Announcements

@ Solution to Assignment 3 is posted

@ Assignment 4 is available. Use AlSpace 1 or AlPython;
AlSpace 2 is a graphical tracer for AIPython and is not
necessary.

e Midterm next Thursday.

» 75 minutes anytime in 24 hour period.

» Invidualized exams.

» You may use programs and the Intenet, but you may not not
consult or talk to anyone about the exam.

» Be prepared for an oral exam after to explain how you got your
answer.
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@ Constraint satisfaction problems are defined in terms of
variables, domains, constraints
o Constraint satisfactions problems can be solved with:
» Search
» Arc consistency with domain splitting
» Local search
@ Local search maintains a complete assignment of a value to
each variable, and has a mix of improving and randomized
steps.
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Today: Learning Objectives

Today: Local Search

At the end of the class you should be able to:
@ show how a CSP can be solved using local search
@ compare stochastic algorithms
@ explain how randomness helps

@ know a bit about population methods
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Local Search

Local Search:
@ Maintain a complete assignment of a value to each variable.
@ Start with random assignment (or a good guess)

@ Repeat:

» Select a variable to change
» Select a new value for that variable

@ Until a satisfying assignment is found
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Runtime Distribution

@ Run the same algorithm on the same
instance for a number of trials (e.g., 100 or
1000)

@ Sort the trials according to the run time.
e Plot:

x-axis run time of the trial “
y-axis index of the trial " ,

This produces a cumulative distribution = 0w

@ Do this this a few times to gauge the
variability (take a statistics course!)

@ Sometimes use number of steps instead of
run time (because computers measure small
run times inaccurately) ... not good
measure to compare algorithms if steps take
different times
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Greedy Descent Variants

To select a variable to change and a new value for it:

@ Find a variable-value pair that minimizes the number of
conflicts.
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Greedy Descent Variants

To select a variable to change and a new value for it:

@ Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?
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Greedy Descent Variants

To select a variable to change and a new value for it:

@ Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

@ Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
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Greedy Descent Variants

To select a variable to change and a new value for it:

@ Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

@ Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?
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Greedy Descent Variants

To select a variable to change and a new value for it:

@ Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

@ Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

@ Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.
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Greedy Descent Variants

To select a variable to change and a new value for it:

@ Find a variable-value pair that minimizes the number of
conflicts.

What data structures are required?

@ Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

@ Select a variable that appears in any conflict.

Select a value that minimizes the number of conflicts.
What data structures are required?
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Greedy Descent Variants

To select a variable to change and a new value for it:

@ Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

@ Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

@ Select a variable that appears in any conflict.

Select a value that minimizes the number of conflicts.
What data structures are required?

@ Select a variable at random.
Select a value that minimizes the number of conflicts.
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Greedy Descent Variants

To select a variable to change and a new value for it:

@ Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

@ Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

@ Select a variable that appears in any conflict.

Select a value that minimizes the number of conflicts.
What data structures are required?

@ Select a variable at random.

Select a value that minimizes the number of conflicts.
What needs to be done at every step?
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Greedy Descent Variants

To select a variable to change and a new value for it:

@ Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

@ Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

@ Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.
What data structures are required?

@ Select a variable at random.
Select a value that minimizes the number of conflicts.
What needs to be done at every step?

@ Select a variable and value at random; accept this change if it
doesn't increase the number of conflicts.
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Clicker Question

Which of the following is true:

A If an algorithm is above and to the left of another algorithm in
a runtime distribution, it is always faster

B A random walk cannot escape a local minima

C The amount of time taken per step is about the same for all
local search methods given modern data structures and the
speed of computers

D Carrying out arc consistency before doing a local search can
reduce the search space
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Variant: Simulated Annealing

@ Pick a variable at random and a new value at random.

e If it isn't worse, accept it.

e If it is worse, accept it probabilistically depending on a
temperature parameter, T:

> With current assignment A and proposed assignment A’ accept
A’ with probability e(f(A)—h(A))/T

Note: h(A) — h(A’) is negative if A" is worse

@ Temperature can be reduced.
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Variant: Simulated Annealing

@ Pick a variable at random and a new value at random.

e If it isn't worse, accept it.

o If it is worse, accept it probabilistically depending on a
temperature parameter, T:

> With current assignment A and proposed assignment A’ accept
A’ with probability e(f(A)—h(A))/T

Note: h(A) — h(A’) is negative if A" is worse
@ Temperature can be reduced.
Probability of accepting a change:

Temperature 1-worse 2-worse  3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000006
0.1 0.00005 2x107° 9x 107t
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Random Restart

@ A random restart involves reassigning all variables to values at
random.

