
Goals and Preferences

Alice . . . went on “Would you please tell me, please, which way I
ought to go from here?”
“That depends a good deal on where you want to get to,” said the
Cat.
“I don’t much care where —” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

Lewis Carroll, 1832–1898
Alice’s Adventures in Wonderland, 1865

Chapter 6
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Review

Decision network:

Directed acyclic graph (DAG) with three sorts of nodes:
decision (rectangle), random (ellipse), utility (diamond)

Domain for the decision and random variables.

Unique utility node

Arcs into a decision node represent the information that will
be available when the decision is made

For each random variable, there is factor representing the
conditional probability for the random variable given its
parents

There a factor on the parents of the utility node

No factors are (initially) associated with the decision nodes

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 20 2 / 28



Overview

At the end of the class you should be able to:

model a user’s preferences and utility when there is uncertainty

build a simple model that includes actions, uncertainty and
utilities.

Find an optimal policy in a decision network.

Determine the value of information and control
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Decisions Networks

A decision network is a graphical representation of a finite
sequential decision problem, with 3 types of nodes:

A random variable is drawn as an ellipse.
Arcs into the node represent probabilistic
dependence. Each random variable has a
domain and an associated factor.

A decision variable is drawn as an
rectangle. Arcs into the node represent
information available when the decision is
make. Each decision variable has a
domain, but no associated factor.

A utility node is drawn as a diamond.
Arcs into the node represent variables
that the utility depends on. The utility
node has no domain, and a factor on the
parents of the node.
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Umbrella Decision Network

Umbrella

Weather

UtilityForecast

You don’t get to observe the weather when you have to decide
whether to take your umbrella. You do get to observe the forecast.
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Decision Network for the Alarm Problem

Tampering Fire

Alarm

Leaving

Report

Smoke

SeeSmokeCheck
Smoke

Call

Utility
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Clicker Question

The decision network:

Lemon

Result

Test Buy

Utility

requires which probabilities to be specified:

A P(Utility | Buy , Lemon), P(Lemon), P(Result | Lemon,Test),
P(Test), P(Buy | Test,Result)

B P(Lemon), P(Result | Lemon,Test), P(Test),
P(Buy | Test,Result)

C P(Utility | Buy , Lemon), P(Lemon), P(Result | Lemon,Test)

D P(Lemon), P(Result | Lemon,Test)

E P(Utility | Lemon), P(Lemon), P(Result | Lemon),
P(Buy | Result)
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Clicker Question

The decision network:

Lemon

Result

Test Buy

Utility

requires how many factors be specified initially:

A 2

B 3

C 4

D 5

E 6
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Clicker Question

In the decision network:

Lemon

Result

Test Buy

Utility

the initial factor that isn’t a (conditional) probability is a factor on
which variables?

A Lemon, Result, Test, Buy , Utility

B Lemon, Result, Test, Buy

C Result, Test, Buy

D Test, Buy

E Lemon, Buy
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Clicker Question

According to the network:

Lemon

Result

Test Buy

Utility

when does the agent know the value Result?

A Never

B Initially

C After Test and before Buy

D After Buy and before Test

E After both Test and Buy
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What should an agent do?

What an agent should do at any time depends on what it will
do in the future.

What an agent does in the future depends on what it did
before.
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Policies

A decision function for decision node Di is a function πi that
specifies what the agent does for each assignment of values to
the parents of Di .
When it observes O, it does πi (O).

A policy is a sequence of decision functions; one for each
decision node.
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Expected Utility of a Policy

Possible world ω satisfies policy π if ω assigns the value to
each decision node that the policy specifies.

The expected utility of policy π is

E(u | π) =
∑

ω satisfies π

u(ω)× P(ω)

An optimal policy is one with the highest expected utility.
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Clicker Question

Consider the decision network

Lemon

Result

Test Buy

Utility

where all variables are Boolean.
How many decision functions are there for Test?

A 22

B 24

C 25

D 2

E There is not enough information to tell.
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Clicker Question

Consider the decision network

Lemon

Result

Test Buy

Utility

where all variables are Boolean.
How many decision functions are there for Buy?

A 22

B 24

C 25

D 5

E There is not enough information to tell.
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Clicker Question

Consider the decision network

Lemon

Result

Test Buy

Utility

where all variables are Boolean.
How many policies are there?

