Review

- Probability is defined in terms of measures over possible worlds
- The probability of a proposition is the measure of the set of worlds in which the proposition is true.
- Conditioning on evidence: make the worlds incompatible with the evidence have measure 0 and renormalize.
- A belief network is a representation of conditional independence: each variable is independent of its non-descendents given it's parents
- Variable elimination computes the posterior probability of a variable given evidence by summing out the non-observed non-query variables

To compute $P(Z | Y_1 = v_1 \land \ldots \land Y_j = v_j)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- Sum out each of the non-observed non-query variables (the $\{Z_1, \ldots, Z_k\}$) according to some elimination ordering.
- Multiply the remaining factors.
- Normalize by dividing the resulting factor f(Z) by $\sum_{Z} f(Z)$.

To sum out a variable Z_j from a product f_1, \ldots, f_k of factors:

- Partition the factors into
 - those that don't contain Z_j, say f₁,..., f_i,
 - those that contain Z_j , say f_{i+1}, \ldots, f_k

Then:

$$\sum_{Z_j} f_1 * \cdots * f_k = f_1 * \cdots * f_i * \left(\sum_{Z_j} f_{i+1} * \cdots * f_k \right).$$

• Explicitly construct a representation of the rightmost factor. Replace the factors f_{i+1}, \ldots, f_k by the new factor.

3/24

The belief network:

$$(W) \longrightarrow (X) \longrightarrow (Y) \longrightarrow (Z)$$

requires which probabilities to be specified:

$$\mathsf{A} P(W, X, Y, Z)$$

$$\mathsf{B} \ \mathsf{P}(W), \mathsf{P}(X \mid W), \mathsf{P}(Y \mid X), \mathsf{P}(Z \mid Y)$$

C P(W,X), P(Y,X), P(Y,Z)

$$\mathsf{D} \ \mathsf{P}(W \mid X), \mathsf{P}(X \mid Y), \mathsf{P}(Y \mid Z), \mathsf{P}(Z)$$

 $\mathsf{E} P(W, X, Y), P(X, Y, Z)$

The belief network:

$$(W) \longrightarrow (X) \longrightarrow (Y) \longrightarrow (Z)$$

is represented using which factors in variable elimination:

A
$$f(W, X, Y, Z)$$

B
$$f_0(W), f_1(W, X), f_2(X, Y), f_3(Y, Z)$$

 $C f_1(W, X), f_2(X, Y), f_3(Y, Z)$

D
$$f_1(W, X), f_2(X, Y), f_3(Y, Z), f_4(Z)$$

 $\mathsf{E} f_1(W, X, Y), f_2(X, Y, Z)$

 $f_0(W), f_1(W, X), f_2(X, Y), f_3(Y, Z)$

If variable X is eliminated (summed out) first which factors are multiplied when summing X out:

- A none of them
- B f_1 and f_2
- C f_0 , f_1 and f_2
- D f_1 , f_2 and f_3
- E all of them

 $f_0(W), f_1(W, X), f_2(X, Y), f_3(Y, Z)$

If variable Z is eliminated (summed out) first which factors are multiplied when summing Z out:

- A none of them
- B f_1 and f_2
- C f_0 , f_1 and f_2
- D f_1 , f_2 and f_3
- E all of them

 $f_0(W), f_1(W, X), f_2(X, Y), f_3(Y, Z)$

If variable X is eliminated (summed out) first which factors remain after summing X out:

- A no factors remain
- B f_3 and $\sum_X f_0 * f_1 * f_2$
- C $f_0, f_1, f_2, f_3 \text{ and } \sum_X f_1 * f_2$
- D f_0 , f_3 and $\sum_X f_1 * f_2$
- E all of f_0 , f_1 , f_2 , f_3

 $f_0(W), f_1(W, X), f_2(X, Y), f_3(Y, Z)$

If variable Z is eliminated (summed out) first which factors remain after summing Z out:

- A no factors remain
- B f_0 , f_1 , f_2 , and $\sum_Z f_3$
- C f_0 , f_1 , f_2 , f_3 and $\sum_Z f_3$
- D f_0 , f_1 and $\sum_Z f_2 * f_3$
- E all of f_0 , f_1 , f_2 , f_3

Pruning variables

- If we want *P*(*Le*) what can be pruned? *Sm*, *Re*
- If we want P(Fi | Sm) what can be pruned? Re, Le, AImTa
- A general rule: (repeatedly) prune any variable that is not queried, is not observed, and has no children

• A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P(S_0)$ specifies initial conditions
- $P(S_{i+1} | S_i)$ specifies the dynamics

What independence assumptions are made?

