I think that when we know that we actually do live in uncertainty, then we ought to admit it; it is of great value to realize that we do not know the answers to different questions. This attitude of mind – this attitude of uncertainty – is vital to the scientist, and it is this attitude of mind which the student must first acquire.

Richard P. Feynman

Decision network:

- DAG with three sorts of nodes: decision (rectangle), random (ellipse), utility (diamond)
- Domain for each decision and random node (no domain for utility)
- Factor for each random node and the utility (no initial factor for decision nodes)
- A decision function maps assignments to the parents of a decision node to a value in the domain of the decision node.
- A policy assigns a decision function to each decision node.
- In VE: sum out random variables until a decision variable *D* is in a factor *F* where all of the other variables in *F* are parents of *D*; then maximize *D*.

2/32

Overview of Course

	dynamics	observable	repr	stage	Preference	rationality
search	det	fully	states	indef	goals	perfect
forward plan	det	fully	feats	indef	goals	perfect
regression plan	det	fully	feats	indef	goals	perfect
CSP planning	det	fully	feats	static	goals	perfect
SLS planning	det	fully	feats	static	goals	bounded
decision nets	stoch	partial	feats	finite	utility	perfect
MDPs	stoch	fully	states	infinite	utility	perfect
Dynamic DNs	stoch	fully	feats	infinite	utility	perfect

• it gets rewards (including punishments) and tries to maximize its rewards received

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted
- there is a model that specifies the (probabilistic) outcome of actions and the rewards

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted
- there is a model that specifies the (probabilistic) outcome of actions and the rewards
- the world is fully observable

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

- Would you prefer \$1000 today or \$1000 next year?
- What price would you pay now to have an eternity of happiness?
- How can you trade off pleasures today with pleasures in the future?

- How would you compare the following sequences of rewards (per week):
 - A: \$1000000, \$0, \$0, \$0, \$0, \$0, ...
 - B: \$1000, \$1000, \$1000, \$1000, ...
 - C: \$1000, \$0, \$0, \$0, \$0,...
 - D: \$1, \$1, \$1, \$1, \$1,...
 - E: \$1, \$2, \$3, \$4, \$5,...

Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, ...$ in time. What utility should be assigned? "Return" or "value"

Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, ...$ in time. What utility should be assigned? "Return" or "value"

• total reward
$$V = \sum_{i=1}^{\infty} r_i$$

• average reward $V = \lim_{n \to \infty} (r_1 + \dots + r_n)/n$

~

Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, \ldots$ in time.

- discounted return $V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$
 - γ is the discount factor $0 \leq \gamma \leq 1$.

=

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$

= $r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$

• If V_t is the value obtained from time step t

$$V_t =$$

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$

= $r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$

• If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$

= $r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$

• If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

• We can approximate V with the first k terms, with error:

$$V - (r_1 + \gamma r_2 + \cdots + \gamma^{k-1} r_k) =$$

• • •

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$

= $r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$

• If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

• We can approximate V with the first k terms, with error:

$$V - (r_1 + \gamma r_2 + \dots + \gamma^{k-1} r_k) = \gamma^k V_{k+1}$$

11/32

- The world state is the information such that if the agent knew the world state, no information about the past is relevant to the future. Markovian assumption.
- S_i is state at time i, and A_i is the action at time i:

 $P(S_{t+1} \mid S_0, A_0, \ldots, S_t, A_t) =$

- The world state is the information such that if the agent knew the world state, no information about the past is relevant to the future. Markovian assumption.
- S_i is state at time i, and A_i is the action at time i:

 $P(S_{t+1} | S_0, A_0, \dots, S_t, A_t) = P(S_{t+1} | S_t, A_t)$

 $P(s' \mid s, a)$ is the probability that the agent will be in state s' immediately after doing action a in state s.

• The dynamics is stationary if the distribution is the same for each time point.

12/32

• A Markov decision process augments a Markov chain with actions and rewards:

- set S of states.
- set A of actions.

- set S of states.
- set A of actions.
- $P(S_{t+1} | S_t, A_t)$ specifies the dynamics.

- set S of states.
- set A of actions.
- $P(S_{t+1} | S_t, A_t)$ specifies the dynamics.
- R(S_t, A_t) specifies the expected reward at time t.
 R(s, a) is the expected reward of doing a in state s

- set S of states.
- set A of actions.
- $P(S_{t+1} | S_t, A_t)$ specifies the dynamics.
- R(S_t, A_t) specifies the expected reward at time t.
 R(s, a) is the expected reward of doing a in state s
- γ is discount factor.

