
Announcements

Solution to Assignment 5 posted

Assignment 6 due next Monday
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“The mind is a neural computer, fitted by natural
selection with combinatorial algorithms for causal and
probabilistic reasoning about plants, animals, objects,
and people.”

. . .
“In a universe with any regularities at all, deci-

sions informed about the past are better than deci-
sions made at random. That has always been true,
and we would expect organisms, especially informa-
vores such as humans, to have evolved acute intuitions
about probability. The founders of probability, like the
founders of logic, assumed they were just formalizing
common sense.”

Steven Pinker, How the Mind Works, 1997, pp. 524, 343.
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Review: So far. . .

An agent acts in an environment, inputs: abilities,
goals/preferences, prior knowledge, observations, past
experiences

Search is used to find paths in graphs. Multiple-path
pruning and depth bounds reduce search. Depth-first
methods can save space.

Constraint satisfaction problems are defined in terms of
variables, domains, constraints. Constraint satisfactions
problems can be solved with: backtracking search, arc
consistency + domain splitting, local search

Planning is finding a sequence of actions to achieve a
goal. Planning is achieved by mapping to a search
problem (forwards or regression) or a CSP.
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Learning Objectives

At the end of the class you should be able to:

justify the use and semantics of probability

know how to compute marginals and apply Bayes’
theorem

identify conditional independence

build a belief network for a domain
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Review of Pre-class slides

Probability is defined in terms of measures over possible
worlds

The probability of a proposition is the measure of the set
of worlds in which the proposition is true.

Conditioning on evidence: make the worlds incompatible
with the evidence have measure 0 and multiply the others
by a constant, to get a measure.

A belief network is a representation of conditional
independence:
in a total ordering of the variables, each variable is
independent of its predecessors given it’s parents

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 11 5 / 34



Possible World Semantics

A possible world specifies an assignment of one value to
each random variable.

A random variable is a function from possible worlds into
the domain of the random variable.

ω |= X = x
means variable X is assigned value x in world ω.

Logical connectives have their standard meaning:

ω |= α ∧ β if ω |= α and ω |= β

ω |= α ∨ β if ω |= α or ω |= β

ω |= ¬α if ω 6|= α

Let Ω be the set of all possible worlds.
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Semantics of Probability

Probability defines a measure on sets of possible worlds.
A probability measure is a function µ from sets of worlds into
the non-negative real numbers such that:

µ(Ω) = 1

µ(S1 ∪ S2) = µ(S1) + µ(S2)
if S1 ∩ S2 = {}.

Then P(α) = µ({ω | ω |= α}).
“The probability of α is the measure of the set of possible
worlds in which α is true.”
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Conditioning

Probabilistic conditioning specifies how to revise beliefs
based on new information.

An agent builds a probabilistic model taking all
background information into account.
This gives the prior probability.

All other information must be conditioned on.

If evidence e is the all of the information obtained
subsequently, the conditional probability P(h | e) of h
given e is the posterior probability of h.
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Semantics of Conditional Probability

Evidence e rules out possible worlds incompatible with e.

Evidence e induces a new measure, µe , over possible
worlds:

µe(S) =

{

c × µ(S) if ω |= e for all ω ∈ S
0 if ω 6|= e for all ω ∈ S

We can show c = 1
P(e)

.

The conditional probability of formula h given evidence e
is

P(h | e) = µe({ω : ω |= h})

=
P(h ∧ e)

P(e)
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Conditioning
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Clicker Question

Flu Sneeze Snore µ
true true true 0.064
true true false 0.096
true false true 0.016
true false false 0.024
false true true 0.096
false true false 0.144
false false true 0.224
false false false 0.336

A: 0.04
B: 0.16
C: 0.24
D: 0.4
E: 0.8

What is:

(a) P(flu ∧ sneeze)

0.16

(b) P(flu ∧ ¬sneeze) 0.04

(c) P(flu) (not clicker) 0.2

(d) P(sneeze | flu) 0.8

(e) P(¬flu ∧ sneeze) 0.24

(f) P(sneeze) 0.4

(g) P(flu | sneeze) 0.4

(h) P(sneeze | flu ∧ snore)
0.8

(i) P(flu | sneeze ∧ snore)
0.4
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false false false 0.336

