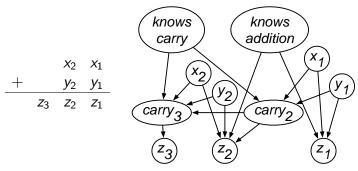
$$\forall A \in \mathcal{C} \ \sum_{a \in A} P_0(a) = 1.$$

Inference

Meaningless Example

$$egin{aligned} \mathcal{C} &= \{\{c_1, c_2, c_3\}, \{b_1, b_2\}\} \ \mathcal{F} &= \{ egin{aligned} f \leftarrow c_1 \wedge b_1, & f \leftarrow c_3 \wedge b_2, \ & d \leftarrow c_1, & d \leftarrow \sim c_2 \wedge b_1, \ & e \leftarrow f, & e \leftarrow \sim d\} \ P_0(c_1) &= 0.5 & P_0(c_2) &= 0.3 & P_0(c_3) &= 0.2 \ P_0(b_1) &= 0.9 & P_0(b_2) &= 0.1 \end{aligned}$$

Semantics of ICL


- There is a possible world for each selection of one element from each alternative.
- The logic program together with the selected atoms specifies what is true in each possible world.
- The elements of different alternatives are independent.

Meaningless Example: Semantics

$$\mathcal{F} = \{ f \leftarrow c_{1} \land b_{1}, f \leftarrow c_{3} \land b_{2}, \\ d \leftarrow c_{1}, d \leftarrow \sim c_{2} \land b_{1}, \\ e \leftarrow f, e \leftarrow \sim d \} \\ P_{0}(c_{1}) = 0.5 \quad P_{0}(c_{2}) = 0.3 \quad P_{0}(c_{3}) = 0.2 \\ P_{0}(b_{1}) = 0.9 \quad P_{0}(b_{2}) = 0.1 \\ \underbrace{\text{selection}}_{w_{2}} \stackrel{\text{logic program}}{\longleftarrow} \underbrace{\text{logic program}}_{w_{3}} = c_{3} \quad b_{1} \quad c_{f} \quad d \quad e \\ P(w_{1}) = 0.18 \\ w_{4} \models c_{1} \quad b_{2} \quad \sim f \quad d \quad \sim e \\ w_{5} \models c_{2} \quad b_{2} \quad \sim f \quad d \quad \sim e \\ w_{6} \models c_{3} \quad b_{2} \quad f \quad \sim d \quad e \\ P(w_{6}) = 0.02 \\ \end{bmatrix}$$

P(e) = 0.45 + 0.27 + 0.03 + 0.02 = 0.77

Bayesian Networks

What if there were multiple digits, problems, students, times? How can we build a model before we know the individuals?

Inference

Multi-digit addition with parametrized BNs / plates

Random Variables: x(D, P), y(D, P), knowsCarry(S, T), knowsAddition(S, T), carry(D, P, S, T), z(D, P, S, T)for each: digit D, problem P, student S, time T

parametrized random variables

ICL rules for multi-digit addition

$$z(D, P, S, T) = V \leftarrow$$

$$x(D, P) = Vx \land$$

$$y(D, P) = Vy \land$$

$$carry(D, P, S, T) = Vc \land$$

$$knowsAddition(S, T) \land$$

$$\neg mistake(D, P, S, T) \land$$

$$V \text{ is } (Vx + Vy + Vc) \text{ div } 10.$$

$$\begin{split} z(D, P, S, T) &= V \leftarrow \\ knowsAddition(S, T) \land \\ mistake(D, P, S, T) \land \\ selectDig(D, P, S, T) &= V. \\ z(D, P, S, T) &= V \leftarrow \\ \neg knowsAddition(S, T) \land \\ selectDig(D, P, S, T) &= V. \end{split}$$

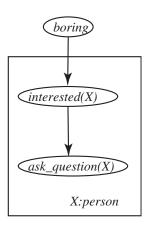
Alternatives: $\forall DPST \{ noMistake(D, P, S, T), mistake(D, P, S, T) \}$ $\forall DPST \{ selectDig(D, P, S, T) = V \mid V \in \{0..9\} \}$

Outline

Semantic Science Overview

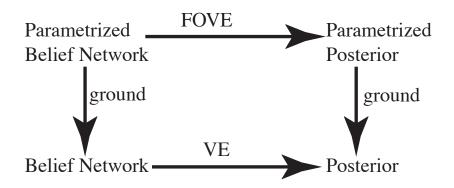
- Ontologies
- Data
- Hypotheses and Theories
- Models

2 Making Decisions


Relational Probabilistic Models
 Lifted Inference

4 Existence and Identity Uncertainty

Lifted Inference


- Idea: treat those individuals about which you have the same information as a block; just count them.
- Use the ideas from lifted theorem proving no need to ground.
- Relies on knowing the number of individuals (the population size).

