
Uncertainty

I think that when we know that we actually do live in uncertainty,
then we ought to admit it; it is of great value to realize that we do
not know the answers to different questions. This attitude of mind
– this attitude of uncertainty – is vital to the scientist, and it is
this attitude of mind which the student must first acquire.

Richard P. Feynman
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Review

Decision network:

DAG with three sorts of nodes: decision (rectangle), random
(ellipse), utility (diamond)

Domain for each decision and random node (no domain for
utility)

Factor for each random node and the utility (no initial factor
for decision nodes)

A decision function maps assignments to the parents of a
decision node to a value in the domain of the decision node.

A policy assigns a decision function to each decision node.

In VE: sum out random variables until a decision variable D is
in a factor F where all of the other variables in F are parents
of D; then maximize D.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 22 2 / 32



Overview of Course
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search det fully states indef goals perfect
forward plan det fully feats indef goals perfect
regression plan det fully feats indef goals perfect
CSP planning det fully feats static goals perfect
SLS planning det fully feats static goals bounded
decision nets stoch partial feats finite utility perfect
MDPs stoch fully states infinite utility perfect
Dynamic DNs stoch fully feats infinite utility perfect
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Decision-theoretic Planning

What should an agent do when

it gets rewards (including punishments) and tries to maximize
its rewards received

actions can be stochastic; the outcome of an action can’t be
fully predicted

there is a model that specifies the (probabilistic) outcome of
actions and the rewards

the world is fully observable
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Initial Assumptions

flat or modular or hierarchical

explicit states or features or individuals and relations

static or finite stage or indefinite stage or infinite stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality
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Utility and time

Would you prefer $1000 today or $1000 next year?

What price would you pay now to have an eternity of
happiness?

How can you trade off pleasures today with pleasures in the
future?
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Utility and time

How would you compare the following sequences of rewards
(per week):

A: $1000000, $0, $0, $0, $0, $0,. . .
B: $1000, $1000, $1000, $1000, $1000,. . .
C: $1000, $0, $0, $0, $0,. . .
D: $1, $1, $1, $1, $1,. . .
E: $1, $2, $3, $4, $5,. . .
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Rewards and Values

Suppose the agent receives a sequence of rewards r1, r2, r3, r4, . . . in
time. What utility should be assigned? “Return” or “value”

total reward V =
∞∑
i=1

ri

average reward V = lim
n→∞

(r1 + · · ·+ rn)/n
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Average vs Accumulated Rewards

Agent goes on forever?

Agent gets stuck in "absorbing" 
state(s) with zero reward?

yes no

yes no
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Rewards and Values

Suppose the agent receives a sequence of rewards r1, r2, r3, r4, . . . in
time.

discounted return V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
γ is the discount factor 0 ≤ γ ≤ 1.
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Properties of the Discounted Rewards

The discounted return for rewards r1, r2, r3, r4, . . . is

V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
=

r1 + γ(r2 + γ(r3 + γ(r4 + . . . )))

If Vt is the value obtained from time step t

Vt = rt + γVt+1

We can approximate V with the first k terms, with error:

V − (r1 + γr2 + · · ·+ γk−1rk) = γkVk+1
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World State

The world state is the information such that if the agent knew
the world state, no information about the past is relevant to
the future. Markovian assumption.

Si is state at time i , and Ai is the action at time i :

P(St+1 | S0,A0, . . . ,St ,At) =

P(St+1 | St ,At)

P(s ′ | s, a) is the probability that the agent will be in state s ′

immediately after doing action a in state s.

The dynamics is stationary if the distribution is the same for
each time point.
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Decision Processes

A Markov decision process augments a Markov chain with
actions and rewards:

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2

…
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Markov Decision Processes

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2

…

An MDP consists of:

set S of states.

set A of actions.

P(St+1 | St ,At) specifies the dynamics.

R(St ,At) specifies the expected reward at time t.
R(s, a) is the expected reward of doing a in state s

γ is discount factor.
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Example: to party or relax?

Each week Sam has to decide whether to party or relax:

States: {healthy , sick}
Actions: {relax , party}
Dynamics:

State Action P(healthy | State,Action)

healthy relax 0.95
healthy party 0.7
sick relax 0.5
sick party 0.1

Reward:
State Action Reward

healthy relax 7
healthy party 10
sick relax 0
sick party 2
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Example: Simple Grid World

+10-10

-5-1

-1

-1

-1

+3
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Grid World Model

Actions: up, down, left, right.

100 states corresponding to the positions of the robot.

Robot goes in the commanded direction with probability 0.7,
and one of the other directions with probability 0.1.

If it crashes into an outside wall, it remains in its current
position and has a reward of −1.

Four special rewarding states; the agent gets the reward when
leaving.
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Planning Horizons

The planning horizon is how far ahead the planner looks to make a
decision.