A 22

B 24

C 25

D 5

E There is not enough information to tell.
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Finding an optimal policy

Suppose the random variables are X1, . . . ,Xn, and
utility depends on Vi1 , . . . ,Vik (random and/or decision
variables)

E(u | π) =

∑
X1,...,Xn

P(X1, . . . ,Xn | π)× u(Vi1 , . . . ,Vik )

=
∑

X1,...,Xn

n∏
i=1

P(Xi | parents(Xi ))× u(Vi1 , . . . ,Vik )

Idea:
I Sum out all of the random variables to compute expected

utility.
I Choose the policy to maximize the sum: when a decision

variable is in a factor with only its parents, select maximum
value.
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Finding an optimal policy

Create a factor for each conditional probability table and a
factor for the utility.

Repeat:
I Sum out random variables that are not parents of a decision

node.
I Let D be last decision variable

— D is only in a factor f with (some of) its parents.
I Eliminate D by maximizing. This returns:

I an optimal decision function for D: argmaxD f
I a new factor: maxD f

until there are no more decision nodes.

Sum out the remaining random variables.

Multiply the factors: this is the expected utility of an optimal
policy.
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Initial factors for the Umbrella Decision

Weather Value

norain 0.7
rain 0.3

Weather Fcast Value

norain sunny 0.7
norain cloudy 0.2
norain rainy 0.1
rain sunny 0.15
rain cloudy 0.25
rain rainy 0.6

Weather Umb Value

norain take 20
norain leave 100
rain take 70
rain leave 0
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Eliminating By Maximizing

f :

Fcast Umb Val

sunny take 12.95
sunny leave 49.0
cloudy take 8.05
cloudy leave 14.0
rainy take 14.0
rainy leave 7.0

maxUmb f :

Fcast Val

sunny 49.0
cloudy 14.0
rainy 14.0

arg maxUmb f :

Fcast Umb

sunny leave
cloudy leave
rainy take
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Decision Network for the Alarm Problem

Tampering Fire

Alarm

Leaving

Report

Smoke

SeeSmokeCheck
Smoke

Call

Utility
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Reduced Alarm Example

Eliminate the non-observed variables for the final decision.

report

see smoke

check
for

smoke
call
fire

department

U
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Exercise

Disease

Symptoms

Test Result
Test

Treatment

Utility

Outcome

What are the factors?

Which random variables get summed out first?
Which decision variable is eliminated? What factor is created?
Then what is eliminated (and how)?
What factors are created after maximization?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 20 24 / 28



Exercise

Disease

Symptoms

Test Result
Test

Treatment

Utility

Outcome

What are the factors?
Which random variables get summed out first?

Which decision variable is eliminated? What factor is created?
Then what is eliminated (and how)?
What factors are created after maximization?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 20 24 / 28



Exercise

Disease

Symptoms

Test Result
Test

Treatment

Utility

Outcome

What are the factors?
Which random variables get summed out first?
Which decision variable is eliminated? What factor is created?

Then what is eliminated (and how)?
What factors are created after maximization?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 20 24 / 28



Exercise

Disease

Symptoms

Test Result
Test

Treatment

Utility

Outcome

What are the factors?
Which random variables get summed out first?
Which decision variable is eliminated? What factor is created?
Then what is eliminated (and how)?

What factors are created after maximization?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 20 24 / 28



Exercise

Disease

Symptoms

Test Result
Test

Treatment

Utility

Outcome

What are the factors?
Which random variables get summed out first?
Which decision variable is eliminated? What factor is created?
Then what is eliminated (and how)?
What factors are created after maximization?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 20 24 / 28



Complexity of finding an optimal policy

Decision D has k binary parents, and has b possible actions:

there are

2k

assignments of values to the parents.

there are

b2
k

different decision functions.

The dynamic programming algorithm does

2k

optimizations

If there are multiple decision functions

The number of policies is the product of the number decision
functions.

The number of optimizations in the dynamic programming is
the sum of the number of assignments of values to parents.

Searching through policy space is exponentially more
complicated than dynamic programming.
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Value of Information

The value of information X for decision D is the utility of the
network with an arc from X to D (+ no-forgetting arcs)
minus the utility of the network without the arc.

The value of information is always

non-negative.

It is positive only if the agent changes its action depending on
X .

The value of information provides a bound on how much an
agent should be prepared to pay for a sensor. How much is a
better weather forecast worth?

We need to be careful when adding an arc would create a
cycle. E.g., how much would it be worth knowing whether the
fire truck will arrive quickly when deciding whether to call
them?
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Value of Control

The value of control of a variable X is the value of the
network when you make X a decision variable (and add
no-forgetting arcs) minus the value of the network when X is
a random variable.

You need to be explicit about what information is available
when you control X .

If you control X without observing, controlling X can be
worse than observing X . E.g., controlling a thermometer.

If you keep the parents the same, the value of control is
always non-negative.
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