A: 0.04
B: 0.16
C: 0.24
D: 0.4
E: 0.8

What is:

(a) P(flu ∧ sneeze) 0.16

(b) P(flu ∧ ¬sneeze) 0.04

(c) P(flu) (not clicker) 0.2

(d) P(sneeze | flu) 0.8

(e) P(¬flu ∧ sneeze) 0.24

(f) P(sneeze) 0.4

(g) P(flu | sneeze)

0.4

(h) P(sneeze | flu ∧ snore)
0.8

(i) P(flu | sneeze ∧ snore)
0.4
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Chain Rule: probability of conjunctions

P(h | e) =
P(h ∧ e)

P(e)

Therefore

P(h ∧ e) =

P(h | e)× P(e)
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Chain Rule

Semantics of conditioning gives: P(h ∧ e) = P(h | e)× P(e)

P(fn ∧ fn−1 ∧ . . . ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 ∧ · · · ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 | fn−2 ∧ · · · ∧ f1)×
P(fn−2 ∧ · · · ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 | fn−2 ∧ · · · ∧ f1)

× · · · × P(f3 | f2 ∧ f1)× P(f2 | f1)× P(f1)

=
n∏

i=1

P(fi | f1 ∧ · · · ∧ fi−1)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 11 13 / 34



Chain Rule

Semantics of conditioning gives: P(h ∧ e) = P(h | e)× P(e)

P(fn ∧ fn−1 ∧ . . . ∧ f1)

=

P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 ∧ · · · ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 | fn−2 ∧ · · · ∧ f1)×
P(fn−2 ∧ · · · ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 | fn−2 ∧ · · · ∧ f1)

× · · · × P(f3 | f2 ∧ f1)× P(f2 | f1)× P(f1)

=
n∏

i=1

P(fi | f1 ∧ · · · ∧ fi−1)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 11 13 / 34



Chain Rule

Semantics of conditioning gives: P(h ∧ e) = P(h | e)× P(e)

P(fn ∧ fn−1 ∧ . . . ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 ∧ · · · ∧ f1)

=

P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 | fn−2 ∧ · · · ∧ f1)×
P(fn−2 ∧ · · · ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 | fn−2 ∧ · · · ∧ f1)

× · · · × P(f3 | f2 ∧ f1)× P(f2 | f1)× P(f1)

=
n∏

i=1

P(fi | f1 ∧ · · · ∧ fi−1)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 11 13 / 34



Chain Rule

Semantics of conditioning gives: P(h ∧ e) = P(h | e)× P(e)

P(fn ∧ fn−1 ∧ . . . ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 ∧ · · · ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 | fn−2 ∧ · · · ∧ f1)×
P(fn−2 ∧ · · · ∧ f1)

= P(fn | fn−1 ∧ · · · ∧ f1)×
P(fn−1 | fn−2 ∧ · · · ∧ f1)

× · · · × P(f3 | f2 ∧ f1)× P(f2 | f1)× P(f1)

=
n∏

i=1

P(fi | f1 ∧ · · · ∧ fi−1)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 11 13 / 34



Bayes’ theorem

The chain rule and commutativity of conjunction (h ∧ e is
equivalent to e ∧ h) gives us:

P(h ∧ e) =

P(h | e)× P(e)

= P(e | h)× P(h).

If P(e) 6= 0, divide the right hand sides by P(e):

P(h | e) =
P(e | h)× P(h)

P(e)
.

This is Bayes’ theorem.
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Conditional independence

Random variable X is independent of random variable Y given
random variable(s) Z if,

P(X | Y ,Z ) = P(X | Z )

i.e. for all xi ∈ domain(X ), yj ∈ domain(Y ), yk ∈ domain(Y )
and zm ∈ domain(Z ),

P(X = xi | Y = yj ∧ Z = zm)

= P(X = xi | Y = yk ∧ Z = zm)

= P(X = xi | Z = zm).