- $P(S_{i+1} | S_0, ..., S_i) = P(S_{i+1} | S_i).$
- Often S_t represents the state at time t. The state encodes all of the information about the past that can affect the future.
- "The future is independent of the past given the state."

- A stationary Markov chain is when for all i > 0, i' > 0, $P(S_{i+1} | S_i) = P(S_{i'+1} | S_{i'}).$
- We specify $P(S_0)$ and $P(S_{i+1} | S_i)$. Same parameters for each *i*.
 - Simple model, easy to specify
 - Often the natural model
 - The network can extend indefinitely
- A stationary distribution is a distribution over states such that for ever state s, $P(S_{i+1}=s) = P(S_i=s)$.
- Under reasonable assumptions, $P(S_k)$ will approach the stationary distribution as $k \to \infty$.

Pagerank

Consider the Markov chain:

- Domain of S_i is the set of all web pages
- $P(S_0)$ is uniform; $P(S_0 = p_j) = 1/N$

$$egin{aligned} P(S_{i+1} &= p_j \mid S_i = p_k) \ &= (1-d)/N + d * \left\{ egin{aligned} 1/n_k & ext{if } p_k ext{ links to } p_j \ 1/N & ext{if } p_k ext{ has no links} \ 0 & ext{otherwise} \end{aligned}
ight. \end{aligned}$$

where there are N web pages and n_k links from page p_k

- $d \approx 0.85$ is the probability someone keeps surfing web
- This Markov chain converges to a stationary distribution over web pages (original P(S_i) for i = 52 for 24 million pages and 322 million links):

Pagerank - basis for Google's initial search engine

Simple Language Models: set-of-words

Sentence: w_1, w_2, w_3, \ldots . Set-of-words model:

- Each variable is Boolean: *true* when word is in the sentence and *false* otherwise.
- What probabilities are provided?
 - P(" a"), P(" aardvark"), ..., P(" zzz")
- How do we condition on the question "how can I phone my phone"?

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in. What probabilities are required?

- $P(h_i)$ for each help page h_i . The user is interested in one best web page, so $\sum_i P(h_i) = 1$.
- P(w_j | h_i) for each word w_j given page h_i. There can be multiple words used in a query.
- Given a help query: condition on the words in the query and display the most likely help page.

http://artint.info/tutorials/helpsystem.xml

Simple Language Models: bag-of-words

Sentence: $w_1, w_2, w_3, \ldots, w_n$. Bag-of-words or unigram:

$$(W_1)$$
 (W_2) (W_3) ... (W_n)

- Domain of each variable is the set of all words.
- What probabilities are provided?

• $P(w_i)$ is a distribution over words for each position

• How do we condition on the question "how can I phone my phone"?

Sentence: $w_1, w_2, w_3, \ldots, w_n$. bigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
 - P(w_i | w_{i-1}) is a distribution over words for each position given the previous word
- How do we condition on the question "how can I phone my phone"?

Simple Language Models: trigram

Sentence: $w_1, w_2, w_3, \ldots, w_n$. trigram:

Domain of each variable is the set of all words. What probabilities are provided?

•
$$P(w_i | w_{i-1}, w_{i-2})$$

N-gram

P(w_i | w_{i-1},... w_{i-n+1}) is a distribution over words given the previous n − 1 words

Logic, Probability, Statistics, Ontology over time

From: Google Books Ngram Viewer (https://books.google.com/ngrams)

19/24

Predictive Typing and Error Correction

 $domain(W_i) = \{"a", "aarvark", ..., "zzz", "\bot", "?"\}$ $domain(L_{ji}) = \{"a", "b", "c", ..., "z", "1", "2", ...\}$

< □ →

Beyond N-grams

- A person with a big hairy cat drank the cold milk.
- Who or what drank the milk?

