
Announcements

Solution to Assignment 3 is posted

Assignment 4 is available. Use AISpace 1 or AIPython;
AISpace 2 is a graphical tracer for AIPython and is not
necessary.

Midterm next Thursday.
I 75 minutes anytime in 24 hour period.
I Invidualized exams.
I You may use programs and the Intenet, but you may not not

consult or talk to anyone about the exam.
I Be prepared for an oral exam after to explain how you got your

answer.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 1 / 26



Review: So far. . .

Constraint satisfaction problems are defined in terms of
variables, domains, constraints

Constraint satisfactions problems can be solved with:
I Search
I Arc consistency with domain splitting
I Local search

Local search maintains a complete assignment of a value to
each variable, and has a mix of improving and randomized
steps.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 2 / 26



Today: Learning Objectives

Today: Local Search

At the end of the class you should be able to:

show how a CSP can be solved using local search

compare stochastic algorithms

explain how randomness helps

know a bit about population methods

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 3 / 26



Local Search

Local Search:

Maintain a complete assignment of a value to each variable.

Start with random assignment (or a good guess)

Repeat:
I Select a variable to change
I Select a new value for that variable

Until a satisfying assignment is found

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 4 / 26



Runtime Distribution

Run the same algorithm on the same
instance for a number of trials (e.g., 100 or
1000)

Sort the trials according to the run time.

Plot:

x-axis run time of the trial
y-axis index of the trial

This produces a cumulative distribution

Do this this a few times to gauge the
variability (take a statistics course!)

Sometimes use number of steps instead of
run time (because computers measure small
run times inaccurately) . . . not good
measure to compare algorithms if steps take
different times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 5 / 26



Greedy Descent Variants

To select a variable to change and a new value for it:

Find a variable-value pair that minimizes the number of
conflicts.

What data structures are required?

Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable at random.
Select a value that minimizes the number of conflicts.
What needs to be done at every step?

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 6 / 26



Greedy Descent Variants

To select a variable to change and a new value for it:

Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable at random.
Select a value that minimizes the number of conflicts.
What needs to be done at every step?

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 6 / 26



Greedy Descent Variants

To select a variable to change and a new value for it:

Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.

What data structures are required?

Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable at random.
Select a value that minimizes the number of conflicts.
What needs to be done at every step?

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 6 / 26



Greedy Descent Variants

To select a variable to change and a new value for it:

Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable at random.
Select a value that minimizes the number of conflicts.
What needs to be done at every step?

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 6 / 26



Greedy Descent Variants

To select a variable to change and a new value for it:

Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.

What data structures are required?

Select a variable at random.
Select a value that minimizes the number of conflicts.
What needs to be done at every step?

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 6 / 26



Greedy Descent Variants

To select a variable to change and a new value for it:

Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable at random.
Select a value that minimizes the number of conflicts.
What needs to be done at every step?

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 6 / 26



Greedy Descent Variants

To select a variable to change and a new value for it:

Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable at random.
Select a value that minimizes the number of conflicts.

What needs to be done at every step?

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 6 / 26



Greedy Descent Variants

To select a variable to change and a new value for it:

Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable at random.
Select a value that minimizes the number of conflicts.
What needs to be done at every step?

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 6 / 26



Greedy Descent Variants

To select a variable to change and a new value for it:

Find a variable-value pair that minimizes the number of
conflicts.
What data structures are required?

Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable at random.
Select a value that minimizes the number of conflicts.
What needs to be done at every step?

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 6 / 26



Clicker Question

Which of the following is true:

A If an algorithm is above and to the left of another algorithm in
a runtime distribution, it is always faster

B A random walk cannot escape a local minima

C The amount of time taken per step is about the same for all
local search methods given modern data structures and the
speed of computers

D Carrying out arc consistency before doing a local search can
reduce the search space

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 7 / 26



Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it isn’t worse, accept it.

If it is worse, accept it probabilistically depending on a
temperature parameter, T :
I With current assignment A and proposed assignment A′ accept

A′ with probability e(h(A)−h(A
′))/T

Note: h(A)− h(A′) is negative if A′ is worse

Temperature can be reduced.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000006
0.1 0.00005 2× 10−9 9× 10−14

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 8 / 26



Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it isn’t worse, accept it.