The robot gets flung to one of the corners at random after
leaving a positive (+10 or +3) reward state.
I the process never halts
I infinite horizon

The robot gets +10 or +3 in the state, then it stays there
getting no reward. These are absorbing states.
I The robot will eventually reach an absorbing state.
I indefinite horizon
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Information Availability

What information is available when the agent decides what to do?

fully-observable MDP the agent gets to observe St when
deciding on action At .

partially-observable MDP (POMDP) the agent has some noisy
sensor of the state. It is a mix of a hidden Markov model and
MDP. It needs to remember (some function of) its sensing
and acting history.

[This lecture only considers FOMDPs.
POMDPS are much harder to solve.]
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Policies

A stationary policy is a function:

π : S → A

Given a state s, π(s) specifies what action the agent who is
following π will do.

An optimal policy is one with maximum expected discounted
reward.

For a fully-observable MDP with stationary dynamics and
rewards with infinite or indefinite horizon, there is always an
optimal stationary policy.
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Example: to party or not?

Each week Sam has to decide whether to exercise or not:

States: {healthy , sick}
Actions: {relax , party}

How many stationary policies are there?

What are they?

For the grid world with 100 states and 4 actions,
how many stationary policies are there?
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Value of a Policy

Given a policy π:

Qπ(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following policy π.

V π(s), where s is a state, is the expected value of following
policy π in state s.

Qπ and V π can be defined mutually recursively:

V π(s) =

Qπ(s, π(s))

Qπ(s, a) =

R(s, a) + γ
∑
s′

P(s ′ | a, s)V π(s ′)
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Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy.

V ∗(s), where s is a state, is the expected value of following
the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) =

R(s, a) + γ
∑
s′

P(s ′ | a, s)V ∗(s ′)

V ∗(s) =

max
a

Q∗(s, a)

π∗(s) =

arg max
a

Q∗(s, a)
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Value Iteration

Let Vk and Qk be k-step lookahead value and Q functions.

Idea: Given an estimate of the k-step lookahead value
function, determine the k + 1 step lookahead value function.

Set V0 arbitrarily.

Compute Qi+1, Vi+1 from Vi .

This converges exponentially fast (in k) to the optimal value
function.

The error reduces proportionally to
γk

1− γ
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Asynchronous Value Iteration

The agent doesn’t need to sweep through all the states, but
can update the value functions for each state individually.

This converges to the optimal value functions, if each state
and action is visited infinitely often in the limit.

It can either store V [s] or Q[s, a].
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Asynchronous VI: storing V [s]

Repeat forever:
I Select state s

I V [s]←

max
a

(
R(s, a) + γ

∑
s′

P(s ′ | s, a)V [s ′]

)
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Asynchronous VI: storing Q[s, a]

Repeat forever:
I Select state s, action a
I Q[s, a]←

R(s, a) + γ
∑
s′

P(s ′ | s, a)
(

max
a′

Q[s ′, a′]
)
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Asynchronous VI: storing Q[s, a]

Repeat forever:
I Select state s, action a
I Q[s, a]← R(s, a) + γ

∑
s′

P(s ′ | s, a)
(

max
a′

Q[s ′, a′]
)
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Policy Iteration

Set π0 arbitrarily, let i = 0

Repeat:
I evaluate Qπi (s, a)
I let πi+1(s) = argmaxaQ

πi (s, a)
I set i = i + 1

until πi (s) = πi−1(s)

Evaluating Qπi (s, a) means finding a solution to a set of |S | × |A|
linear equations with |S | × |A| unknowns.

It can also be approximated iteratively.
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Modified Policy Iteration

Set π[s] arbitrarily
Set Q[s, a] arbitrarily
Repeat forever:

Repeat for a while:
I Select state s, action a
I Q[s, a]←

∑
s′

P(s ′ | s, a) (R(s, a, s ′) + γQ[s ′, π[s ′]])

π[s]← argmaxaQ[s, a]
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Q, V , π, R

Q∗(s, a) =
∑
s′

P(s ′ | a, s)
(
R(s, a, s ′) + γV ∗(s ′)

)
= R(s, a) + γ

∑
s′

P(s ′ | a, s)V ∗(s ′)

V ∗(s) = max
a

Q∗(s, a)

π∗(s) = argmaxaQ
∗(s, a)

where

R(s, a) =
∑
s′

P(s ′ | a, s)R(s, a, s ′)
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Overview of Course
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search det fully states indef goals perfect
CSPs det fully feats static — perfect
SLS det fully feats static — bounded
logic det fully feats static — perfect
planning det fully feats indef goals perfect
belief nets stoch partial feats static — perfect
decision nets stoch partial feats finite utility perfect
Markov models stoch partial states infinite — perfect
MDP stoch fully states indefinite utility perfect
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