@ allows for exploration of a different part of the search space.
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Random Restart

@ A random restart involves reassigning all variables to values at
random.

@ allows for exploration of a different part of the search space.

@ Each run is independent of the others, so probabilities can be

derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
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Random Restart

@ A random restart involves reassigning all variables to values at
random.

@ allows for exploration of a different part of the search space.

@ Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is
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Random Restart

@ A random restart involves reassigning all variables to values at
random.

@ allows for exploration of a different part of the search space.

@ Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is (1 — p)”
The probability of finding a solution in n-runs is

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 9/26



Random Restart

@ A random restart involves reassigning all variables to values at
random.

@ allows for exploration of a different part of the search space.

@ Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is (1 — p)”
The probability of finding a solution in n-runsis 1 — (1 — p)”
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Random Restart

@ A random restart involves reassigning all variables to values at
random.

@ allows for exploration of a different part of the search space.

@ Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is (1 — p)”
The probability of finding a solution in n-runsis 1 — (1 — p)”

n p=01 p=03 p=0.5 p=0.8

5 0.410 0.832 0.969 0.9997

10 0.65 0.971 0.9990 0.9999998

20 0.878 0.9992 0.9999991 0.9999999999¢

50 0.995 0.99999998 0.9999999999999991 1.0
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@ To prevent cycling we can maintain a tabu list of the k last
assignments.

@ Don't allow an assignment that is already on the tabu list.
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@ To prevent cycling we can maintain a tabu list of the k last
assignments.

@ Don't allow an assignment that is already on the tabu list.

o If k =1, we don’t allow an assignment of to the same value
to the variable chosen.
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@ To prevent cycling we can maintain a tabu list of the k last
assignments.

@ Don't allow an assignment that is already on the tabu list.

o If k =1, we don’t allow an assignment of to the same value
to the variable chosen.

@ We can implement it more efficiently than as a list of
complete assignments.
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@ To prevent cycling we can maintain a tabu list of the k last
assignments.

@ Don't allow an assignment that is already on the tabu list.

o If k =1, we don’t allow an assignment of to the same value
to the variable chosen.

@ We can implement it more efficiently than as a list of
complete assignments.

@ It can be expensive if k is large.
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Complex Domains

@ When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.
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Complex Domains

@ When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

@ When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.
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Complex Domains

@ When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

@ When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

@ If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.

The value of variable X; goes from v; to
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Complex Domains

@ When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

@ When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

@ If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.

The value of variable X; goes from v; to v; — ng—)’gi.
7 is the step size.
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Complex Domains

@ When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

@ When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

@ If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.

The value of variable X; goes from v; to v; — ng—)’gi.
7 is the step size.

@ Neural networds do gradient descent with thousands or

millions or billions of dimensions to minimize error on a
dataset. (See CPSC 340).
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Problems with Greedy Descent
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Problems with Greedy Descent
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Problems with Greedy Descent

@ a local optimum that is . —
not a global optimum - 7\/7 \
@ a plateau where the —~) “

heuristic values are
uninformative

‘ Saddle‘ Local | |
{ |m¢m / \
\\,,7,,/

@ a ridge is a local
minimum where n-step

look-ahead might help “ ateau
‘\ : Platt \\

@ a saddle is a flat area \ \
where steps need to \ S / /
change direction —_—
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1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

(@) (b)

@ Which method would most easily find the global minimum?
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1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

(@) (b)

@ Which method would most easily find the global minimum?

@ What happens in hundreds or thousands of dimensions?
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1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

(@) (b)

@ Which method would most easily find the global minimum?
@ What happens in hundreds or thousands of dimensions?

@ What if different parts of the search space have different
structure?
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Parallel Search

A total assignment is called an individual.
@ Idea: maintain a population of k individuals instead of one.

