Second half of course...

• A belief network is a representation of conditional independence:

in a total ordering of the variables, each variable is independent of its predecessors given it's parents

 Variable elimination computes the posterior probability of a variable given evidence by summing out the non-observed non-query variables.

Second half of course...

• A belief network is a representation of conditional independence:

in a total ordering of the variables, each variable is independent of its predecessors given it's parents

- Variable elimination computes the posterior probability of a variable given evidence by summing out the non-observed non-query variables.
- A causal model predicts the effect of a intervention.
- A naive bayes model can be used for learning and help systems.
- Utility is a measure of preferences that is defined in terms of lotteries.
- A decision network has random nodes, decision nodes and a utility node. A policy has an expected utility.
- A Markov decision process can model ongoing activity with rewards, but only fully observable case is feasible.

- set S of states.
- set A of actions.

- set S of states.
- set A of actions.
- $P(S_{t+1} | S_t, A_t)$ specifies the dynamics.

- set S of states.
- set A of actions.
- $P(S_{t+1} | S_t, A_t)$ specifies the dynamics.
- R(S_t, A_t) specifies the expected reward at time t.
 R(s, a) is the expected reward of doing a in state s

- set S of states.
- set A of actions.
- $P(S_{t+1} | S_t, A_t)$ specifies the dynamics.
- R(S_t, A_t) specifies the expected reward at time t.
 R(s, a) is the expected reward of doing a in state s
- γ is discount factor.

An MDP consists of:

- set S of states.
- set A of actions.
- $P(S_{t+1} | S_t, A_t)$ specifies the dynamics.
- R(S_t, A_t) specifies the expected reward at time t.
 R(s, a) is the expected reward of doing a in state s
- γ is discount factor.

Discounted reward: If V_t is the value obtained from time step t

$$V_t =$$

An MDP consists of:

- set S of states.
- set A of actions.
- $P(S_{t+1} | S_t, A_t)$ specifies the dynamics.
- R(S_t, A_t) specifies the expected reward at time t.
 R(s, a) is the expected reward of doing a in state s
- γ is discount factor.

Discounted reward: If V_t is the value obtained from time step t

 $V_t = r_t + \gamma V_{t+1}$

< D)

Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.

- Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- V^π(s), where s is a state, is the expected value of following policy π in state s.

- Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- V^π(s), where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$egin{array}{rl} V^{\pi}(s)&=&\\ Q^{\pi}(s,a)&=& \end{array}$$

- Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- V^π(s), where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

 $Q^{\pi}(s, a) =$

- Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- V^π(s), where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^{\pi}(s')$$

• $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V^{*}(s), where s is a state, is the expected value of following the optimal policy in state s.

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V^{*}(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^*(s,a) =$$

$$egin{array}{rl} V^*(s)&=&\\ \pi^*(s)&=& \end{array}$$

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V^{*}(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^*(s, a) = R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^*(s')$$

 $V^*(s) =$

$$\pi^*(s) =$$

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V^{*}(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^{*}(s, a) = R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^{*}(s')$$
$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$\pi^{*}(s) =$$

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V^{*}(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s' \mid a, s) V^*(s')$$
$$V^*(s) = \max_{a} Q^*(s,a)$$
$$\pi^*(s) = \arg \max_{a} Q^*(s,a)$$

- Repeat forever:
 - Select state s, action a

▶
$$Q[s,a] \leftarrow$$

- Repeat forever:
 - ► Select state *s*, action *a* ► $Q[s, a] \leftarrow R(s, a) + \gamma \sum_{s'} P(s' | s, a) \left(\max_{a'} Q[s', a'] \right)$

- Go is a board game on 19×19 grid. Each position can have black stone or white stone or no stone.
- Approximately 2 * 10¹⁷⁰ states (legal board positions)

AlphaGo / AlphaZero:

• "Store" V(s) and $\pi(s)$.

