
Goals and Preferences

Alice . . . went on “Would you please tell me, please, which way I
ought to go from here?”
“That depends a good deal on where you want to get to,” said the
Cat.
“I don’t much care where —” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

Lewis Carroll, 1832–1898
Alice’s Adventures in Wonderland, 1865

Chapter 6
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Review

Decision network:

DAG with three sorts of nodes: decision (rectangle), random
(ellipse), utility (diamond)

Domain for each decision and random node (no domain for
utility)

Factor for each random node and the utility (no initial factor
for decision nodes)

A decision function maps assignments to the parents of a
decision node to a value in the domain of the decision node.

A policy assigns a decision function to each decision node.
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Variable Elimination to Find an Optimal Policy

Create a factor for each conditional probability table and a
factor for the utility.

Repeat:
I Sum out random variables that are not parents of a remaining

decision node.
I Select the decision variable D that is only in a factor f with

(some of) its parents.
I Eliminate D by maximizing. This returns:

I an optimal decision function for D: argmaxD f
I a new factor: maxD f

until there are no more decision nodes.

Sum out the remaining random variables. Multiply the
factors: this is the expected utility of an optimal policy.
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Umbrella Decision Network

Umbrella

Weather

UtilityForecast

What happens if we add an arc from Weather to Umbrella?
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Clicker Question

For the decision network:

Lemon

Result

Test Buy

Utility

Which random variable/s is/are eliminated (summed out) initially
(before first maximization)

A Lemon, Result

B Result

C Lemon

D Utility , Buy , Test

E No random variable is summed
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Clicker Question

Lemon

Result

Test Buy

Utility

When eliminating Lemon, what factors are multiplied?

A P(Lemon), P(Result | Lemon,Test)

B P(Result | Lemon,Test), u(Lemon,Buy)

C P(Lemon), P(Result | Lemon,Test), u(Lemon,Buy)

D P(Lemon), P(Result | Lemon,Test), u(Lemon,Buy), P(Test)

E No factors are multiplied
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Clicker Question

Lemon

Result

Test Buy

Utility

After eliminating Lemon a factor on what variable(s) is created?

A Result

B Result, Buy

C Result, Buy , Test

D Utility , Result, Buy , Test

E No factor is created
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Clicker Question

Lemon

Result

Test Buy

Utility

Which of the decision variables is eliminated first

A Buy

B Test

C Neither

D Both
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Clicker Question

Lemon

Result

Test Buy

Utility

After eliminating Buy (by maximization), a factor on what
variable(s) remains

A Buy

B Test

C Result

D Test, Result

E no factors remain
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Clicker Question

Lemon

Result

Test Buy

Utility

What is eliminated next after eliminating Buy

A Result is summed out

B Test is maximized

C Either Result or Test, it doesn’t matter

D There is nothing more to eliminate
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Clicker Question

Lemon

Result

Test Buy

Utility

What does a policy specify?

A just a value for Test

B just a value for Buy

C a value for Test and a value for Buy

D a value for Test and a value for Buy for each value of Test
and Result

E just a value for Buy for each value of Test and Result
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Learning Objectives

At the end of the class you should be able to:

predict which of rejection sampling, importance sampling and
particle filtering work best for a problem.
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Stochastic Simulation

Idea: probabilities ↔ samples

Get probabilities from samples:

X count

x1 n1
...

...
xk nk

total m

↔

X probability

x1 n1/m
...

...
xk nk/m

If we could sample from a variable’s (posterior) probability, we
could estimate its (posterior) probability.
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Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real
domain:

Totally order the values of the domain of X .

Generate the cumulative probability distribution:
f (x) = P(X ≤ x).

Select a value y uniformly in the range [0, 1].

Select the x such that f (x) = y .

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 21 14 / 27



Cumulative Distribution

v1 v2 v3 v4 v1 v2 v3 v4

P(X)

f(X)

0

1

0

1
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Hoeffding’s inequality

Theorem (Hoeffding): Suppose p is the true probability, and s is
the sample average from n independent samples; then

P(|s − p| > ε) ≤ 2e−2nε
2
.

Guarantees a probably approximately correct estimate of
probability.
If you are willing to have an error greater than ε in less than δ of
the cases, solve 2e−2nε

2
< δ for n, which gives

n >
− ln δ

2

2ε2
.

