Goals and Preferences

Alice ... went on "Would you please tell me, please, which way I ought to go from here?"
"That depends a good deal on where you want to get to," said the Cat.
"I don't much care where -" said Alice.
"Then it doesn't matter which way you go," said the Cat.
Lewis Carroll, 1832-1898
Alice's Adventures in Wonderland, 1865
Chapter 6

Review

Decision network:

- DAG with three sorts of nodes: decision (rectangle), random (ellipse), utility (diamond)
- Domain for each decision and random node (no domain for utility)
- Factor for each random node and the utility (no initial factor for decision nodes)
- A decision function maps assignments to the parents of a decision node to a value in the domain of the decision node.
- A policy assigns a decision function to each decision node.

Variable Elimination to Find an Optimal Policy

- Create a factor for each conditional probability table and a factor for the utility.
- Repeat:
- Sum out random variables that are not parents of a remaining decision node.
- Select the decision variable D that is only in a factor f with (some of) its parents.
- Eliminate D by maximizing. This returns:
- an optimal decision function for $D: \arg \max _{D} f$
- a new factor: $\max _{D} f$
- until there are no more decision nodes.
- Sum out the remaining random variables. Multiply the factors: this is the expected utility of an optimal policy.

Umbrella Decision Network

What happens if we add an arc from Weather to Umbrella?

Clicker Question

For the decision network:

Which random variable/s is/are eliminated (summed out) initially (before first maximization)

A Lemon, Result
B Result
C Lemon
D Utility, Buy, Test
E No random variable is summed

Clicker Question

When eliminating Lemon, what factors are multiplied?
A P (Lemon), $P($ Result \mid Lemon, Test $)$
B $P($ Result \mid Lemon, Test), $u($ Lemon, Buy $)$
C P (Lemon), P (Result | Lemon, Test), u(Lemon, Buy)
D P (Lemon), P (Result | Lemon, Test), u(Lemon, Buy), P (Test)
E No factors are multiplied

Clicker Question

After eliminating Lemon a factor on what variable(s) is created?
A Result
B Result, Buy
C Result, Buy, Test
D Utility, Result, Buy, Test
E No factor is created

Clicker Question

Which of the decision variables is eliminated first
A Buy
B Test
C Neither
D Both

Clicker Question

After eliminating Buy (by maximization), a factor on what variable(s) remains

A Buy
B Test
C Result
D Test, Result
E no factors remain

Clicker Question

What is eliminated next after eliminating Buy
A Result is summed out
B Test is maximized
C Either Result or Test, it doesn't matter
D There is nothing more to eliminate

Clicker Question

What does a policy specify?
A just a value for Test
B just a value for Buy
C a value for Test and a value for Buy
D a value for Test and a value for Buy for each value of Test and Result
E just a value for Buy for each value of Test and Result

Learning Objectives

At the end of the class you should be able to:

- predict which of rejection sampling, importance sampling and particle filtering work best for a problem.

Stochastic Simulation

- Idea: probabilities \leftrightarrow samples
- Get probabilities from samples:

X	count			
x_{1}	n_{1}			
\vdots	\vdots			
x_{k}	n_{k}			
total	m	\leftrightarrow	X	probability
:---:	:---:			
x_{1}	n_{1} / m			
\vdots	\vdots			
x_{k}	n_{k} / m			

- If we could sample from a variable's (posterior) probability, we could estimate its (posterior) probability.

Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution: $f(x)=P(X \leq x)$.
- Select a value y uniformly in the range $[0,1]$.
- Select the x such that $f(x)=y$.

Cumulative Distribution

Hoeffding's inequality

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$
P(|s-p|>\epsilon) \leq 2 e^{-2 n \epsilon^{2}}
$$

Guarantees a probably approximately correct estimate of probability.
If you are willing to have an error greater than ϵ in less than δ of the cases, solve $2 e^{-2 n \epsilon^{2}}<\delta$ for n, which gives

$$
n>\frac{-\ln \frac{\delta}{2}}{2 \epsilon^{2}}
$$

ϵ	δ	n
0.1	0.05	185
0.01	0.05	18,445
0.1	0.01	265

Forward sampling in a belief network

- Sample the variables one at a time; sample parents of X before sampling X.
- Given values for the parents of X, sample from the probability of X given its parents.