- Go is a board game on 19 \times 19 grid. Each position can have black stone or white stone or no stone.
- Approximately $2 * 10^{170}$ states (legal board positions)

AlphaGo / AlphaZero:

- "Store" V(s) and $\pi(s)$.
- Assume opponent is also playing π(s) + some randomness (for exploration)

- Go is a board game on 19×19 grid. Each position can have black stone or white stone or no stone.
- Approximately $2 * 10^{170}$ states (legal board positions)

AlphaGo / AlphaZero:

- "Store" V(s) and $\pi(s)$.
- Assume opponent is also playing π(s) + some randomness (for exploration)
- Compute expected values using forward sampling (Monte-Carlo tree search); play the game to end, multiple times and average.
- Try a few other actions to see if one is better (exploration).

- Go is a board game on 19×19 grid. Each position can have black stone or white stone or no stone.
- Approximately $2 * 10^{170}$ states (legal board positions)

AlphaGo / AlphaZero:

- "Store" V(s) and $\pi(s)$.
- Assume opponent is also playing π(s) + some randomness (for exploration)
- Compute expected values using forward sampling (Monte-Carlo tree search); play the game to end, multiple times and average.
- Try a few other actions to see if one is better (exploration).
- Use neural networks to represent V(s) and $\pi(s)$ (see CPSC 340)

- Enormous state space $2 * 10^{170}$ states (number of atoms in observable universe $\approx 10^{80}$).
- Many moves (up to 361)

- Enormous state space $2 * 10^{170}$ states (number of atoms in observable universe $\approx 10^{80}$).
- Many moves (up to 361)

Why easy?

- Enormous state space $2 * 10^{170}$ states (number of atoms in observable universe $\approx 10^{80}$).
- Many moves (up to 361)

Why easy?

• Well defined rules (we know the transition rules and goal)

- Enormous state space $2 * 10^{170}$ states (number of atoms in observable universe $\approx 10^{80}$).
- Many moves (up to 361)

Why easy?

- Well defined rules (we know the transition rules and goal)
- Simple utility (0/1).
 So expected value = probability of winning

- Enormous state space $2 * 10^{170}$ states (number of atoms in observable universe $\approx 10^{80}$).
- Many moves (up to 361)

Why easy?

- Well defined rules (we know the transition rules and goal)
- Simple utility (0/1).
 So expected value = probability of winning
- Fully observable, with a well define state (board position)

- Enormous state space $2 * 10^{170}$ states (number of atoms in observable universe $\approx 10^{80}$).
- Many moves (up to 361)

Why easy?

- Well defined rules (we know the transition rules and goal)
- Simple utility (0/1).
 So expected value = probability of winning
- Fully observable, with a well define state (board position)
- Two players that are adversaries. (Multiple-agent reasoning is *much* more difficult with partial observability (eg. simple interaction such as poker).

Dynamic Decision Network

Parents of A_i are all of the *State_i* variables.

Overview

Agents acting in an environment

< □ >

Dimension	Values
Modularity	flat, modular, hierarchical

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Dimension	Values
------------------	----------------------------------
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Representation	states, features, relations

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Representation	states, features, relations
Computational limits	perfect rationality, bounded rationality

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Representation	states, features, relations
Computational limits	perfect rationality, bounded rationality
Learning	knowledge is given, knowledge is learned

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Representation	states, features, relations
Computational limits	perfect rationality, bounded rationality
Learning	knowledge is given, knowledge is learned
Sensing uncertainty	fully observable, partially observable

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Representation	states, features, relations
Computational limits	perfect rationality, bounded rationality
Learning Sensing uncertainty Effect uncertainty	knowledge is given, knowledge is learned fully observable, partially observable deterministic, stochastic

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Representation	states, features, relations
Computational limits	perfect rationality, bounded rationality
Learning	knowledge is given, knowledge is learned
Sensing uncertainty	fully observable, partially observable
Effect uncertainty	deterministic, stochastic
Preference	goals, complex preferences

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Representation	states, features, relations
Computational limits	perfect rationality, bounded rationality
Learning	knowledge is given, knowledge is learned
Sensing uncertainty	fully observable, partially observable
Effect uncertainty	deterministic, stochastic
Preference	goals, complex preferences
Number of agents	single agent, multiple agents

