
Second half of course. . .

A belief network is a representation of conditional
independence:
in a total ordering of the variables, each variable is
independent of its predecessors given it’s parents

Variable elimination computes the posterior probability of a
variable given evidence by summing out the non-observed
non-query variables.

A causal model predicts the effect of a intervention.

A naive bayes model can be used for learning and help
systems.

Utility is a measure of preferences that is defined in terms of
lotteries.

A decision network has random nodes, decision nodes and a
utility node. A policy has an expected utility.

A Markov decision process can model ongoing activity with
rewards, but only fully observable case is feasible.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 1 / 24



Second half of course. . .

A belief network is a representation of conditional
independence:
in a total ordering of the variables, each variable is
independent of its predecessors given it’s parents

Variable elimination computes the posterior probability of a
variable given evidence by summing out the non-observed
non-query variables.

A causal model predicts the effect of a intervention.

A naive bayes model can be used for learning and help
systems.

Utility is a measure of preferences that is defined in terms of
lotteries.

A decision network has random nodes, decision nodes and a
utility node. A policy has an expected utility.

A Markov decision process can model ongoing activity with
rewards, but only fully observable case is feasible.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 1 / 24



Markov Decision Processes

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2

…

An MDP consists of:

set S of states.

set A of actions.

P(St+1 | St ,At) specifies the dynamics.

R(St ,At) specifies the expected reward at time t.
R(s, a) is the expected reward of doing a in state s

γ is discount factor.

Discounted reward: If Vt is the value obtained from time step t

Vt = rt + γVt+1

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 2 / 24



Markov Decision Processes

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2

…

An MDP consists of:

set S of states.

set A of actions.

P(St+1 | St ,At) specifies the dynamics.

R(St ,At) specifies the expected reward at time t.
R(s, a) is the expected reward of doing a in state s

γ is discount factor.

Discounted reward: If Vt is the value obtained from time step t

Vt = rt + γVt+1

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 2 / 24



Markov Decision Processes

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2

…

An MDP consists of:

set S of states.

set A of actions.

P(St+1 | St ,At) specifies the dynamics.

R(St ,At) specifies the expected reward at time t.
R(s, a) is the expected reward of doing a in state s

γ is discount factor.

Discounted reward: If Vt is the value obtained from time step t

Vt = rt + γVt+1

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 2 / 24



Markov Decision Processes

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2

…

An MDP consists of:

set S of states.

set A of actions.

P(St+1 | St ,At) specifies the dynamics.

R(St ,At) specifies the expected reward at time t.
R(s, a) is the expected reward of doing a in state s

γ is discount factor.

Discounted reward: If Vt is the value obtained from time step t

Vt = rt + γVt+1

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 2 / 24



Markov Decision Processes

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2

…

An MDP consists of:

set S of states.

set A of actions.

P(St+1 | St ,At) specifies the dynamics.

R(St ,At) specifies the expected reward at time t.
R(s, a) is the expected reward of doing a in state s

γ is discount factor.

Discounted reward: If Vt is the value obtained from time step t

Vt =

rt + γVt+1

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 2 / 24



Markov Decision Processes

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2

…

An MDP consists of:

set S of states.

set A of actions.

P(St+1 | St ,At) specifies the dynamics.

R(St ,At) specifies the expected reward at time t.
R(s, a) is the expected reward of doing a in state s

γ is discount factor.

Discounted reward: If Vt is the value obtained from time step t

Vt = rt + γVt+1

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 2 / 24



Value of a Policy

Given a policy π:

Qπ(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following policy π.

V π(s), where s is a state, is the expected value of following
policy π in state s.

Qπ and V π can be defined mutually recursively:

V π(s) =

Qπ(s, π(s))

Qπ(s, a) =

R(s, a) + γ
∑
s′

P(s ′ | a, s)V π(s ′)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 3 / 24



Value of a Policy

Given a policy π:

Qπ(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following policy π.

V π(s), where s is a state, is the expected value of following
policy π in state s.

Qπ and V π can be defined mutually recursively:

V π(s) =

Qπ(s, π(s))

Qπ(s, a) =

R(s, a) + γ
∑
s′

P(s ′ | a, s)V π(s ′)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 3 / 24



Value of a Policy

Given a policy π:

Qπ(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following policy π.

V π(s), where s is a state, is the expected value of following
policy π in state s.

Qπ and V π can be defined mutually recursively:

V π(s) =

Qπ(s, π(s))

Qπ(s, a) =

R(s, a) + γ
∑
s′

P(s ′ | a, s)V π(s ′)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 3 / 24



Value of a Policy

Given a policy π:

Qπ(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following policy π.