Each week Sam has to decide whether to party or relax:

- States: { *healthy*, *sick* }
- Actions: {*relax*, *party*}
- Dynamics:

Each week Sam has to decide whether to party or relax:

- States: {*healthy*, *sick*}
- Actions: {*relax*, *party*}
- Dynamics:

State	Action	P(healthy State, Action)
healthy	relax	0.95
healthy	party	0.7
sick	relax	0.5
sick	party	0.1

< □ →

Each week Sam has to decide whether to party or relax:

- States: {*healthy*, *sick*}
- Actions: {*relax*, *party*}
- Dynamics:

State	Action	P(healthy State, Action)
healthy	relax	0.95
healthy	party	0.7
sick	relax	0.5
sick	party	0.1

• Reward:

Each week Sam has to decide whether to party or relax:

- States: {*healthy*, *sick*}
- Actions: {*relax*, *party*}
- Dynamics:

State	Action	P(healthy State, Action)
healthy	relax	0.95
healthy	party	0.7
sick	relax	0.5
sick	party	0.1

Reward:

State	Action	Reward
healthy	relax	7
healthy	party	10
sick	relax	0
sick	party	2

Example: Simple Grid World

- Actions: up, down, left, right.
- 100 states corresponding to the positions of the robot.
- Robot goes in the commanded direction with probability 0.7, and one of the other directions with probability 0.1.
- If it crashes into an outside wall, it remains in its current position and has a reward of -1.
- Four special rewarding states; the agent gets the reward when leaving.

The planning horizon is how far ahead the planner looks to make a decision.

- The robot gets flung to one of the corners at random after leaving a positive (+10 or +3) reward state.
 - the process never halts
 - infinite horizon

The planning horizon is how far ahead the planner looks to make a decision.

- The robot gets flung to one of the corners at random after leaving a positive (+10 or +3) reward state.
 - the process never halts
 - infinite horizon
- The robot gets +10 or +3 in the state, then it stays there getting no reward. These are absorbing states.
 - The robot will eventually reach an absorbing state.
 - indefinite horizon

What information is available when the agent decides what to do?

• fully-observable MDP the agent gets to observe S_t when deciding on action A_t.

What information is available when the agent decides what to do?

- fully-observable MDP the agent gets to observe S_t when deciding on action A_t .
- partially-observable MDP (POMDP) the agent has some noisy sensor of the state. It is a mix of a hidden Markov model and MDP. It needs to remember (some function of) its sensing and acting history.
What information is available when the agent decides what to do?

- fully-observable MDP the agent gets to observe S_t when deciding on action A_t .
- partially-observable MDP (POMDP) the agent has some noisy sensor of the state. It is a mix of a hidden Markov model and MDP. It needs to remember (some function of) its sensing and acting history.

[This lecture only considers FOMDPs. POMDPS are much harder to solve.] • A stationary policy is a function:

$$\pi: S \to A$$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

• A stationary policy is a function:

$$\pi: S \to A$$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

• An optimal policy is one with maximum expected discounted reward.

• A stationary policy is a function:

$$\pi: S \to A$$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

- An optimal policy is one with maximum expected discounted reward.
- For a fully-observable MDP with stationary dynamics and rewards with infinite or indefinite horizon, there is always an optimal stationary policy.

Each week Sam has to decide whether to exercise or not:

- States: {*healthy*, *sick*}
- Actions: {*relax*, *party*}

How many stationary policies are there?

Each week Sam has to decide whether to exercise or not:

- States: {*healthy*, *sick*}
- Actions: {*relax*, *party*}

How many stationary policies are there? What are they?

Each week Sam has to decide whether to exercise or not:

- States: {*healthy*, *sick*}
- Actions: {*relax*, *party*}

How many stationary policies are there? What are they?

For the grid world with 100 states and 4 actions, how many stationary policies are there?

< 🗆 🕨

Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.

- Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- V^π(s), where s is a state, is the expected value of following policy π in state s.

- Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- V^π(s), where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$egin{array}{rl} V^{\pi}(s)&=&\\ Q^{\pi}(s,a)&=& \end{array}$$

- Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- V^π(s), where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

 $Q^{\pi}(s, a) =$

- Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- V^π(s), where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^{\pi}(s')$$

22 / 32

• $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V^{*}(s), where s is a state, is the expected value of following the optimal policy in state s.