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Representation	states, features, relations
Computational limits	perfect rationality, bounded rationality
Learning	knowledge is given, knowledge is learned
Sensing uncertainty	fully observable, partially observable
Effect uncertainty	deterministic, stochastic
Preference	goals, complex preferences
Number of agents	single agent, multiple agents
Interaction	offline, online

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Representation	states, features, relations
Computational limits	perfect rationality, bounded rationality
Learning	knowledge is given, knowledge is learned
Sensing uncertainty	fully observable, partially observable
Effect uncertainty	deterministic, stochastic
Preference	goals, complex preferences
Number of agents	single agent, multiple agents
Interaction	offline, online

Classical Forward/Regression Planning

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Representation	states, features, relations
Computational limits	perfect rationality, bounded rationality
Learning	knowledge is given, knowledge is learned
Sensing uncertainty	fully observable, partially observable
Effect uncertainty	deterministic, stochastic
Preference	goals, complex preferences
Number of agents	single agent, multiple agents
Interaction	offline, online

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, <mark>finite stage</mark> ,
	indefinite stage, infinite stage
Representation	states, features, relations
Computational limits	perfect rationality, bounded rationality
Learning	knowledge is given, knowledge is learned
Sensing uncertainty	fully observable, partially observable
Effect uncertainty	deterministic, stochastic
Preference	goals, complex preferences
Number of agents	single agent, multiple agents
Interaction	offline, online

14/24

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, <mark>finite stage</mark> ,
	indefinite stage, infinite stage
Representation	states, features, relations
Computational limits	perfect rationality, bounded rationality
Learning	knowledge is given, knowledge is learned
Sensing uncertainty	fully observable, partially observable
Effect uncertainty	deterministic, <mark>stochastic</mark>
Preference	goals, complex preferences
Number of agents	single agent, multiple agents
Interaction	offline, online

Dimension	Values
Modularity	flat, modular, hierarchical
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Representation	states, features, relations
Computational limits	perfect rationality, bounded rationality
Learning	knowledge is given, knowledge is learned
Sensing uncertainty	fully observable, partially observable
Effect uncertainty	deterministic, stochastic
Preference	goals, complex preferences
Number of agents	single agent, multiple agents
Interaction	offline, online

Dimension	Values
Modularity	flat, modular, <mark>hierarchical</mark>
Planning horizon	non-planning, finite stage,
	indefinite stage, infinite stage
Representation	states, features, <mark>relations</mark>
Computational limits	perfect rationality, bounded rationality
Learning	knowledge is given, knowledge is learned
Sensing uncertainty	fully observable, partially observable
Effect uncertainty	deterministic, <mark>stochastic</mark>
Preference	goals, complex preferences
Number of agents	single agent, <mark>multiple agents</mark>
Interaction	offline, <mark>online</mark>

17 / 24

• Generic search algorithm expands paths in frontier, until it expands a goal

- Generic search algorithm expands paths in frontier, until it expands a goal
- \bullet Frontier is a stack \longrightarrow depth-firt search
- Frontier is a queue \longrightarrow breadth-first search
- \bullet Frontier is a priority queue ordered by path cost \longrightarrow least-cost-first search

- Generic search algorithm expands paths in frontier, until it expands a goal
- \bullet Frontier is a stack \longrightarrow depth-firt search
- Frontier is a queue \longrightarrow breadth-first search
- \bullet Frontier is a priority queue ordered by path cost \longrightarrow least-cost-first search
- Frontier is a priority queue ordered by f(p) = cost(p) + h(p)
 → A* search

- Generic search algorithm expands paths in frontier, until it expands a goal
- \bullet Frontier is a stack \longrightarrow depth-firt search
- $\bullet\,$ Frontier is a queue \longrightarrow breadth-first search
- \bullet Frontier is a priority queue ordered by path cost \longrightarrow least-cost-first search
- Frontier is a priority queue ordered by f(p) = cost(p) + h(p)
 → A* search
- A* finds shortest path if h is admissible