V π(s), where s is a state, is the expected value of following
policy π in state s.

Qπ and V π can be defined mutually recursively:

V π(s) = Qπ(s, π(s))

Qπ(s, a) =

R(s, a) + γ
∑
s′

P(s ′ | a, s)V π(s ′)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 3 / 24



Value of a Policy

Given a policy π:

Qπ(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following policy π.

V π(s), where s is a state, is the expected value of following
policy π in state s.

Qπ and V π can be defined mutually recursively:

V π(s) = Qπ(s, π(s))

Qπ(s, a) = R(s, a) + γ
∑
s′

P(s ′ | a, s)V π(s ′)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 3 / 24



Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy.

V ∗(s), where s is a state, is the expected value of following
the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) =

R(s, a) + γ
∑
s′

P(s ′ | a, s)V ∗(s ′)

V ∗(s) =

max
a

Q∗(s, a)

π∗(s) =

arg max
a

Q∗(s, a)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 4 / 24



Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy.

V ∗(s), where s is a state, is the expected value of following
the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) =

R(s, a) + γ
∑
s′

P(s ′ | a, s)V ∗(s ′)

V ∗(s) =

max
a

Q∗(s, a)

π∗(s) =

arg max
a

Q∗(s, a)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 4 / 24



Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy.

V ∗(s), where s is a state, is the expected value of following
the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) =

R(s, a) + γ
∑
s′

P(s ′ | a, s)V ∗(s ′)

V ∗(s) =

max
a

Q∗(s, a)

π∗(s) =

arg max
a

Q∗(s, a)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 4 / 24



Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy.

V ∗(s), where s is a state, is the expected value of following
the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) = R(s, a) + γ
∑
s′

P(s ′ | a, s)V ∗(s ′)

V ∗(s) =

max
a

Q∗(s, a)

π∗(s) =

arg max
a

Q∗(s, a)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 4 / 24



Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy.

V ∗(s), where s is a state, is the expected value of following
the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) = R(s, a) + γ
∑
s′

P(s ′ | a, s)V ∗(s ′)

V ∗(s) = max
a

Q∗(s, a)

π∗(s) =

arg max
a

Q∗(s, a)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 4 / 24



Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy.

V ∗(s), where s is a state, is the expected value of following
the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) = R(s, a) + γ
∑
s′

P(s ′ | a, s)V ∗(s ′)

V ∗(s) = max
a

Q∗(s, a)

π∗(s) = arg max
a

Q∗(s, a)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 4 / 24



Asynchronous VI: storing Q[s, a]

Repeat forever:
I Select state s, action a
I Q[s, a]←

R(s, a) + γ
∑
s′

P(s ′ | s, a)
(

max
a′

Q[s ′, a′]
)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 5 / 24



Asynchronous VI: storing Q[s, a]

Repeat forever:
I Select state s, action a
I Q[s, a]← R(s, a) + γ

∑
s′

P(s ′ | s, a)
(

max
a′

Q[s ′, a′]
)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 5 / 24



Example: Go (the game)

Go is a board game on 19× 19 grid. Each position can have
black stone or white stone or no stone.

Approximately 2 ∗ 10170 states (legal board positions)

AlphaGo / AlphaZero:

“Store” V (s) and π(s).

Assume opponent is also playing π(s) + some randomness
(for exploration)

Compute expected values using forward sampling
(Monte-Carlo tree search); play the game to end, multiple
times and average.

Try a few other actions to see if one is better (exploration).

Use neural networks to represent V (s) and π(s) (see CPSC
340)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 6 / 24



Example: Go (the game)

Go is a board game on 19× 19 grid. Each position can have
black stone or white stone or no stone.

Approximately 2 ∗ 10170 states (legal board positions)

AlphaGo / AlphaZero:

“Store” V (s) and π(s).

Assume opponent is also playing π(s) + some randomness
(for exploration)

Compute expected values using forward sampling
(Monte-Carlo tree search); play the game to end, multiple
times and average.

Try a few other actions to see if one is better (exploration).

Use neural networks to represent V (s) and π(s) (see CPSC
340)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 6 / 24



Example: Go (the game)

Go is a board game on 19× 19 grid. Each position can have
black stone or white stone or no stone.

Approximately 2 ∗ 10170 states (legal board positions)

AlphaGo / AlphaZero:

“Store” V (s) and π(s).

Assume opponent is also playing π(s) + some randomness
(for exploration)

Compute expected values using forward sampling
(Monte-Carlo tree search); play the game to end, multiple
times and average.

Try a few other actions to see if one is better (exploration).

