Announcements

@ Solution to assignment 6 in web page
@ Assignment 7 due next Monday

@ Midterm next Thursday. Format like last midterm.
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It is remarkable that a science which began with the
consideration of games of chance should become the most
important object of human knowledge ... The most im-
portant questions of life are, for the most part, really only
problems of probability . ..

The theory of probabilities is at bottom nothing but
common sense reduced to calculus.

— Pierre Simon de Laplace, Théorie Analytique de
Probabilités [1812]
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Belief network inference

Main approaches to determine posterior distributions in graphical
models:

@ Variable Elimination, recursive conditioning: exploit the
structure of the network to eliminate (sum out) the
non-observed, non-query variables one at a time.

@ Stochastic simulation: random cases are generated according
to the probability distributions.

@ Variational methods: find the closest tractable distribution to
the (posterior) distribution we are interested in.

@ Bounding approaches: bound the conditional probabilites
above and below and iteratively reduce the bounds.
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@ A factor is a representation of a function from a tuple of
random variables into a number.
e We write factor f on variables Xi, ..., Xj as f(X1,...,X).
@ We can assign some or all of the variables of a factor:
> f(Xi=w1,X,...,Xj), where vi € domain(X1), is a factor on

X . X;.
> f(Xi=v1,Xo=vs,..., Xj=V;) is a number that is the value of f
when each X; has value v;.
The former is also written as (X1, Xa,..., Xj)x,=v,. etc.
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Example factors

Y Z | val

X Y Z| val t t |01

t t t |01l r(X=t,Y,2){t f |09

t t f |09 f t |02

t f t |02 f f |08
r(X,Y,Z))t f f |08
f t t 0.4

f t f |06 Y | val

f f t o3 r(X=t,Y,Z=f){ t | 0.9

f f f |07 f 1038

r(X=t,Y=Ff,Z=f) = 0.8
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Clicker Question

If f(W,X,Y,Z)is a factor on variables {W, X, Y, Z}, then
f(W,X =3,Y = true, Z) is a factor on

A {W,X,Y,Z}

B {X,Y}

C {W,Zz}

D {}

E none of the above
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Clicker Question

If f(W,X,Y,Z)is a factor on variables {W, X, Y, Z}, then
f(W=17,X =3,Y = true, Z = false) is a factor on

A {W,X,Y,Z}

B {X,Y}

C {W,z}

D {}

E none of the above
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Multiplying factors

ere Y are the

The product of factor f1(X,Y) and (Y, Z), wh
* fp Y, Z) defined by:

Z),
variables in common, is the factor (f; * X,

)
(AxR)X,Y,Z) = AX,Y)H(Y,2Z).
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Multiplying factors example

A B | val
t t |01 A B C val
fi: |t f 109 t t t |0.03
f t 02 t t f |0.07
f f |08 t f t | 054
fxh: |t f f |0.36
B C | val f t t |0.06
t t |03 f t f |0.14
Lt f |07 f f t |0.48
f t |06 f f f 1032

f f |04
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Clicker Question

If f is a factor on {W, X, Y} and
g is a factor on {W, U}
(f = g) is a factor on

A {W,X,Y, U}

B {X,Y,U}

C {w}

D {f,g,W,X,Y,U}

E there is not enough information to tell
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Clicker Question

If f(W=3,X=4,Y=5)=10 and
g(W=3,U=12) =15
(f x g)(W=3,X=4,Y=5U=12) =
A a factor on {W, X, Y, U}
B 25
C 150
D none of the above

E there is not enough information to tell
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Summing out variables

We can sum out a variable, say X; with domain {vi,..., v}, from
factor f(Xq,...,Xj), resulting in a factor on X3, ..., X; defined by:

O X, X)
X1

= f(X1:V1,...,)<j)+"-—i-f(Xl:Vk,...,Xj)
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Summing out a variable example