@ At every stage, update each individual in the population.
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Parallel Search

A total assignment is called an individual.
@ Idea: maintain a population of k individuals instead of one.
@ At every stage, update each individual in the population.

@ Whenever an individual is a solution, it can be reported.
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Parallel Search

A total assignment is called an individual.
@ Idea: maintain a population of k individuals instead of one.
@ At every stage, update each individual in the population.
@ Whenever an individual is a solution, it can be reported.

@ Like k restarts, but uses k times the minimum number of
steps.
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@ Like parallel search, with k individuals, but choose the k best
out of all of the neighbors.
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@ Like parallel search, with k individuals, but choose the k best
out of all of the neighbors.

@ When k =1, it is greedy descent.
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@ Like parallel search, with k individuals, but choose the k best
out of all of the neighbors.

@ When k =1, it is greedy descent.

@ The value of k lets us limit space and parallelism.
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@ Like parallel search, with k individuals, but choose the k best
out of all of the neighbors.

@ When k =1, it is greedy descent.
@ The value of k lets us limit space and parallelism.

@ Problem: lack of diversity of individuals.
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Stochastic Beam Search

@ Like beam search, but it probabilistically chooses the k
individuals at the next generation.
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Stochastic Beam Search

@ Like beam search, but it probabilistically chooses the k
individuals at the next generation.

@ The probability that a neighbor is chosen is proportional to its
heuristic value.
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Stochastic Beam Search

@ Like beam search, but it probabilistically chooses the k
individuals at the next generation.

The probability that a neighbor is chosen is proportional to its
heuristic value.

This maintains diversity amongst the individuals.

The heuristic value reflects the fitness of the individual.
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Stochastic Beam Search

@ Like beam search, but it probabilistically chooses the k
individuals at the next generation.

@ The probability that a neighbor is chosen is proportional to its
heuristic value.

@ This maintains diversity amongst the individuals.
@ The heuristic value reflects the fitness of the individual.

@ Like asexual reproduction: each individual mutates and the
fittest ones survive.
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Genetic Algorithms

@ Like stochastic beam search, but pairs of individuals are
combined to create the offspring.
@ For each generation:

» Randomly choose pairs of individuals where the fittest
individuals are more likely to be chosen.

» For each pair, perform a crossover: form two offspring each
taking different parts of their parents.
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Genetic Algorithms

@ Like stochastic beam search, but pairs of individuals are
combined to create the offspring.
@ For each generation:

» Randomly choose pairs of individuals where the fittest
individuals are more likely to be chosen.

» For each pair, perform a crossover: form two offspring each
taking different parts of their parents.

» Mutate some values.

@ Stop when a solution is found.
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Crossover

@ Given two individuals:
Xi1=a,Xo=a2,...,Xm=anm

X1=b,X0=bo,..., Xy = by
@ Select / at random.

@ Form two offspring:
X1 = 31,...,X,' = a,-,X,-+1 = b,'+1,...,Xm = bm

X1=b1,...,Xi=bj, Xiv1 = ai1,. -, Xm = am

@ The effectiveness depends on the ordering of the variables.
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Crossover

@ Given two individuals:
Xi1=a,Xo=a2,...,Xm=anm

X1=b,X0=bo,..., Xy = by
@ Select / at random.

@ Form two offspring:
X1 = 31,...,X,' = a,-,X,-+1 = b,'+1,...,Xm = bm

X1=b1,...,Xi=bj, Xiv1 = ai1,. -, Xm = am

@ The effectiveness depends on the ordering of the variables.