Use neural networks to represent V (s) and π(s) (see CPSC
340)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 6 / 24



Example: Go (the game)

Go is a board game on 19× 19 grid. Each position can have
black stone or white stone or no stone.

Approximately 2 ∗ 10170 states (legal board positions)

AlphaGo / AlphaZero:

“Store” V (s) and π(s).

Assume opponent is also playing π(s) + some randomness
(for exploration)

Compute expected values using forward sampling
(Monte-Carlo tree search); play the game to end, multiple
times and average.

Try a few other actions to see if one is better (exploration).

Use neural networks to represent V (s) and π(s) (see CPSC
340)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 6 / 24



Difficulty in solving Go

Why is Go difficult?

Enormous state space 2 ∗ 10170 states (number of atoms in
observable universe ≈ 1080).

Many moves (up to 361)

Why easy?

Well defined rules (we know the transition rules and goal)

Simple utility (0/1).
So expected value = probability of winning

Fully observable, with a well define state (board position)

Two players that are adversaries. (Multiple-agent reasoning is
much more difficult with partial observability (eg. simple
interaction such as poker).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 7 / 24



Difficulty in solving Go

Why is Go difficult?

Enormous state space 2 ∗ 10170 states (number of atoms in
observable universe ≈ 1080).

Many moves (up to 361)

Why easy?

Well defined rules (we know the transition rules and goal)

Simple utility (0/1).
So expected value = probability of winning

Fully observable, with a well define state (board position)

Two players that are adversaries. (Multiple-agent reasoning is
much more difficult with partial observability (eg. simple
interaction such as poker).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 7 / 24



Difficulty in solving Go

Why is Go difficult?

Enormous state space 2 ∗ 10170 states (number of atoms in
observable universe ≈ 1080).

Many moves (up to 361)

Why easy?

Well defined rules (we know the transition rules and goal)

Simple utility (0/1).
So expected value = probability of winning

Fully observable, with a well define state (board position)

Two players that are adversaries. (Multiple-agent reasoning is
much more difficult with partial observability (eg. simple
interaction such as poker).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 7 / 24



Difficulty in solving Go

Why is Go difficult?

Enormous state space 2 ∗ 10170 states (number of atoms in
observable universe ≈ 1080).

Many moves (up to 361)

Why easy?

Well defined rules (we know the transition rules and goal)

Simple utility (0/1).
So expected value = probability of winning

Fully observable, with a well define state (board position)

Two players that are adversaries. (Multiple-agent reasoning is
much more difficult with partial observability (eg. simple
interaction such as poker).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 7 / 24



Difficulty in solving Go

Why is Go difficult?

Enormous state space 2 ∗ 10170 states (number of atoms in
observable universe ≈ 1080).

Many moves (up to 361)

Why easy?

Well defined rules (we know the transition rules and goal)

Simple utility (0/1).
So expected value = probability of winning

Fully observable, with a well define state (board position)

Two players that are adversaries. (Multiple-agent reasoning is
much more difficult with partial observability (eg. simple
interaction such as poker).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 7 / 24



Difficulty in solving Go

Why is Go difficult?

Enormous state space 2 ∗ 10170 states (number of atoms in
observable universe ≈ 1080).

Many moves (up to 361)

Why easy?

Well defined rules (we know the transition rules and goal)

Simple utility (0/1).
So expected value = probability of winning

Fully observable, with a well define state (board position)

Two players that are adversaries. (Multiple-agent reasoning is
much more difficult with partial observability (eg. simple
interaction such as poker).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 7 / 24



Dynamic Decision Network

RLoc0

RHC0

SWC0

MW0

RHM0

A0

RLoc1

RHC1

SWC1

MW1

RHM1

State0 Action0 State1

R0

Reward0

A1

RLoc2

RHC2

SWC2

MW2

RHM2

Action1 State2

R1

Reward1

A2

RLoc3

RHC3

SWC3

MW3

RHM3

Action2 State3

R2

Reward2

Parents of Ai are all of the Statei variables.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 8 / 24



Overview

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 9 / 24



Agents acting in an environment

Prior Knowledge

Environment

Stimuli
Actions

Past Experiences

Goals/Preferences

Agent

Abilities

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 10 / 24



Dimensions of Complexity

Dimension Values

Modularity flat, modular, hierarchical

Planning horizon non-planning, finite stage,
indefinite stage, infinite stage

Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 11 / 24



Dimensions of Complexity

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage

Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 11 / 24



Dimensions of Complexity

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations

Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 11 / 24



Dimensions of Complexity

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality

Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 11 / 24



Dimensions of Complexity

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned

Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 11 / 24



Dimensions of Complexity

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable

Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 11 / 24



Dimensions of Complexity

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic

Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 11 / 24



Dimensions of Complexity

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences

Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 11 / 24



Dimensions of Complexity

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents

Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 11 / 24



Dimensions of Complexity

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 11 / 24



State-space Search

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 12 / 24



Classical Forward/Regression Planning

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features,relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 13 / 24