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V^{*}(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^*(s,a) =$$

$$egin{array}{rl} V^*(s)&=&\\ \pi^*(s)&=& \end{array}$$

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V^{*}(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^*(s, a) = R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^*(s')$$

 $V^*(s) =$

$$\pi^*(s) =$$

CD.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 22

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V^{*}(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^{*}(s, a) = R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^{*}(s')$$
$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$\pi^{*}(s) =$$

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V^{*}(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s' \mid a, s) V^*(s')$$
$$V^*(s) = \max_{a} Q^*(s,a)$$
$$\pi^*(s) = \arg \max_{a} Q^*(s,a)$$

• Let V_k and Q_k be k-step lookahead value and Q functions.

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k + 1 step lookahead value function.

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the *k*-step lookahead value function, determine the *k* + 1 step lookahead value function.
- Set V₀ arbitrarily.

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the *k*-step lookahead value function, determine the *k* + 1 step lookahead value function.
- Set V₀ arbitrarily.
- Compute Q_{i+1} , V_{i+1} from V_i .

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k + 1 step lookahead value function.
- Set V₀ arbitrarily.
- Compute Q_{i+1} , V_{i+1} from V_i .
- This converges exponentially fast (in k) to the optimal value function.

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k + 1 step lookahead value function.
- Set V₀ arbitrarily.
- Compute Q_{i+1} , V_{i+1} from V_i .
- This converges exponentially fast (in k) to the optimal value function.

The error reduces proportionally to $\frac{\gamma^k}{1-\gamma}$

24 / 32

• The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if each state and action is visited infinitely often in the limit.

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if each state and action is visited infinitely often in the limit.
- It can either store V[s] or Q[s, a].

• Repeat forever:

• Repeat forever:

Select state s

$$V[s] \leftarrow \max_{a} \left(R(s, a) + \gamma \sum_{s'} P(s' \mid s, a) V[s'] \right)$$

- Repeat forever:
 - Select state s, action a

▶
$$Q[s,a] \leftarrow$$

- Repeat forever:
 - ► Select state *s*, action *a* ► $Q[s, a] \leftarrow R(s, a) + \gamma \sum_{s'} P(s' | s, a) \left(\max_{a'} Q[s', a'] \right)$

- Set π_0 arbitrarily, let i = 0
- Repeat:

• until
$$\pi_i(s) = \pi_{i-1}(s)$$

- Set π_0 arbitrarily, let i = 0
- Repeat:

• evaluate
$$Q^{\pi_i}(s,a)$$

 $\blacktriangleright \quad \text{let } \pi_{i+1}(s) = \operatorname{argmax}_{a} Q^{\pi_i}(s, a)$

• until
$$\pi_i(s) = \pi_{i-1}(s)$$

Evaluating $Q^{\pi_i}(s, a)$ means finding a solution to a set of $|S| \times |A|$ linear equations with $|S| \times |A|$ unknowns.

It can also be approximated iteratively.

Set $\pi[s]$ arbitrarily Set Q[s, a] arbitrarily Repeat forever:

• Repeat for a while:

Select state s, action a

$$\blacktriangleright Q[s,a] \leftarrow \sum_{s'} P(s' \mid s,a) \left(R(s,a,s') + \gamma Q[s',\pi[s']] \right)$$

• $\pi[s] \leftarrow \operatorname{argmax}_a Q[s, a]$
$$Q^*(s, a) = \sum_{s'} P(s' \mid a, s) \left(R(s, a, s') + \gamma V^*(s') \right)$$
$$= R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^*(s')$$
$$V^*(s) = \max_{a} Q^*(s, a)$$
$$\pi^*(s) = \operatorname{argmax}_a Q^*(s, a)$$

where

$$R(s,a) = \sum_{s'} P(s' \mid a,s) R(s,a,s')$$

Overview of Course

	dynamics	observable	repr	stage	Prefe _{rence}	rationality
search	det	fully	states	indef	goals	perfect
CSPs	det	fully	feats	static	—	perfect
SLS	det	fully	feats	static	—	bounded
logic	det	fully	feats	static	—	perfect
planning	det	fully	feats	indef	goals	perfect
belief nets	stoch	partial	feats	static	—	perfect
decision nets	stoch	partial	feats	finite	utility	perfect
Markov models	stoch	partial	states	infinite	—	perfect
MDP	stoch	fully	states	indefinite	utility	perfect