If it is worse, accept it probabilistically depending on a
temperature parameter, T :
I With current assignment A and proposed assignment A′ accept

A′ with probability e(h(A)−h(A
′))/T

Note: h(A)− h(A′) is negative if A′ is worse

Temperature can be reduced.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000006
0.1 0.00005 2× 10−9 9× 10−14

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 8 / 26



Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is (1− p)n

The probability of finding a solution in n-runs is 1− (1− p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 9 / 26



Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.

The probability of n runs failing to find a solution is (1− p)n

The probability of finding a solution in n-runs is 1− (1− p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 9 / 26



Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is

(1− p)n

The probability of finding a solution in n-runs is 1− (1− p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 9 / 26



Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is (1− p)n

The probability of finding a solution in n-runs is

1− (1− p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 9 / 26



Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is (1− p)n

The probability of finding a solution in n-runs is 1− (1− p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 9 / 26



Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is (1− p)n

The probability of finding a solution in n-runs is 1− (1− p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 9 / 26



Tabu lists

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we don’t allow an assignment of to the same value
to the variable chosen.

We can implement it more efficiently than as a list of
complete assignments.

It can be expensive if k is large.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 10 / 26



Tabu lists

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we don’t allow an assignment of to the same value
to the variable chosen.

We can implement it more efficiently than as a list of
complete assignments.

It can be expensive if k is large.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 10 / 26



Tabu lists

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we don’t allow an assignment of to the same value
to the variable chosen.

We can implement it more efficiently than as a list of
complete assignments.

It can be expensive if k is large.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 10 / 26



Tabu lists

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we don’t allow an assignment of to the same value
to the variable chosen.

We can implement it more efficiently than as a list of
complete assignments.

It can be expensive if k is large.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 10 / 26



Complex Domains

When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.
The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

η is the step size.

Neural networds do gradient descent with thousands or
millions or billions of dimensions to minimize error on a
dataset. (See CPSC 340).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 11 / 26



Complex Domains

When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.
The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

η is the step size.

Neural networds do gradient descent with thousands or
millions or billions of dimensions to minimize error on a
dataset. (See CPSC 340).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 11 / 26



Complex Domains

When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.
The value of variable Xi goes from vi to

vi − η ∂h
∂Xi

.
η is the step size.

Neural networds do gradient descent with thousands or
millions or billions of dimensions to minimize error on a
dataset. (See CPSC 340).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 11 / 26



Complex Domains

When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.
The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

η is the step size.

Neural networds do gradient descent with thousands or
millions or billions of dimensions to minimize error on a
dataset. (See CPSC 340).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 11 / 26



Complex Domains

When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.
The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

η is the step size.

Neural networds do gradient descent with thousands or
millions or billions of dimensions to minimize error on a
dataset. (See CPSC 340).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 11 / 26



Problems with Greedy Descent

a local optimum that is
not a global optimum

a plateau where the
heuristic values are
uninformative

a ridge is a local
minimum where n-step
look-ahead might help

a saddle is a flat area
where steps need to
change direction










































































Ridge

Plateau

Local

OptimumGlobal 

optimum

Saddle

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 12 / 26



Problems with Greedy Descent

a local optimum that is
not a global optimum

a plateau where the
heuristic values are
uninformative

a ridge is a local
minimum where n-step
look-ahead might help

a saddle is a flat area
where steps need to
change direction










































































Ridge

Plateau

Local

OptimumGlobal 

optimum

Saddle

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 12 / 26



Problems with Greedy Descent

a local optimum that is
not a global optimum

a plateau where the
heuristic values are
uninformative

a ridge is a local
minimum where n-step
look-ahead might help

a saddle is a flat area
where steps need to
change direction










































































Ridge

Plateau

Local

OptimumGlobal 

optimum

Saddle

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 12 / 26



Problems with Greedy Descent

a local optimum that is
not a global optimum

a plateau where the
heuristic values are
uninformative

a ridge is a local
minimum where n-step
look-ahead might help

a saddle is a flat area
where steps need to
change direction










































































Ridge

Plateau

Local

OptimumGlobal 

optimum

Saddle

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 12 / 26



1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

(a) (b)

Which method would most easily find the global minimum?

What happens in hundreds or thousands of dimensions?

What if different parts of the search space have different
structure?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 13 / 26



1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

(a) (b)

Which method would most easily find the global minimum?

What happens in hundreds or thousands of dimensions?

What if different parts of the search space have different
structure?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 13 / 26



1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

(a) (b)

Which method would most easily find the global minimum?