CSP Planning

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 14 / 24



Decision Networks

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 15 / 24



Markov Decision Processes (MDPs)

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 16 / 24



Humans

Dimension Values

Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 17 / 24



Review: Searching

Generic search algorithm expands paths in frontier, until it
expands a goal

Frontier is a stack −→ depth-firt search

Frontier is a queue −→ breadth-first search

Frontier is a priority queue ordered by path cost −→
least-cost-first search

Frontier is a priority queue ordered by f (p) = cost(p) + h(p)
−→ A∗ search

A∗ finds shortest path if h is admissible

Cycle pruning prunes paths that loop back on themselves

Multiple-path pruning prunes paths to nodes that have already
been expanded.

Depth-first branch-and-bound combines space saving of
depth-first search with the optimality of A∗.
(but doesn’t have space saving with multiple-path pruning)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 18 / 24



Review: Searching

Generic search algorithm expands paths in frontier, until it
expands a goal

Frontier is a stack −→ depth-firt search

Frontier is a queue −→ breadth-first search

Frontier is a priority queue ordered by path cost −→
least-cost-first search

Frontier is a priority queue ordered by f (p) = cost(p) + h(p)
−→ A∗ search

A∗ finds shortest path if h is admissible

Cycle pruning prunes paths that loop back on themselves

Multiple-path pruning prunes paths to nodes that have already
been expanded.

Depth-first branch-and-bound combines space saving of
depth-first search with the optimality of A∗.
(but doesn’t have space saving with multiple-path pruning)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 18 / 24



Review: Searching

Generic search algorithm expands paths in frontier, until it
expands a goal

Frontier is a stack −→ depth-firt search

Frontier is a queue −→ breadth-first search

Frontier is a priority queue ordered by path cost −→
least-cost-first search

Frontier is a priority queue ordered by f (p) = cost(p) + h(p)
−→ A∗ search

A∗ finds shortest path if h is admissible

Cycle pruning prunes paths that loop back on themselves

Multiple-path pruning prunes paths to nodes that have already
been expanded.

Depth-first branch-and-bound combines space saving of
depth-first search with the optimality of A∗.
(but doesn’t have space saving with multiple-path pruning)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 18 / 24



Review: Searching

Generic search algorithm expands paths in frontier, until it
expands a goal

Frontier is a stack −→ depth-firt search

Frontier is a queue −→ breadth-first search

Frontier is a priority queue ordered by path cost −→
least-cost-first search

Frontier is a priority queue ordered by f (p) = cost(p) + h(p)
−→ A∗ search

A∗ finds shortest path if h is admissible

Cycle pruning prunes paths that loop back on themselves

Multiple-path pruning prunes paths to nodes that have already
been expanded.

Depth-first branch-and-bound combines space saving of
depth-first search with the optimality of A∗.
(but doesn’t have space saving with multiple-path pruning)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 18 / 24



Review: Searching

Generic search algorithm expands paths in frontier, until it
expands a goal

Frontier is a stack −→ depth-firt search

Frontier is a queue −→ breadth-first search

Frontier is a priority queue ordered by path cost −→
least-cost-first search

Frontier is a priority queue ordered by f (p) = cost(p) + h(p)
−→ A∗ search

A∗ finds shortest path if h is admissible

Cycle pruning prunes paths that loop back on themselves

Multiple-path pruning prunes paths to nodes that have already
been expanded.

Depth-first branch-and-bound combines space saving of
depth-first search with the optimality of A∗.
(but doesn’t have space saving with multiple-path pruning)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 18 / 24



Review: Searching

Generic search algorithm expands paths in frontier, until it
expands a goal

Frontier is a stack −→ depth-firt search

Frontier is a queue −→ breadth-first search

Frontier is a priority queue ordered by path cost −→
least-cost-first search

Frontier is a priority queue ordered by f (p) = cost(p) + h(p)
−→ A∗ search

A∗ finds shortest path if h is admissible

Cycle pruning prunes paths that loop back on themselves

Multiple-path pruning prunes paths to nodes that have already
been expanded.

Depth-first branch-and-bound combines space saving of
depth-first search with the optimality of A∗.