- Generic search algorithm expands paths in frontier, until it expands a goal
- \bullet Frontier is a stack \longrightarrow depth-firt search
- $\bullet\,$ Frontier is a queue \longrightarrow breadth-first search
- \bullet Frontier is a priority queue ordered by path cost \longrightarrow least-cost-first search
- Frontier is a priority queue ordered by f(p) = cost(p) + h(p)
 → A* search
- A* finds shortest path if h is admissible
- Cycle pruning prunes paths that loop back on themselves
- Multiple-path pruning prunes paths to nodes that have already been expanded.

- Generic search algorithm expands paths in frontier, until it expands a goal
- \bullet Frontier is a stack \longrightarrow depth-firt search
- Frontier is a queue \longrightarrow breadth-first search
- \bullet Frontier is a priority queue ordered by path cost \longrightarrow least-cost-first search
- Frontier is a priority queue ordered by f(p) = cost(p) + h(p)
 → A* search
- A* finds shortest path if h is admissible
- Cycle pruning prunes paths that loop back on themselves
- Multiple-path pruning prunes paths to nodes that have already been expanded.
- Depth-first branch-and-bound combines space saving of depth-first search with the optimality of *A**.

- Generic search algorithm expands paths in frontier, until it expands a goal
- \bullet Frontier is a stack \longrightarrow depth-firt search
- $\bullet\,$ Frontier is a queue \longrightarrow breadth-first search
- \bullet Frontier is a priority queue ordered by path cost \longrightarrow least-cost-first search
- Frontier is a priority queue ordered by f(p) = cost(p) + h(p)
 → A* search
- A* finds shortest path if h is admissible
- Cycle pruning prunes paths that loop back on themselves
- Multiple-path pruning prunes paths to nodes that have already been expanded.
- Depth-first branch-and-bound combines space saving of depth-first search with the optimality of A*. (but doesn't have space saving with multiple-path pruning)

• Constraint satisfaction problems defined in terms of variables, domains, constraints

- Constraint satisfaction problems defined in terms of variables, domains, constraints
- Constraint satisfactions problems can be solved with search

- Constraint satisfaction problems defined in terms of variables, domains, constraints
- Constraint satisfactions problems can be solved with search
- An arc $\langle X, c \rangle$ is arc consistent if for every value for X there are values for the other variables that satisfies c.

- Constraint satisfaction problems defined in terms of variables, domains, constraints
- Constraint satisfactions problems can be solved with search
- An arc $\langle X, c \rangle$ is arc consistent if for every value for X there are values for the other variables that satisfies c.
- Arc consistency can be used to simplify the search space
- Domain splitting can be used to find solutions.

- Constraint satisfaction problems defined in terms of variables, domains, constraints
- Constraint satisfactions problems can be solved with search
- An arc $\langle X, c \rangle$ is arc consistent if for every value for X there are values for the other variables that satisfies c.
- Arc consistency can be used to simplify the search space
- Domain splitting can be used to find solutions.
- Local search maintains a complete assignment of a value to each variable, and has a mix of improving and randomized steps.

- Constraint satisfaction problems defined in terms of variables, domains, constraints
- Constraint satisfactions problems can be solved with search
- An arc $\langle X, c \rangle$ is arc consistent if for every value for X there are values for the other variables that satisfies c.
- Arc consistency can be used to simplify the search space
- Domain splitting can be used to find solutions.
- Local search maintains a complete assignment of a value to each variable, and has a mix of improving and randomized steps.
- There are many variants of local search to find solutions or minimize an evaluation function

19/24

Planning

• STRIPS is used to represent actions in terms of

- preconditions
- effects

- STRIPS is used to represent actions in terms of
 - preconditions
 - effects
- Planning is finding a sequence of actions to achieve a goal from an initial state. Planning is achieved by mapping to a search problem .