A B C val

t t t |0.03

t t f ]0.07 A C| wval

t f t |054 t t | 057
x|t f f |0.36 Yghi|t f |043

f t t |0.06 f t | 054

f t f [0.14 f f [046

f f t 048

f f f [032
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Exercise

Given factors:

A B | val
A wval t t |06 A | val
s:|t | 0.75 tt|t f |04 oot |03
f | 0.25 f t |02 f |01
f f |08
What are the following a function of?
i) sxt A {A}
i) (s *t) B {B}
iii) s*o C {A B}
V) Doasxt*o D {}
V) S 5(XC s t*0) E none of the above
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Queries and Evidence

@ To compute the posterior probability of Z given evidence
E=e:
P(Z | E=e)
P(Z,E=e)
P(E=e)
P(Z,E=e)
Y.z P(Z,E=e).

@ So the computation reduces to the probability of P(Z, E=e)

@ then normalize at the end.
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Probability of a conjunction

@ The variables of the belief network are Xi,..., X,.
@ The evidence is Yi=v1,..., Y=y,
e To compute P(Z, Yi=v1,..., Yj=Vj):
we add the other variables,
21, .. Lk ={X1,..., Xa} —{Z} —{V1,..., Y}
and sum them out.
@ We order the Z; into an elimination ordering.

P(Z, Y1:V17 ey YJ:VJ)

Z . Z P(X1, .-y Xn)vi=u,..., Y=y
Z ZH,DX | parents(Xi))vi=ui,...,vi=y;-

Z; i=1
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Computing sums of products

Computation in belief networks reduces to computing the sums of
products.

@ How can we compute ab + ac efficiently?
e Distribute out a giving a(b + ¢)

o How can we compute >, [ P(X; | parents(X;))
efficiently?

Distribute out those factors that don't involve Z;.
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Inference as factorization example

Query: P(Re | SM=true) write SM=true as sm
P(Re, sm)

— Z Z Z Z P(Ta, Fi,Al,sm, Le, Re)
@ Le Al Fi Ta
Q F% = ZZZZ P(Ta)P(Fi)P(Al | Ta, Fi)

Le Al i Ta
@ P(sm | Fi)P(Le | Al)P(Re | Le)
=> 3> P(Fi)P(sm | Fi)P(Le | Al)
Le Al Fi

P(Re | Le ZP Ta)P(Al | Ta, Fi)

_ZP Re | Le) ZP(Le\A/

ZP (Fi)P(sm | Fi)) ~ P(Ta)P(Al | Ta, Fi)

Ta
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Inference as factorization example
Query: P(G | f); elimination ordering: A,H,E,D,B, C

P(G | f) ;ZZZZZP P(B| AP(C | B)

P(D | C)P(E | D)P(f | E)P(G | C)P(H | E)

(Z P(D|C) (Z P(E | D)P(f | E)Y  P(H | E)))
D E H
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Variable elimination algorithm

To compute P(Z | Yi=vi A ... A Yj=vj):
@ Construct a factor for each conditional probability.
@ Set the observed variables to their observed values.

@ Sum out each of the non-observed non-query variables (the
{Z1,...,2Zk}) according to some elimination ordering.

e Multiply the remaining factors.
e Normalize by dividing the resulting factor f(Z) by >, f(Z).
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Summing out a variable

To sum out a variable Z; from a product fi,. .., fi of factors:
@ Partition the factors into

» those that don't contain Z;, say fi,...,f;,
» those that contain Zj, say fii1,..., fk

Then:

Zfl*'“*fk:fl*'“*fi* Zﬁ+1*"'*fk
4 %

@ Explicitly construct a representation of the rightmost factor.
Replace the factors fiy1,..., fx by the new factor.
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Inference as factorization example

Query: P(Re | SM=true).
@ @ See Alspace.org — Belief and decision network tool
— File — Load Sample Problem — Fire Alarm Be-

lief Network — Load — Solve — Make Observation
Smoke — Query Report — Verbose
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