Clicker Question

Suppose we have a belief network where A is the only parent of B, with the following probabilities specified for the belief network:

$$
\begin{aligned}
& P(a)=0.6 \\
& P(b \mid a)=0.3 \\
& P(b \mid \neg a)=0.8
\end{aligned}
$$

Suppose a sample has $A=$ true (which is written as a), which of the following is true in that sample:

A B should be assigned true with probability 0.5
B B should be assigned true with probability 0.3
C B should be assigned true with probability $0.6 * 0.3+(1-0.6) * 0.8$
D B should be assigned true with probability 0.8
E None of the above

Rejection Sampling

- To estimate a posterior probability given evidence $Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}:$
- Reject any sample that assigns Y_{i} to a value other than v_{i}.
- The non-rejected samples are distributed according to the posterior probability:

$$
P(\alpha \mid e) \approx \frac{\sum_{s: \alpha \wedge e \text { is true in s }} 1}{\sum 1}
$$

$$
s: e \text { is true in } s
$$

where we are summing over the samples s that are consistent with the evidence e.

Rejection Sampling Example: $P(t a \mid s m, r e)$

$$
\text { Observe } S m=\text { true }, \operatorname{Re}=\text { true }
$$

(Ta Fi		Ta	Fi	AI	Sm	Le	Re	
	s_{1}	false	true	false	true	false	false	X
	s_{2}	false	true	true	true	true	true	\checkmark
	S_{3}	true	false	true	false	-	-	x
1	s_{4}	true	true	true	true	true	true	\checkmark
		false	false	false	false	-	-	X
(Le)	$P(s m)=0.02$							
	$P(r e \mid s m)=0.32$							
$\stackrel{\downarrow}{\mathrm{Re}})$	There are 1000 samples.				rejecter	d)	,	

Doesn't work well when evidence is unlikely.

Importance Sampling

- Samples have weights: a real number associated with each sample that takes the evidence into account.
- Probability of a proposition is weighted average of samples:

$$
P(\alpha \mid \text { evidence }) \approx \frac{\sum_{\text {sample: } \alpha} \text { is true in sample }}{\sum_{\text {sample }} \text { weight(sample) }}
$$

- Mix exact inference with sampling: don't sample all of the variables, but weight each sample according to P (evidence \mid sample).

Importance Sampling (Likelihood Weighting)

procedure likelihood_weighting(Bn, e, H, n):
\# Approximate $P(H \mid e)$ in belief network $B n$ using n samples.
\# H has domain $\{0,1\}$
mass $:=0$
hmass :=0
repeat n times:
weight $:=1$
for each variable X_{i} in order:
if $X_{i}=o_{i}$ is observed
weight $:=$ weight $\times P\left(X_{i}=o_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
else assign X_{i} a random sample of $P\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
mass := mass + weight
hmass $:=h m a s s+$ weight $*$ (value of H in current assignment)
return hmass/mass

Importance Sampling Example: $P(t a \mid s m, r e)$

	Ta	Fi	Al	Le	Weight
s_{1}	true	false	true	false	0.01×0.01
s_{2}	false	true	false	false	0.9×0.01
s_{3}	false	true	true	true	0.9×0.75
s_{4}	true	true	true	true	0.9×0.75
\ldots					
s_{1000}	false	false	true	true	0.01×0.75

$$
\begin{aligned}
& P(s m \mid f i)=0.9 \\
& P(s m \mid \neg f i)=0.01 \\
& P(r e \mid l e)=0.75 \\
& P(r e \mid \neg l e)=0.01
\end{aligned}
$$

Particle Filtering

Importance sampling can be seen as:
for each particle:
for each variable:
sample / absorb evidence / update query
where particle is one of the samples.
Instead we could do:
for each variable:
for each particle:
sample / absorb evidence / update query
Why?

- We can have a new operation of resampling
- It works with infinitely many variables (e.g., HMM)

Particle Filtering for HMMs

- Start with random chosen particles (say 1000)
- Each particle represents a history.
- Initially, sample states in proportion to their probability.
- Repeat:
- Absorb evidence: weight each particle by the probability of the evidence given the state of the particle.
- Resample: select each particle at random, in proportion to the weight of the particle.
Some particles may be duplicated, some may be removed. All new particles have same weight.
- Transition: sample the next state for each particle according to the transition probabilities.
To answer a query about the current state, use the set of particles as data.

Example: Localization (revisited)

Loc consists of (x, y, θ) - position and orientation $k=24$ sonar sensors (all very noisy)
See Sebastian Thrun's video on Monte Carlo Localization.
sca80a0.avi from http://robots.stanford.edu/videos.html