- STRIPS is used to represent actions in terms of
 - preconditions
 - effects
- Planning is finding a sequence of actions to achieve a goal from an initial state. Planning is achieved by mapping to a search problem .
- A forward planner searches from the initial state to a goal state in a state-space graph.

- STRIPS is used to represent actions in terms of
 - preconditions
 - effects
- Planning is finding a sequence of actions to achieve a goal from an initial state. Planning is achieved by mapping to a search problem .
- A forward planner searches from the initial state to a goal state in a state-space graph.
- A regression planner searchers in a graph where nodes are propositions (representing subgoals), and the start node is the goal to be solved.

- STRIPS is used to represent actions in terms of
 - preconditions
 - effects
- Planning is finding a sequence of actions to achieve a goal from an initial state. Planning is achieved by mapping to a search problem .
- A forward planner searches from the initial state to a goal state in a state-space graph.
- A regression planner searchers in a graph where nodes are propositions (representing subgoals), and the start node is the goal to be solved.
- A CSP planner converts a planning problem into a CSP for a fixed planning horizon.

- Probability is defined in terms of measures over possible worlds
- The probability of a proposition is the measure of the set of worlds in which the proposition is true.
- Conditioning on evidence: make the worlds incompatible with the evidence have measure 0, and multiply the others by a constant to get a measure.

- Probability is defined in terms of measures over possible worlds
- The probability of a proposition is the measure of the set of worlds in which the proposition is true.
- Conditioning on evidence: make the worlds incompatible with the evidence have measure 0, and multiply the others by a constant to get a measure.
- A belief network is a representation of conditional independence:

in a total ordering of the variables, each variable is independent of its predecessors given it's parents

- Probability is defined in terms of measures over possible worlds
- The probability of a proposition is the measure of the set of worlds in which the proposition is true.
- Conditioning on evidence: make the worlds incompatible with the evidence have measure 0, and multiply the others by a constant to get a measure.
- A belief network is a representation of conditional independence:

in a total ordering of the variables, each variable is independent of its predecessors given it's parents

• Variable elimination computes the posterior probability of a variable given evidence by summing out the non-observed non-query variables

- Probability is defined in terms of measures over possible worlds
- The probability of a proposition is the measure of the set of worlds in which the proposition is true.
- Conditioning on evidence: make the worlds incompatible with the evidence have measure 0, and multiply the others by a constant to get a measure.
- A belief network is a representation of conditional independence:

in a total ordering of the variables, each variable is independent of its predecessors given it's parents

- Variable elimination computes the posterior probability of a variable given evidence by summing out the non-observed non-query variables
- A causal model predicts the effect of a intervention.
Probability and Belief Networks

- Probability is defined in terms of measures over possible worlds
- The probability of a proposition is the measure of the set of worlds in which the proposition is true.
- Conditioning on evidence: make the worlds incompatible with the evidence have measure 0, and multiply the others by a constant to get a measure.
- A belief network is a representation of conditional independence:

in a total ordering of the variables, each variable is independent of its predecessors given it's parents

- Variable elimination computes the posterior probability of a variable given evidence by summing out the non-observed non-query variables
- A causal model predicts the effect of a intervention.
- A naive Bayes model can be used for learning and help systems.

Decision network:

- DAG with three sorts of nodes: decision (rectangle), random (ellipse), utility (diamond)
- Domain for each decision and random node (no domain for utility)
- Factor for each random node and the utility (no initial factor for decision nodes)

Decision network:

- DAG with three sorts of nodes: decision (rectangle), random (ellipse), utility (diamond)
- Domain for each decision and random node (no domain for utility)
- Factor for each random node and the utility (no initial factor for decision nodes)
- A decision function maps assignments to the parents of a decision node to a value in the domain of the decision node.
- A policy assigns a decision function to each decision node.

Decision network:

- DAG with three sorts of nodes: decision (rectangle), random (ellipse), utility (diamond)
- Domain for each decision and random node (no domain for utility)
- Factor for each random node and the utility (no initial factor for decision nodes)
- A decision function maps assignments to the parents of a decision node to a value in the domain of the decision node.
- A policy assigns a decision function to each decision node.
- Find optimal policy: sum out random variables until a decision variable *D* is in a factor *F* where all of the other variables in *F* are parents of *D*; then maximize *D*.