(but doesn’t have space saving with multiple-path pruning)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 18 / 24



Review: Searching

Generic search algorithm expands paths in frontier, until it
expands a goal

Frontier is a stack −→ depth-firt search

Frontier is a queue −→ breadth-first search

Frontier is a priority queue ordered by path cost −→
least-cost-first search

Frontier is a priority queue ordered by f (p) = cost(p) + h(p)
−→ A∗ search

A∗ finds shortest path if h is admissible

Cycle pruning prunes paths that loop back on themselves

Multiple-path pruning prunes paths to nodes that have already
been expanded.

Depth-first branch-and-bound combines space saving of
depth-first search with the optimality of A∗.
(but doesn’t have space saving with multiple-path pruning)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 18 / 24



Constraint Satisfaction Problems

Constraint satisfaction problems defined in terms of variables,
domains, constraints

Constraint satisfactions problems can be solved with search

An arc 〈X , c〉 is arc consistent if for every value for X there
are values for the other variables that satisfies c .

Arc consistency can be used to simplify the search space

Domain splitting can be used to find solutions.

Local search maintains a complete assignment of a value to
each variable, and has a mix of improving and randomized
steps.

There are many variants of local search to find solutions or
minimize an evaluation function

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 19 / 24



Constraint Satisfaction Problems

Constraint satisfaction problems defined in terms of variables,
domains, constraints

Constraint satisfactions problems can be solved with search

An arc 〈X , c〉 is arc consistent if for every value for X there
are values for the other variables that satisfies c .

Arc consistency can be used to simplify the search space

Domain splitting can be used to find solutions.

Local search maintains a complete assignment of a value to
each variable, and has a mix of improving and randomized
steps.

There are many variants of local search to find solutions or
minimize an evaluation function

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 19 / 24



Constraint Satisfaction Problems

Constraint satisfaction problems defined in terms of variables,
domains, constraints

Constraint satisfactions problems can be solved with search

An arc 〈X , c〉 is arc consistent if for every value for X there
are values for the other variables that satisfies c .

Arc consistency can be used to simplify the search space

Domain splitting can be used to find solutions.

Local search maintains a complete assignment of a value to
each variable, and has a mix of improving and randomized
steps.

There are many variants of local search to find solutions or
minimize an evaluation function

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 19 / 24



Constraint Satisfaction Problems

Constraint satisfaction problems defined in terms of variables,
domains, constraints

Constraint satisfactions problems can be solved with search

An arc 〈X , c〉 is arc consistent if for every value for X there
are values for the other variables that satisfies c .

Arc consistency can be used to simplify the search space

Domain splitting can be used to find solutions.

Local search maintains a complete assignment of a value to
each variable, and has a mix of improving and randomized
steps.

There are many variants of local search to find solutions or
minimize an evaluation function

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 19 / 24



Constraint Satisfaction Problems

Constraint satisfaction problems defined in terms of variables,
domains, constraints

Constraint satisfactions problems can be solved with search

An arc 〈X , c〉 is arc consistent if for every value for X there
are values for the other variables that satisfies c .

Arc consistency can be used to simplify the search space

Domain splitting can be used to find solutions.

Local search maintains a complete assignment of a value to
each variable, and has a mix of improving and randomized
steps.

There are many variants of local search to find solutions or
minimize an evaluation function

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 19 / 24



Constraint Satisfaction Problems

Constraint satisfaction problems defined in terms of variables,
domains, constraints

Constraint satisfactions problems can be solved with search

An arc 〈X , c〉 is arc consistent if for every value for X there
are values for the other variables that satisfies c .

Arc consistency can be used to simplify the search space

Domain splitting can be used to find solutions.

Local search maintains a complete assignment of a value to
each variable, and has a mix of improving and randomized
steps.

There are many variants of local search to find solutions or
minimize an evaluation function

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 19 / 24



Planning

STRIPS is used to represent actions in terms of
I preconditions
I effects

Planning is finding a sequence of actions to achieve a goal
from an initial state. Planning is achieved by mapping to a
search problem .

A forward planner searches from the initial state to a goal
state in a state-space graph.

A regression planner searchers in a graph where nodes are
propositions (representing subgoals), and the start node is the
goal to be solved.

A CSP planner converts a planning problem into a CSP for a
fixed planning horizon.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 20 / 24



Planning

STRIPS is used to represent actions in terms of
I preconditions
I effects

Planning is finding a sequence of actions to achieve a goal
from an initial state. Planning is achieved by mapping to a
search problem .

A forward planner searches from the initial state to a goal
state in a state-space graph.

A regression planner searchers in a graph where nodes are
propositions (representing subgoals), and the start node is the
goal to be solved.