@ Many variations are possible.
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Clicker Question

Which of the following is false:
A Population based methods carry out multiple local searches at
once

B The time taken by population-based methods is number of
individuals (local searches) multiplied by the minimum time
one the local searches finds a solution

C Crossover with selecting fittest individuals allows genetic
algorithms to combine good parts of potential solutions

D It is more likely that a population-based method will find a
solution than a local search with no restart

E Population-based methods are guaranteed to find a solution if
there is one, even without randomness
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Optimization

An optimization problem is given
@ a set of variables, each with an associated domain

@ an objective function that maps total assignments to real
numbers, and

@ an optimality criterion, which is typically to find a total
assignment that minimizes (or maximizes) the objective
function.
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Constraint optimization problem

@ In a constraint optimization problem the objective function is
factored into a sum of soft constraints

@ A soft constraint is a function from scope of constraint into
non-negative reals (the cost)
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Constraint optimization problem

@ In a constraint optimization problem the objective function is
factored into a sum of soft constraints

@ A soft constraint is a function from scope of constraint into
non-negative reals (the cost)

@ The aim is to find a total assignment that minimizes the sum
of the values of the soft constraints.
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Constraint optimization problem

@ In a constraint optimization problem the objective function is
factored into a sum of soft constraints

@ A soft constraint is a function from scope of constraint into
non-negative reals (the cost)

@ The aim is to find a total assignment that minimizes the sum
of the values of the soft constraints.

e Can use systematic search (e.g., A* or branch-and-bound
search)
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Constraint optimization problem

@ In a constraint optimization problem the objective function is
factored into a sum of soft constraints

@ A soft constraint is a function from scope of constraint into
non-negative reals (the cost)

@ The aim is to find a total assignment that minimizes the sum
of the values of the soft constraints.

e Can use systematic search (e.g., A* or branch-and-bound
search)

@ Arc consistency can be used to prune dominated values
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Constraint optimization problem

@ In a constraint optimization problem the objective function is
factored into a sum of soft constraints

@ A soft constraint is a function from scope of constraint into
non-negative reals (the cost)

@ The aim is to find a total assignment that minimizes the sum
of the values of the soft constraints.

Can use systematic search (e.g., A* or branch-and-bound
search)

Arc consistency can be used to prune dominated values

Can use local search
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Constraint optimization problem

@ In a constraint optimization problem the objective function is
factored into a sum of soft constraints

@ A soft constraint is a function from scope of constraint into
non-negative reals (the cost)

@ The aim is to find a total assignment that minimizes the sum
of the values of the soft constraints.

e Can use systematic search (e.g., A* or branch-and-bound
search)

@ Arc consistency can be used to prune dominated values
@ Can use local search

@ Problem: we can't tell if a value is a global minimum unless
we do systematic search
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Propositional Satisfiability Problems

A Propositional Satisfiability (SAT) Problem is an instance of a
CSP with

@ Boolean variables: a variable with domain {true, false}.
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Propositional Satisfiability Problems

A Propositional Satisfiability (SAT) Problem is an instance of a
CSP with

@ Boolean variables: a variable with domain {true, false}.
We write X = true as the atom x, and X = false as the —x,
“not x".
A literal is an atom or the negation of an atom.
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Propositional Satisfiability Problems

A Propositional Satisfiability (SAT) Problem is an instance of a
CSP with
@ Boolean variables: a variable with domain {true, false}.
We write X = true as the atom x, and X = false as the —x,
“not x".
A literal is an atom or the negation of an atom.
@ Clausal constraints: a clause is an expression of the form
hVbhbV---VI, where each [ is a literal, and V means “or".
The clause is true if at least one of the /; is true.
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Representing finite CSPs as SAT problems

It is possible to convert any finite CSP into a propositional
satisfiable problem:

@ A variable Y with domain {v1,..., vk} can be converted into

k Boolean variables {Y1,..., Yk}, where Y; is true when Y

has value v; and is false otherwise.
Each Y; is called an indicator variable.
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Representing finite CSPs as SAT problems

It is possible to convert any finite CSP into a propositional
satisfiable problem:

@ A variable Y with domain {v1,..., vk} can be converted into
k Boolean variables {Y1,..., Yk}, where Y; is true when Y

has value v; and is false otherwise.
Each Y; is called an indicator variable.

» for i < j, y; and y; cannot both be true, so —y; V —y;.
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Representing finite CSPs as SAT problems

It is possible to convert any finite CSP into a propositional
satisfiable problem:

@ A variable Y with domain {v1,..., vk} can be converted into
k Boolean variables {Y1,..., Yk}, where Y; is true when Y

has value v; and is false otherwise.
Each Y; is called an indicator variable.