Example parametrized belief network

 $P(boring) \\ \forall X \ P(interested(X)|boring) \\ \forall X \ P(ask_question(X)|interested(X)) \\ \end{cases}$

First-order probabilistic inference

•

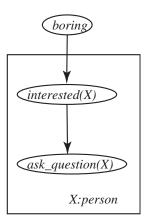
Variable Elimination and Unification

• Multiplying parametrized factors:

$$[f(X,Z),p(X,a)] \times [p(b,Y),g(Y,W)]$$
$$[f(b,Z),p(b,a),g(a,W)]$$

Variable Elimination and Unification

• Multiplying parametrized factors:

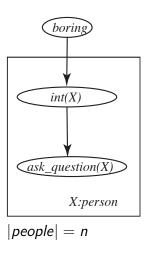

$$\underbrace{[f(X,Z),p(X,a)] \times [p(b,Y),g(Y,W)]}_{[f(b,Z),p(b,a),g(a,W)]}$$

Doesn't quite work: f(X, Z) can't now be used for X = b but can be used when $X \neq b$.

• We split [f(X, Z), p(X, a)] into

[f(b, Z), p(b, a)][f(X, Z), p(X, a)] with constraint $X \neq b$,

Removing a parameter when summing



 $\begin{array}{l} n \text{ people} \\ \text{we observe no questions} \\ \hline \text{Eliminate interested:} \\ \left< \{\}, \{boring, interested(X)\}, t_1 \right> \\ \left< \{\}, \{interested(X)\}, t_2 \right> \\ \downarrow \\ \left< \{\}, \{boring\}, (t_1 \times t_2)^n \right> \end{array}$

 $(t_1 \times t_2)^n$ is computed pointwise; we can compute it in time $O(\log n)$.

Inference

Counting Elimination

Eliminate *boring*:

VE: factor on $\{int(p_1), \ldots, int(p_n)\}$ Size is $O(d^n)$ where *d* is size of range of interested.

Exchangeable: only the number of interested individuals matters.

Counting Formula:

#interested	Value
0	V ₀
1	<i>v</i> ₁
n	Vn
Complexity: $O(n^{d-1})$.	

[de Salvo Braz et al. 2007] and [Milch et al. 08]

Potential of Lifted Inference

• Reduce complexity:

 $polynomial \longrightarrow logarithmic$

 $exponential \longrightarrow polynomial$

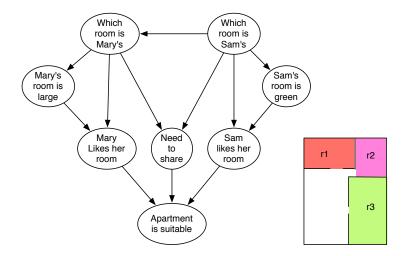
- We need a representation for the intermediate (lifted) factors that is closed under multiplication and summing out (lifted) variables.
- Still an open research problem.

Outline

Semantic Science Overview

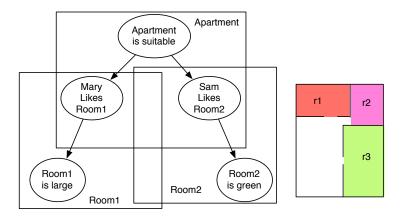
- Ontologies
- Data
- Hypotheses and Theories
- Models
- 2 Making Decisions
- Relational Probabilistic Models
 Lifted Inference

Existence and Identity Uncertainty

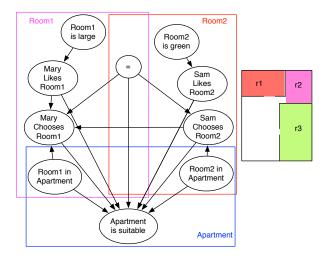

Role assignments

Hypothesis about what apartment Mary would like.

Whether Mary likes an apartment depends on:


- Whether there is a bedroom for daughter Sam
- Whether Sam's room is green
- Whether there is a bedroom for Mary
- Whether Mary's room is large
- Whether they share

BN Representation

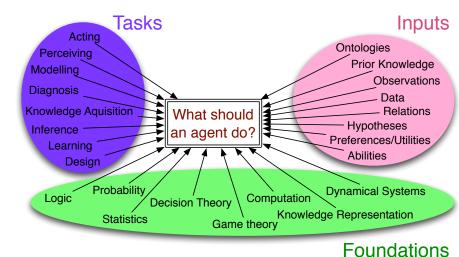

How can we condition on the observation of the apartment?

Naive Bayes representation

How do we specify that Mary chooses a room? What about the case where they (have to) share?

Causal representation

How do we specify that Sam and Mary choose one room each, but they can like many rooms?


Conclusion

- To decide what to do an agent should take into account its uncertainty and it preferences (utility).
- Ontologies allow heterogeneous data sets to interact.
- The field of "statistical relational Al" looks at how to combine first-order logic and probabilistic reasoning.
- We need to combine many different research strands to build the World Wide Mind.

Challenges

- Representations that are heuristically and epistemologically adequate
- Condition on all of the (possibly) available evidence
- Interoperate with heterogenous data sets and allow multiple (persistent) predictions.
- Base practical actions on the best available evidence.

Research Interests