A CSP planner converts a planning problem into a CSP for a
fixed planning horizon.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 20 / 24



Planning

STRIPS is used to represent actions in terms of
I preconditions
I effects

Planning is finding a sequence of actions to achieve a goal
from an initial state. Planning is achieved by mapping to a
search problem .

A forward planner searches from the initial state to a goal
state in a state-space graph.

A regression planner searchers in a graph where nodes are
propositions (representing subgoals), and the start node is the
goal to be solved.

A CSP planner converts a planning problem into a CSP for a
fixed planning horizon.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 20 / 24



Planning

STRIPS is used to represent actions in terms of
I preconditions
I effects

Planning is finding a sequence of actions to achieve a goal
from an initial state. Planning is achieved by mapping to a
search problem .

A forward planner searches from the initial state to a goal
state in a state-space graph.

A regression planner searchers in a graph where nodes are
propositions (representing subgoals), and the start node is the
goal to be solved.

A CSP planner converts a planning problem into a CSP for a
fixed planning horizon.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 20 / 24



Planning

STRIPS is used to represent actions in terms of
I preconditions
I effects

Planning is finding a sequence of actions to achieve a goal
from an initial state. Planning is achieved by mapping to a
search problem .

A forward planner searches from the initial state to a goal
state in a state-space graph.

A regression planner searchers in a graph where nodes are
propositions (representing subgoals), and the start node is the
goal to be solved.

A CSP planner converts a planning problem into a CSP for a
fixed planning horizon.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 20 / 24



Probability and Belief Networks

Probability is defined in terms of measures over possible worlds

The probability of a proposition is the measure of the set of
worlds in which the proposition is true.

Conditioning on evidence: make the worlds incompatible with
the evidence have measure 0, and multiply the others by a
constant to get a measure.

A belief network is a representation of conditional
independence:
in a total ordering of the variables, each variable is
independent of its predecessors given it’s parents

Variable elimination computes the posterior probability of a
variable given evidence by summing out the non-observed
non-query variables

A causal model predicts the effect of a intervention.

A naive Bayes model can be used for learning and help
systems.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 21 / 24



Probability and Belief Networks

Probability is defined in terms of measures over possible worlds

The probability of a proposition is the measure of the set of
worlds in which the proposition is true.

Conditioning on evidence: make the worlds incompatible with
the evidence have measure 0, and multiply the others by a
constant to get a measure.

A belief network is a representation of conditional
independence:
in a total ordering of the variables, each variable is
independent of its predecessors given it’s parents

Variable elimination computes the posterior probability of a
variable given evidence by summing out the non-observed
non-query variables

A causal model predicts the effect of a intervention.

A naive Bayes model can be used for learning and help
systems.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 21 / 24



Probability and Belief Networks

Probability is defined in terms of measures over possible worlds

The probability of a proposition is the measure of the set of
worlds in which the proposition is true.

Conditioning on evidence: make the worlds incompatible with
the evidence have measure 0, and multiply the others by a
constant to get a measure.

A belief network is a representation of conditional
independence:
in a total ordering of the variables, each variable is
independent of its predecessors given it’s parents

Variable elimination computes the posterior probability of a
variable given evidence by summing out the non-observed
non-query variables

A causal model predicts the effect of a intervention.

A naive Bayes model can be used for learning and help
systems.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 21 / 24



Probability and Belief Networks

Probability is defined in terms of measures over possible worlds

The probability of a proposition is the measure of the set of
worlds in which the proposition is true.

Conditioning on evidence: make the worlds incompatible with
the evidence have measure 0, and multiply the others by a
constant to get a measure.

A belief network is a representation of conditional
independence:
in a total ordering of the variables, each variable is
independent of its predecessors given it’s parents

Variable elimination computes the posterior probability of a
variable given evidence by summing out the non-observed
non-query variables

A causal model predicts the effect of a intervention.

A naive Bayes model can be used for learning and help
systems.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 21 / 24



Probability and Belief Networks

Probability is defined in terms of measures over possible worlds

The probability of a proposition is the measure of the set of
worlds in which the proposition is true.

Conditioning on evidence: make the worlds incompatible with
the evidence have measure 0, and multiply the others by a
constant to get a measure.

A belief network is a representation of conditional
independence:
in a total ordering of the variables, each variable is
independent of its predecessors given it’s parents

Variable elimination computes the posterior probability of a
variable given evidence by summing out the non-observed
non-query variables

A causal model predicts the effect of a intervention.