What happens in hundreds or thousands of dimensions?

What if different parts of the search space have different
structure?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 13 / 26



Parallel Search

A total assignment is called an individual.

Idea: maintain a population of k individuals instead of one.

At every stage, update each individual in the population.

Whenever an individual is a solution, it can be reported.

Like k restarts, but uses k times the minimum number of
steps.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 14 / 26



Parallel Search

A total assignment is called an individual.

Idea: maintain a population of k individuals instead of one.

At every stage, update each individual in the population.

Whenever an individual is a solution, it can be reported.

Like k restarts, but uses k times the minimum number of
steps.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 14 / 26



Parallel Search

A total assignment is called an individual.

Idea: maintain a population of k individuals instead of one.

At every stage, update each individual in the population.

Whenever an individual is a solution, it can be reported.

Like k restarts, but uses k times the minimum number of
steps.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 14 / 26



Beam Search

Like parallel search, with k individuals, but choose the k best
out of all of the neighbors.

When k = 1, it is greedy descent.

The value of k lets us limit space and parallelism.

Problem: lack of diversity of individuals.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 15 / 26



Beam Search

Like parallel search, with k individuals, but choose the k best
out of all of the neighbors.

When k = 1, it is greedy descent.

The value of k lets us limit space and parallelism.

Problem: lack of diversity of individuals.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 15 / 26



Beam Search

Like parallel search, with k individuals, but choose the k best
out of all of the neighbors.

When k = 1, it is greedy descent.

The value of k lets us limit space and parallelism.

Problem: lack of diversity of individuals.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 15 / 26



Beam Search

Like parallel search, with k individuals, but choose the k best
out of all of the neighbors.

When k = 1, it is greedy descent.

The value of k lets us limit space and parallelism.

Problem: lack of diversity of individuals.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 15 / 26



Stochastic Beam Search

Like beam search, but it probabilistically chooses the k
individuals at the next generation.

The probability that a neighbor is chosen is proportional to its
heuristic value.

This maintains diversity amongst the individuals.

The heuristic value reflects the fitness of the individual.

Like asexual reproduction: each individual mutates and the
fittest ones survive.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 16 / 26



Stochastic Beam Search

Like beam search, but it probabilistically chooses the k
individuals at the next generation.

The probability that a neighbor is chosen is proportional to its
heuristic value.

This maintains diversity amongst the individuals.

The heuristic value reflects the fitness of the individual.

Like asexual reproduction: each individual mutates and the
fittest ones survive.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 16 / 26



Stochastic Beam Search

Like beam search, but it probabilistically chooses the k
individuals at the next generation.

The probability that a neighbor is chosen is proportional to its
heuristic value.

This maintains diversity amongst the individuals.

The heuristic value reflects the fitness of the individual.

Like asexual reproduction: each individual mutates and the
fittest ones survive.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 16 / 26



Stochastic Beam Search

Like beam search, but it probabilistically chooses the k
individuals at the next generation.

The probability that a neighbor is chosen is proportional to its
heuristic value.

This maintains diversity amongst the individuals.

The heuristic value reflects the fitness of the individual.

Like asexual reproduction: each individual mutates and the
fittest ones survive.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 16 / 26



Genetic Algorithms

Like stochastic beam search, but pairs of individuals are
combined to create the offspring.

For each generation:
I Randomly choose pairs of individuals where the fittest

individuals are more likely to be chosen.
I For each pair, perform a crossover: form two offspring each

taking different parts of their parents.

I Mutate some values.

Stop when a solution is found.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 17 / 26



Genetic Algorithms

Like stochastic beam search, but pairs of individuals are
combined to create the offspring.

For each generation:
I Randomly choose pairs of individuals where the fittest

individuals are more likely to be chosen.
I For each pair, perform a crossover: form two offspring each

taking different parts of their parents.
I Mutate some values.

Stop when a solution is found.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 17 / 26



Crossover

Given two individuals:

X1 = a1,X2 = a2, . . . ,Xm = am

X1 = b1,X2 = b2, . . . ,Xm = bm

Select i at random.

Form two offspring:

X1 = a1, . . . ,Xi = ai ,Xi+1 = bi+1, . . . ,Xm = bm

X1 = b1, . . . ,Xi = bi ,Xi+1 = ai+1, . . . ,Xm = am

The effectiveness depends on the ordering of the variables.