That is, knowledge of Y ’s value doesn’t affect the belief in the
value of X , given a value of Z .
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Belief networks

Totally order the variables of interest: X1, . . . ,Xn

Theorem of probability theory (chain rule):
P(X1, . . . ,Xn) =

∏n
i=1 P(Xi | X1, . . . ,Xi−1)

The parents parents(Xi) of Xi are those predecessors of
Xi that render Xi independent of the other predecessors.
That is, parents(Xi) ⊆ X1, . . . ,Xi−1 and
P(Xi | parents(Xi)) = P(Xi | X1, . . . ,Xi−1)

So P(X1, . . . ,Xn) =
∏n

i=1 P(Xi | parents(Xi))

A belief network is a graph: the nodes are random
variables; there is an arc from the parents of each node
into that node.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 11 16 / 34



Belief networks

Totally order the variables of interest: X1, . . . ,Xn

Theorem of probability theory (chain rule):
P(X1, . . . ,Xn) =

∏n
i=1 P(Xi | X1, . . . ,Xi−1)

The parents parents(Xi) of Xi are those predecessors of
Xi that render Xi independent of the other predecessors.
That is, parents(Xi) ⊆ X1, . . . ,Xi−1 and
P(Xi | parents(Xi)) = P(Xi | X1, . . . ,Xi−1)

So P(X1, . . . ,Xn) =
∏n

i=1 P(Xi | parents(Xi))

A belief network is a graph: the nodes are random
variables; there is an arc from the parents of each node
into that node.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 11 16 / 34



Belief networks

Totally order the variables of interest: X1, . . . ,Xn

Theorem of probability theory (chain rule):
P(X1, . . . ,Xn) =

∏n
i=1 P(Xi | X1, . . . ,Xi−1)

The parents parents(Xi) of Xi are those predecessors of
Xi that render Xi independent of the other predecessors.
That is,

parents(Xi) ⊆ X1, . . . ,Xi−1 and
P(Xi | parents(Xi)) = P(Xi | X1, . . . ,Xi−1)

So P(X1, . . . ,Xn) =
∏n

i=1 P(Xi | parents(Xi))

A belief network is a graph: the nodes are random
variables; there is an arc from the parents of each node
into that node.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 11 16 / 34



Belief networks

Totally order the variables of interest: X1, . . . ,Xn

Theorem of probability theory (chain rule):
P(X1, . . . ,Xn) =

∏n
i=1 P(Xi | X1, . . . ,Xi−1)

The parents parents(Xi) of Xi are those predecessors of
Xi that render Xi independent of the other predecessors.
That is, parents(Xi) ⊆ X1, . . . ,Xi−1 and
P(Xi | parents(Xi)) = P(Xi | X1, . . . ,Xi−1)

So P(X1, . . . ,Xn) =
∏n

i=1 P(Xi | parents(Xi))

A belief network is a graph: the nodes are random
variables; there is an arc from the parents of each node
into that node.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 11 16 / 34



Belief networks

Totally order the variables of interest: X1, . . . ,Xn

Theorem of probability theory (chain rule):
P(X1, . . . ,Xn) =

∏n
i=1 P(Xi | X1, . . . ,Xi−1)

The parents parents(Xi) of Xi are those predecessors of
Xi that render Xi independent of the other predecessors.
That is, parents(Xi) ⊆ X1, . . . ,Xi−1 and
P(Xi | parents(Xi)) = P(Xi | X1, . . . ,Xi−1)

So P(X1, . . . ,Xn) =
∏n

i=1 P(Xi | parents(Xi))

A belief network is a graph: the nodes are random
variables; there is an arc from the parents of each node
into that node.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 11 16 / 34



Belief networks

Totally order the variables of interest: X1, . . . ,Xn

Theorem of probability theory (chain rule):
P(X1, . . . ,Xn) =

∏n
i=1 P(Xi | X1, . . . ,Xi−1)

The parents parents(Xi) of Xi are those predecessors of
Xi that render Xi independent of the other predecessors.
That is, parents(Xi) ⊆ X1, . . . ,Xi−1 and
P(Xi | parents(Xi)) = P(Xi | X1, . . . ,Xi−1)