A naive Bayes model can be used for learning and help
systems.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 21 / 24



Decision Networks

Decision network:

DAG with three sorts of nodes: decision (rectangle), random
(ellipse), utility (diamond)

Domain for each decision and random node (no domain for
utility)

Factor for each random node and the utility (no initial factor
for decision nodes)

A decision function maps assignments to the parents of a
decision node to a value in the domain of the decision node.

A policy assigns a decision function to each decision node.

Find optimal policy: sum out random variables until a decision
variable D is in a factor F where all of the other variables in F
are parents of D; then maximize D.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 22 / 24



Decision Networks

Decision network:

DAG with three sorts of nodes: decision (rectangle), random
(ellipse), utility (diamond)

Domain for each decision and random node (no domain for
utility)

Factor for each random node and the utility (no initial factor
for decision nodes)

A decision function maps assignments to the parents of a
decision node to a value in the domain of the decision node.

A policy assigns a decision function to each decision node.

Find optimal policy: sum out random variables until a decision
variable D is in a factor F where all of the other variables in F
are parents of D; then maximize D.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 22 / 24



Decision Networks

Decision network:

DAG with three sorts of nodes: decision (rectangle), random
(ellipse), utility (diamond)

Domain for each decision and random node (no domain for
utility)

Factor for each random node and the utility (no initial factor
for decision nodes)

A decision function maps assignments to the parents of a
decision node to a value in the domain of the decision node.

A policy assigns a decision function to each decision node.

Find optimal policy: sum out random variables until a decision
variable D is in a factor F where all of the other variables in F
are parents of D; then maximize D.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 22 / 24



Markov Models

A Markov chain is a particular sort of belief network that can
extend indefinitely:

S0 S1 S2 S3 S4

A hidden Markov model (HMM) is a particular sort of belief
network that can extend indefinitely:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

S5

Hidden Markov models can be used for localization and simple
language models

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 23 / 24



Markov Models

A Markov chain is a particular sort of belief network that can
extend indefinitely:

S0 S1 S2 S3 S4

A hidden Markov model (HMM) is a particular sort of belief
network that can extend indefinitely:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

S5

Hidden Markov models can be used for localization and simple
language models

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 23 / 24



Markov Models

A Markov chain is a particular sort of belief network that can
extend indefinitely:

S0 S1 S2 S3 S4

A hidden Markov model (HMM) is a particular sort of belief
network that can extend indefinitely:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

S5

Hidden Markov models can be used for localization and simple
language models

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 23 / 24



Markov Decision Process (MDP)

An MDP combines decision network and Markov chain:

S0 S1 S2

A0 A1

S3

A2

V

Initial Factors:

P(S0), P(Si+1 | Si ,Ai ) and V (S3).
Sum out S3, create a factor Q(S2,A2)
Maximize A2, create factor V (S2) & decision function π(S2).
This is the same form as the original problem, with one less
time step → solve recursively.
This works for arbitrary stages (number of times)
An MDP extends indefinitely, and often includes rewards at
each time. Reinforcement learning typically works by
estimating Q(S ,A). Assumes fully observable environment.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 24 / 24



Markov Decision Process (MDP)

An MDP combines decision network and Markov chain:

S0 S1 S2

A0 A1

S3

A2

V

Initial Factors: P(S0), P(Si+1 | Si ,Ai ) and V (S3).

Sum out S3, create a factor Q(S2,A2)
Maximize A2, create factor V (S2) & decision function π(S2).
This is the same form as the original problem, with one less
time step → solve recursively.
This works for arbitrary stages (number of times)
An MDP extends indefinitely, and often includes rewards at
each time. Reinforcement learning typically works by
estimating Q(S ,A). Assumes fully observable environment.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 24 / 24



Markov Decision Process (MDP)

An MDP combines decision network and Markov chain:

S0 S1 S2

A0 A1

S3

A2

V

Initial Factors: P(S0), P(Si+1 | Si ,Ai ) and V (S3).
Sum out

S3, create a factor Q(S2,A2)
Maximize A2, create factor V (S2) & decision function π(S2).
This is the same form as the original problem, with one less
time step → solve recursively.
This works for arbitrary stages (number of times)
An MDP extends indefinitely, and often includes rewards at
each time. Reinforcement learning typically works by
estimating Q(S ,A). Assumes fully observable environment.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 24 / 24



Markov Decision Process (MDP)

An MDP combines decision network and Markov chain:

S0 S1 S2

A0 A1

S3

A2

V

Initial Factors: P(S0), P(Si+1 | Si ,Ai ) and V (S3).
Sum out S3, create a factor

