Review

- Probability is defined in terms of measures over possible worlds
- The probability of a proposition is the measure of the set of worlds in which the proposition is true.
- Conditioning on evidence: make the worlds incompatible with the evidence have measure 0 and renormalize.
- A belief network is a representation of conditional independence: each variable is independent of its non-descendents given it's parents
- Variable elimination computes the posterior probability of a variable given evidence by summing out the non-observed non-query variables

Variable elimination algorithm

To compute $P\left(Z \mid Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}\right)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- Sum out each of the non-observed non-query variables (the $\left.\left\{Z_{1}, \ldots, Z_{k}\right\}\right)$ according to some elimination ordering.
- Multiply the remaining factors.
- Normalize by dividing the resulting factor $f(Z)$ by $\sum_{Z} f(Z)$.

Summing out a variable

To sum out a variable Z_{j} from a product f_{1}, \ldots, f_{k} of factors:

- Partition the factors into
- those that don't contain Z_{j}, say f_{1}, \ldots, f_{i},
- those that contain Z_{j}, say f_{i+1}, \ldots, f_{k}

Then:

$$
\sum_{z_{j}} f_{1} * \cdots * f_{k}=f_{1} * \cdots * f_{i} *\left(\sum_{z_{j}} f_{i+1} * \cdots * f_{k}\right)
$$

- Explicitly construct a representation of the rightmost factor. Replace the factors f_{i+1}, \ldots, f_{k} by the new factor.

Clicker Question

The belief network:

requires which probabilities to be specified:
A $P(W, X, Y, Z)$
B $P(W), P(X \mid W), P(Y \mid X), P(Z \mid Y)$
C $P(W, X), P(Y, X), P(Y, Z)$
D $P(W \mid X), P(X \mid Y), P(Y \mid Z), P(Z)$
E $P(W, X, Y), P(X, Y, Z)$

Clicker Question

The belief network:

is represented using which factors in variable elimination:
A $f(W, X, Y, Z)$
B $f_{0}(W), f_{1}(W, X), f_{2}(X, Y), f_{3}(Y, Z)$
C $f_{1}(W, X), f_{2}(X, Y), f_{3}(Y, Z)$
D $f_{1}(W, X), f_{2}(X, Y), f_{3}(Y, Z), f_{4}(Z)$
E $f_{1}(W, X, Y), f_{2}(X, Y, Z)$

Clicker Question

In variable elimination with factors:

$$
f_{0}(W), f_{1}(W, X), f_{2}(X, Y), f_{3}(Y, Z)
$$

If variable X is eliminated (summed out) first which factors are multiplied when summing X out:

A none of them
B f_{1} and f_{2}
C f_{0}, f_{1} and f_{2}
D f_{1}, f_{2} and f_{3}
E all of them

Clicker Question

In variable elimination with factors:

$$
f_{0}(W), f_{1}(W, X), f_{2}(X, Y), f_{3}(Y, Z)
$$

If variable Z is eliminated (summed out) first which factors are multiplied when summing Z out:

A none of them
B f_{1} and f_{2}
C f_{0}, f_{1} and f_{2}
D f_{1}, f_{2} and f_{3}
E all of them

Clicker Question

In variable elimination with factors:

$$
f_{0}(W), f_{1}(W, X), f_{2}(X, Y), f_{3}(Y, Z)
$$

If variable X is eliminated (summed out) first which factors remain after summing X out:

A no factors remain
B f_{3} and $\sum_{x} f_{0} * f_{1} * f_{2}$
C $f_{0}, f_{1}, f_{2}, f_{3}$ and $\sum_{X} f_{1} * f_{2}$
D f_{0}, f_{3} and $\sum_{x} f_{1} * f_{2}$
E all of $f_{0}, f_{1}, f_{2}, f_{3}$

Clicker Question

In variable elimination with factors:

$$
f_{0}(W), f_{1}(W, X), f_{2}(X, Y), f_{3}(Y, Z)
$$

If variable Z is eliminated (summed out) first which factors remain after summing Z out:

A no factors remain
B f_{0}, f_{1}, f_{2}, and $\sum_{z} f_{3}$
C $f_{0}, f_{1}, f_{2}, f_{3}$ and $\sum_{z} f_{3}$
D f_{0}, f_{1} and $\sum_{z} f_{2} * f_{3}$
E all of $f_{0}, f_{1}, f_{2}, f_{3}$

Pruning variables

- If we want $P(L e)$ what can be pruned? Sm, Re
- If we want $P(F i \mid S m)$ what can be pruned? Re, Le, AlmTa
- A general rule: (repeatedly) prune any variable that is not queried, is not observed, and has no children

Markov chain

- A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{i+1} \mid S_{i}\right)$ specifies the dynamics

What independence assumptions are made?