So P(X1, . . . ,Xn) =
∏n

i=1 P(Xi | parents(Xi))

A belief network is a graph: the nodes are random
variables; there is an arc from the parents of each node
into that node.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 11 16 / 34



Student Writing an Exam Example

Give a belief network for the variables in order:

WorksHard : Whether the student works hard

Intelligent: Whether the student is intelligent

Answers: The student’s answers on the exam

Mark : The student’s mark on an exam

What if the variables were in the opposite order?
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Example: fire alarm belief network

Variables:

Fire: there is a fire in the building

Tampering: someone has been tampering with the fire
alarm

Smoke: what appears to be smoke is coming from an
upstairs window

Alarm: the fire alarm goes off

Leaving: people are leaving the building en masse.

Report: a colleague says that people are leaving the
building en masse. (A noisy sensor for leaving.)

See “Fire Alarm Belief Network” in AIspace.org Belief and
Decision Networks App
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Clicker Question

For the belief network, and the ordering Fire, Smoke,Alarm

Fire

Alarm

Smoke

A Alarm is independent of Smoke
given Fire

B Alarm is independent of Fire
given Smoke

C Alarm is independent of Fire
given {}

D All of the above independencies
hold

E There are no independencies
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Clicker Question

Which network best fits a fire alarm that only detects the heat
of the fire?

Fire

Alarm

Smoke

Fire

Alarm

Smoke

A B

Fire

Alarm

Smoke

Fire

Alarm

Smoke

C D
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Clicker Question

Which network best fits a smoke alarm (that only detects
smoke)?

Fire

Alarm

Smoke

Fire

Alarm

Smoke

A B

Fire

Alarm

Smoke

Fire

Alarm

Smoke

C D
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Clicker Question

Which network best fits a fire alarm that detects both smoke
and the heat of the fire?

Fire

Alarm

Smoke

Fire

Alarm

Smoke

A B

Fire

Alarm

Smoke

Fire

Alarm

Smoke

C D
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Clicker Question

Which network best fits a burglary alarm that doesn’t detect
heat or smoke?

Fire

Alarm

Smoke

Fire

Alarm

Smoke

A B

Fire

Alarm

Smoke

Fire

Alarm

Smoke

C D
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Components of a belief network

A belief network consists of:

a directed acyclic graph with nodes labeled with random
variables

a domain for each random variable

a set of conditional probabilities, one for each variable
given its parents (including prior probabilities for nodes
with no parents).
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Belief network summary

A belief network is a directed acyclic graph (DAG) where
nodes are random variables.

The parents of a node n are those variables on which n
directly depends.

A belief network is automatically acyclic by construction.

A belief network is a graphical representation of
dependence and independence:
I A variable is independent of its non-descendants given

its parents.
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Constructing belief networks

To represent a domain in a belief network, you need to
consider:

What are the relevant variables?

I What will you observe?
I What would you like to find out (query)?
I What other features make the model simpler?

What values should these variables take?

What is the relationship between them? This should be
expressed in terms of a directed graph, representing how
each variable is generated from its predecessors.

How does the value of each variable depend on its
parents? This is expressed in terms of the conditional
probabilities.
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Understanding Independence: Common

descendants

tampering

alarm

fire tampering and fire are

independent

tampering and fire are

dependent

given alarm

Intuitively, tampering
can explain away fire
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Understanding Independence: Common ancestors

smokealarm

fire

alarm and smoke are

dependent

alarm and smoke are

independent

given fire

Intuitively, fire can
explain alarm and
smoke; learning one
can affect the other by
changing your belief in
fire.
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Understanding Independence: Chain

report

alarm

leaving

alarm and report are

dependent

alarm and report are

independent

given
leaving

Intuitively, the only
way that the alarm
affects report is by
affecting leaving .
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Pruning Irrelevant Variables

Suppose you want to compute P(X | e1 . . . ek):

Prune any variables that have no observed or queried
descendents.

Connect the parents of any observed variable.

Remove arc directions.

Remove observed variables.

Remove any variables not connected to X in the resulting
(undirected) graph.
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