ε δ n

0.1 0.05 185
0.01 0.05 18,445
0.1 0.01 265
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Forward sampling in a belief network

Sample the variables one at a time; sample parents of X
before sampling X .

Given values for the parents of X , sample from the probability
of X given its parents.
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Clicker Question

Suppose we have a belief network where A is the only parent of B,
with the following probabilities specified for the belief network:

P(a) = 0.6

P(b | a) = 0.3

P(b | ¬a) = 0.8

Suppose a sample has A = true (which is written as a), which of
the following is true in that sample:

A B should be assigned true with probability 0.5

B B should be assigned true with probability 0.3

C B should be assigned true with probability
0.6 ∗ 0.3 + (1− 0.6) ∗ 0.8

D B should be assigned true with probability 0.8

E None of the above
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Rejection Sampling

To estimate a posterior probability given evidence
Y1=v1 ∧ . . . ∧ Yj=vj :

Reject any sample that assigns Yi to a value other than vi .

The non-rejected samples are distributed according to the
posterior probability:

P(α | e) ≈

∑
s:α∧e is true in s

1∑
s:e is true in s

1

where we are summing over the samples s that are consistent
with the evidence e.
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Rejection Sampling Example: P(ta | sm, re)

Ta Fi

SmAl

Le

Re

Observe Sm = true,Re = true

Ta Fi Al Sm Le Re

s1 false true false true false false 8

s2 false true true true true true 4

s3 true false true false — — 8

s4 true true true true true true 4

. . .
s1000 false false false false — — 8

P(sm) = 0.02
P(re | sm) = 0.32
There are 1000 samples.

How many are used (not rejected), on average?

Doesn’t work well when evidence is unlikely.
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Importance Sampling

Samples have weights: a real number associated with each
sample that takes the evidence into account.

Probability of a proposition is weighted average of samples:

P(α | evidence) ≈

∑
sample:α is true in sample

weight(sample)∑
sample

weight(sample)

Mix exact inference with sampling: don’t sample all of the
variables, but weight each sample according to
P(evidence | sample).
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Importance Sampling (Likelihood Weighting)

procedure likelihood weighting(Bn, e,H, n):
# Approximate P(H | e) in belief network Bn using n samples.
# H has domain {0, 1}
mass := 0
hmass := 0
repeat n times:

weight := 1
for each variable Xi in order:

if Xi = oi is observed
weight := weight × P(Xi = oi | parents(Xi ))

else assign Xi a random sample of P(Xi | parents(Xi ))
mass := mass + weight
hmass := hmass + weight ∗ (value of H in current assignment)

return hmass/mass
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Importance Sampling Example: P(ta | sm, re)

Ta Fi

SmAl

Le

Re

Ta Fi Al Le Weight

s1 true false true false 0.01× 0.01
s2 false true false false 0.9× 0.01
s3 false true true true 0.9× 0.75
s4 true true true true 0.9× 0.75
. . .
s1000 false false true true 0.01× 0.75

P(sm | fi) = 0.9
P(sm | ¬fi) = 0.01
P(re | le) = 0.75
P(re | ¬le) = 0.01
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Particle Filtering

Importance sampling can be seen as:

for each particle:
for each variable:

sample / absorb evidence / update query

where particle is one of the samples.
Instead we could do:

for each variable:
for each particle:

sample / absorb evidence / update query

Why?

We can have a new operation of resampling

It works with infinitely many variables (e.g., HMM)
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Particle Filtering for HMMs

Start with random chosen particles (say 1000)

Each particle represents a history.

Initially, sample states in proportion to their probability.

Repeat:
I Absorb evidence: weight each particle by the probability of the

evidence given the state of the particle.
I Resample: select each particle at random, in proportion to the

weight of the particle.
Some particles may be duplicated, some may be removed. All
new particles have same weight.

I Transition: sample the next state for each particle according to
the transition probabilities.

To answer a query about the current state, use the set of particles
as data.
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Example: Localization (revisited)

Loc0 Loc1 Loc2 Loc3 Loc4

Sk0 Sk1 Sk2 Sk3 Sk4

Act0 Act1 Act2 Act3

S10 S11 S12 S13 S14… … … … ……

…

Loc consists of (x , y , θ) – position and orientation
k = 24 sonar sensors (all very noisy)
See Sebastian Thrun’s video on Monte Carlo Localization.
sca80a0.avi from http://robots.stanford.edu/videos.html
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