22 / 24

• A Markov chain is a particular sort of belief network that can extend indefinitely:

• A Markov chain is a particular sort of belief network that can extend indefinitely:

• A hidden Markov model (HMM) is a particular sort of belief network that can extend indefinitely:

• A Markov chain is a particular sort of belief network that can extend indefinitely:

• A hidden Markov model (HMM) is a particular sort of belief network that can extend indefinitely:

• Hidden Markov models can be used for localization and simple language models

An MDP combines decision network and Markov chain:

• Initial Factors:

An MDP combines decision network and Markov chain:

• Initial Factors: $P(S_0)$, $P(S_{i+1} | S_i, A_i)$ and $V(S_3)$.

24 / 24

- Initial Factors: $P(S_0)$, $P(S_{i+1} | S_i, A_i)$ and $V(S_3)$.
- Sum out

- Initial Factors: $P(S_0)$, $P(S_{i+1} | S_i, A_i)$ and $V(S_3)$.
- Sum out S_3 , create a factor

- Initial Factors: $P(S_0)$, $P(S_{i+1} | S_i, A_i)$ and $V(S_3)$.
- Sum out S_3 , create a factor $Q(S_2, A_2)$
- Maximize

- Initial Factors: $P(S_0)$, $P(S_{i+1} | S_i, A_i)$ and $V(S_3)$.
- Sum out S_3 , create a factor $Q(S_2, A_2)$
- Maximize A₂, create factor

- Initial Factors: $P(S_0)$, $P(S_{i+1} | S_i, A_i)$ and $V(S_3)$.
- Sum out S_3 , create a factor $Q(S_2, A_2)$
- Maximize A_2 , create factor $V(S_2)$ & decision function $\pi(S_2)$.
- This is the same form as the original problem, with one less time step

- Initial Factors: $P(S_0)$, $P(S_{i+1} | S_i, A_i)$ and $V(S_3)$.
- Sum out S_3 , create a factor $Q(S_2, A_2)$
- Maximize A_2 , create factor $V(S_2)$ & decision function $\pi(S_2)$.
- This is the same form as the original problem, with one less time step \rightarrow solve recursively.

- Initial Factors: $P(S_0)$, $P(S_{i+1} | S_i, A_i)$ and $V(S_3)$.
- Sum out S_3 , create a factor $Q(S_2, A_2)$
- Maximize A_2 , create factor $V(S_2)$ & decision function $\pi(S_2)$.
- This is the same form as the original problem, with one less time step \rightarrow solve recursively.
- This works for arbitrary stages (number of times)

An MDP combines decision network and Markov chain:

- Initial Factors: $P(S_0)$, $P(S_{i+1} | S_i, A_i)$ and $V(S_3)$.
- Sum out S_3 , create a factor $Q(S_2, A_2)$
- Maximize A_2 , create factor $V(S_2)$ & decision function $\pi(S_2)$.
- This is the same form as the original problem, with one less time step \rightarrow solve recursively.
- This works for arbitrary stages (number of times)
- An MDP extends indefinitely, and often includes rewards at each time. Reinforcement learning typically works by estimating Q(S, A). Assumes fully observable environment. CD.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 23

24 / 24

Overview of Course

	dynamics	observable	repr	stage	Prefe _{rence}	rationality
search	det	fully	states	indef	goals	perfect
CSPs	det	fully	feats	static		perfect
SLS	det	fully	feats	static	—	bounded
planning	det	fully	feats	indef	goals	perfect
belief nets	stoch	partial	feats	static	—	perfect
stoch siml	stoch	partial	feats	static	—	bounded
decision nets	stoch	partial	feats	finite	utility	perfect
Markov models	stoch	partial	states	infinite	—	perfect
MDP	stoch	fully	states	infinite	utility	perfect