- $P\left(S_{i+1} \mid S_{0}, \ldots, S_{i}\right)=P\left(S_{i+1} \mid S_{i}\right)$.
- Often S_{t} represents the state at time t.

The state encodes all of the information about the past that can affect the future.

- "The future is independent of the past given the state."

Stationary Markov chain

- A stationary Markov chain is when for all $i>0, i^{\prime}>0$, $P\left(S_{i+1} \mid S_{i}\right)=P\left(S_{i^{\prime}+1} \mid S_{i^{\prime}}\right)$.
- We specify $P\left(S_{0}\right)$ and $P\left(S_{i+1} \mid S_{i}\right)$. Same parameters for each i.
- Simple model, easy to specify
- Often the natural model
- The network can extend indefinitely
- A stationary distribution is a distribution over states such that for ever state $s, P\left(S_{i+1}=s\right)=P\left(S_{i}=s\right)$.
- Under reasonable assumptions, $P\left(S_{k}\right)$ will approach the stationary distribution as $k \rightarrow \infty$.

Pagerank

Consider the Markov chain:

- Domain of S_{i} is the set of all web pages
- $P\left(S_{0}\right)$ is uniform; $P\left(S_{0}=p_{j}\right)=1 / N$

$$
\begin{aligned}
P\left(S_{i+1}\right. & \left.=p_{j} \mid S_{i}=p_{k}\right) \\
& =(1-d) / N+d * \begin{cases}1 / n_{k} & \text { if } p_{k} \text { links to } p_{j} \\
1 / N & \text { if } p_{k} \text { has no links } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

where there are N web pages and n_{k} links from page p_{k}

- $d \approx 0.85$ is the probability someone keeps surfing web
- This Markov chain converges to a stationary distribution over web pages (original $P\left(S_{i}\right)$ for $i=52$ for 24 million pages and 322 million links):
Pagerank - basis for Google's initial search engine

Simple Language Models: set-of-words

Sentence: $w_{1}, w_{2}, w_{3}, \ldots$ Set-of-words model:

- Each variable is Boolean: true when word is in the sentence and false otherwise.
- What probabilities are provided?
- $P("$ " $), P($ " aardvark" $), \ldots, P(" z z z ")$
- How do we condition on the question "how can I phone my phone"?

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
What probabilities are required?

- $P\left(h_{i}\right)$ for each help page h_{i}. The user is interested in one best web page, so $\sum_{i} P\left(h_{i}\right)=1$.
- $P\left(w_{j} \mid h_{i}\right)$ for each word w_{j} given page h_{i}. There can be multiple words used in a query.
- Given a help query: condition on the words in the query and display the most likely help page.
http://artint.info/tutorials/helpsystem.xml

Simple Language Models: bag-of-words

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$.
Bag-of-words or unigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
- $P\left(w_{i}\right)$ is a distribution over words for each position
- How do we condition on the question "how can I phone my phone"?

Simple Language Models: bigram

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. bigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
- $P\left(w_{i} \mid w_{i-1}\right)$ is a distribution over words for each position given the previous word
- How do we condition on the question "how can I phone my phone"?

Simple Language Models: trigram

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. trigram:

Domain of each variable is the set of all words. What probabilities are provided?

- $P\left(w_{i} \mid w_{i-1}, w_{i-2}\right)$

N -gram

- $P\left(w_{i} \mid w_{i-1}, \ldots w_{i-n+1}\right)$ is a distribution over words given the previous $n-1$ words

Logic, Probability, Statistics, Ontology over time

From: Google Books Ngram Viewer
(https://books.google.com/ngrams)

Predictive Typing and Error Correction

 $\operatorname{domain}\left(L_{j i}\right)=\left\{" a^{\prime \prime}, " b ", " c ", \ldots, " z ", " 1 ", " 2 ", \ldots\right\}$

Beyond N-grams

- A person with a big hairy cat drank the cold milk.
- Who or what drank the milk?

Simple syntax diagram:

Topic Model

Google's rephil

900,000 topics

350,000,000 links

12,000,000 words