» for i < j, y; and y; cannot both be true, so —y; V —y;.
» one of the y; must be true, so: y3 V-V yk.
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as a clause. So clausal form can represent any finite
constraints.
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Representing finite CSPs as SAT problems

It is possible to convert any finite CSP into a propositional
satisfiable problem:

@ A variable Y with domain {v1,..., vk} can be converted into
k Boolean variables {Y1,..., Yk}, where Y; is true when Y

has value v; and is false otherwise.
Each Y; is called an indicator variable.

» for i < j, y; and y; cannot both be true, so —y; V —y;.
» one of the y; must be true, so: y3 V-V yk.

o A clause —x; V —y; V iz, is equivalent to —(x; A yj A zk).
Therefore each false assignment of values can be represented
as a clause. So clausal form can represent any finite
constraints.

Often we can much more concise.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 23/26



Consistency Algorithms with SAT

Arc consistency can be made much more efficient in SAT problems
than for general CSPs.

@ Because domains are binary, pruning a domain is equivalent to
assigning a value to the variable.
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Consistency Algorithms with SAT

Arc consistency can be made much more efficient in SAT problems
than for general CSPs.

@ Because domains are binary, pruning a domain is equivalent to
assigning a value to the variable.

o If X is assigned true, all of the clauses with x can be
removed, as they are all satisfied.

o If X is assigned true, all of the clauses with —x, of the form
—x V w can be simplified to w.
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Arc consistency can be made much more efficient in SAT problems
than for general CSPs.

@ Because domains are binary, pruning a domain is equivalent to
assigning a value to the variable.

o If X is assigned true, all of the clauses with x can be
removed, as they are all satisfied.

o If X is assigned true, all of the clauses with —x, of the form
—x V w can be simplified to w.

o If we get to a clause with one element, we can assign the
corresponding Boolean variable.

o If all of the literals in a clause are removed, there is no
solution.
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Consistency Algorithms with SAT

Arc consistency can be made much more efficient in SAT problems
than for general CSPs.

@ Because domains are binary, pruning a domain is equivalent to
assigning a value to the variable.

o If X is assigned true, all of the clauses with x can be
removed, as they are all satisfied.

o If X is assigned true, all of the clauses with —x, of the form
—x V w can be simplified to w.

o If we get to a clause with one element, we can assign the
corresponding Boolean variable.

o If all of the literals in a clause are removed, there is no
solution.

— uniformity of the constraints means efficient data structures.
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Local search with SAT

Local search can be much more efficient for SAT problems:

@ A complete assignment can be represented as a bit-vector
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Local search can be much more efficient for SAT problems:
@ A complete assignment can be represented as a bit-vector

@ There is only one alternative value for a variable
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Local search with S

Local search can be much more efficient for SAT problems:
@ A complete assignment can be represented as a bit-vector
@ There is only one alternative value for a variable

@ Changing any value in an unsatisfied clause makes the clause
satisfied.
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Local search with S

Local search can be much more efficient for SAT problems:
@ A complete assignment can be represented as a bit-vector
@ There is only one alternative value for a variable

@ Changing any value in an unsatisfied clause makes the clause
satisfied.

o If a variable X is changed to be true
P all of the clauses containing x become satisfied
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Local search with S

Local search can be much more efficient for SAT problems:
@ A complete assignment can be represented as a bit-vector
@ There is only one alternative value for a variable

@ Changing any value in an unsatisfied clause makes the clause
satisfied.

o If a variable X is changed to be true

P all of the clauses containing x become satisfied
» only those clauses with —x can become unsatisfied.

This allows for efficient indexing of clauses.
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Local search with S

Local search can be much more efficient for SAT problems:
@ A complete assignment can be represented as a bit-vector
@ There is only one alternative value for a variable

@ Changing any value in an unsatisfied clause makes the clause
satisfied.
o If a variable X is changed to be true

P all of the clauses containing x become satisfied
» only those clauses with —x can become unsatisfied.

This allows for efficient indexing of clauses.

@ The search space is expanded. Before a solution has been
found, more than one of the indicator variables for a variable
Y could be true, or all of the indicator variables could be false.
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