Q(S2,A2)
Maximize A2, create factor V (S2) & decision function π(S2).
This is the same form as the original problem, with one less
time step → solve recursively.
This works for arbitrary stages (number of times)
An MDP extends indefinitely, and often includes rewards at
each time. Reinforcement learning typically works by
estimating Q(S ,A). Assumes fully observable environment.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 24 / 24



Markov Decision Process (MDP)

An MDP combines decision network and Markov chain:

S0 S1 S2

A0 A1

S3

A2

V

Initial Factors: P(S0), P(Si+1 | Si ,Ai ) and V (S3).
Sum out S3, create a factor Q(S2,A2)
Maximize

A2, create factor V (S2) & decision function π(S2).
This is the same form as the original problem, with one less
time step → solve recursively.
This works for arbitrary stages (number of times)
An MDP extends indefinitely, and often includes rewards at
each time. Reinforcement learning typically works by
estimating Q(S ,A). Assumes fully observable environment.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 24 / 24



Markov Decision Process (MDP)

An MDP combines decision network and Markov chain:

S0 S1 S2

A0 A1

S3

A2

V

Initial Factors: P(S0), P(Si+1 | Si ,Ai ) and V (S3).
Sum out S3, create a factor Q(S2,A2)
Maximize A2, create factor

V (S2) & decision function π(S2).
This is the same form as the original problem, with one less
time step → solve recursively.
This works for arbitrary stages (number of times)
An MDP extends indefinitely, and often includes rewards at
each time. Reinforcement learning typically works by
estimating Q(S ,A). Assumes fully observable environment.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 24 / 24



Markov Decision Process (MDP)

An MDP combines decision network and Markov chain:

S0 S1 S2

A0 A1

S3

A2

V

Initial Factors: P(S0), P(Si+1 | Si ,Ai ) and V (S3).
Sum out S3, create a factor Q(S2,A2)
Maximize A2, create factor V (S2) & decision function π(S2).
This is the same form as the original problem, with one less
time step

→ solve recursively.
This works for arbitrary stages (number of times)
An MDP extends indefinitely, and often includes rewards at
each time. Reinforcement learning typically works by
estimating Q(S ,A). Assumes fully observable environment.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 24 / 24



Markov Decision Process (MDP)

An MDP combines decision network and Markov chain:

S0 S1 S2

A0 A1

S3

A2

V

Initial Factors: P(S0), P(Si+1 | Si ,Ai ) and V (S3).
Sum out S3, create a factor Q(S2,A2)
Maximize A2, create factor V (S2) & decision function π(S2).
This is the same form as the original problem, with one less
time step → solve recursively.

This works for arbitrary stages (number of times)
An MDP extends indefinitely, and often includes rewards at
each time. Reinforcement learning typically works by
estimating Q(S ,A). Assumes fully observable environment.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 24 / 24



Markov Decision Process (MDP)

An MDP combines decision network and Markov chain:

S0 S1 S2

A0 A1

S3

A2

V

Initial Factors: P(S0), P(Si+1 | Si ,Ai ) and V (S3).
Sum out S3, create a factor Q(S2,A2)
Maximize A2, create factor V (S2) & decision function π(S2).
This is the same form as the original problem, with one less
time step → solve recursively.
This works for arbitrary stages (number of times)

An MDP extends indefinitely, and often includes rewards at
each time. Reinforcement learning typically works by
estimating Q(S ,A). Assumes fully observable environment.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 24 / 24



Markov Decision Process (MDP)

An MDP combines decision network and Markov chain:

S0 S1 S2

A0 A1

S3

A2

V

Initial Factors: P(S0), P(Si+1 | Si ,Ai ) and V (S3).
Sum out S3, create a factor Q(S2,A2)
Maximize A2, create factor V (S2) & decision function π(S2).
This is the same form as the original problem, with one less
time step → solve recursively.
This works for arbitrary stages (number of times)
An MDP extends indefinitely, and often includes rewards at
each time. Reinforcement learning typically works by
estimating Q(S ,A). Assumes fully observable environment.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 24 / 24



Overview of Course

dy
na

m
ic

s

ob
se

rv
ab

le

re
pr

st
ag

e

pr
ef

er
en

ce

ra
ti

on
al

it
y

search det fully states indef goals perfect
CSPs det fully feats static — perfect
SLS det fully feats static — bounded
planning det fully feats indef goals perfect
belief nets stoch partial feats static — perfect
stoch siml stoch partial feats static — bounded
decision nets stoch partial feats finite utility perfect
Markov models stoch partial states infinite — perfect
MDP stoch fully states infinite utility perfect

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 25 / 24



©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23 26 / 24