Many variations are possible.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 18 / 26



Crossover

Given two individuals:

X1 = a1,X2 = a2, . . . ,Xm = am

X1 = b1,X2 = b2, . . . ,Xm = bm

Select i at random.

Form two offspring:

X1 = a1, . . . ,Xi = ai ,Xi+1 = bi+1, . . . ,Xm = bm

X1 = b1, . . . ,Xi = bi ,Xi+1 = ai+1, . . . ,Xm = am

The effectiveness depends on the ordering of the variables.

Many variations are possible.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 18 / 26



Clicker Question

Which of the following is false:

A Population based methods carry out multiple local searches at
once

B The time taken by population-based methods is number of
individuals (local searches) multiplied by the minimum time
one the local searches finds a solution

C Crossover with selecting fittest individuals allows genetic
algorithms to combine good parts of potential solutions

D It is more likely that a population-based method will find a
solution than a local search with no restart

E Population-based methods are guaranteed to find a solution if
there is one, even without randomness

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 19 / 26



Optimization

An optimization problem is given

a set of variables, each with an associated domain

an objective function that maps total assignments to real
numbers, and

an optimality criterion, which is typically to find a total
assignment that minimizes (or maximizes) the objective
function.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 20 / 26



Constraint optimization problem

In a constraint optimization problem the objective function is
factored into a sum of soft constraints

A soft constraint is a function from scope of constraint into
non-negative reals (the cost)

The aim is to find a total assignment that minimizes the sum
of the values of the soft constraints.

Can use systematic search (e.g., A∗ or branch-and-bound
search)

Arc consistency can be used to prune dominated values

Can use local search

Problem: we can’t tell if a value is a global minimum unless
we do systematic search

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 21 / 26



Constraint optimization problem

In a constraint optimization problem the objective function is
factored into a sum of soft constraints

A soft constraint is a function from scope of constraint into
non-negative reals (the cost)

The aim is to find a total assignment that minimizes the sum
of the values of the soft constraints.

Can use systematic search (e.g., A∗ or branch-and-bound
search)

Arc consistency can be used to prune dominated values

Can use local search

Problem: we can’t tell if a value is a global minimum unless
we do systematic search

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 21 / 26



Constraint optimization problem

In a constraint optimization problem the objective function is
factored into a sum of soft constraints

A soft constraint is a function from scope of constraint into
non-negative reals (the cost)

The aim is to find a total assignment that minimizes the sum
of the values of the soft constraints.

Can use systematic search (e.g., A∗ or branch-and-bound
search)

Arc consistency can be used to prune dominated values

Can use local search

Problem: we can’t tell if a value is a global minimum unless
we do systematic search

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 21 / 26



Constraint optimization problem

In a constraint optimization problem the objective function is
factored into a sum of soft constraints

A soft constraint is a function from scope of constraint into
non-negative reals (the cost)

The aim is to find a total assignment that minimizes the sum
of the values of the soft constraints.

Can use systematic search (e.g., A∗ or branch-and-bound
search)

Arc consistency can be used to prune dominated values

Can use local search

Problem: we can’t tell if a value is a global minimum unless
we do systematic search

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 21 / 26



Constraint optimization problem

In a constraint optimization problem the objective function is
factored into a sum of soft constraints

A soft constraint is a function from scope of constraint into
non-negative reals (the cost)

The aim is to find a total assignment that minimizes the sum
of the values of the soft constraints.

Can use systematic search (e.g., A∗ or branch-and-bound
search)

Arc consistency can be used to prune dominated values

Can use local search

Problem: we can’t tell if a value is a global minimum unless
we do systematic search

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 21 / 26



Constraint optimization problem

In a constraint optimization problem the objective function is
factored into a sum of soft constraints

A soft constraint is a function from scope of constraint into
non-negative reals (the cost)

The aim is to find a total assignment that minimizes the sum
of the values of the soft constraints.

Can use systematic search (e.g., A∗ or branch-and-bound
search)

Arc consistency can be used to prune dominated values

Can use local search

Problem: we can’t tell if a value is a global minimum unless
we do systematic search

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 21 / 26



Propositional Satisfiability Problems

A Propositional Satisfiability (SAT) Problem is an instance of a
CSP with

Boolean variables: a variable with domain {true, false}.

We write X = true as the atom x , and X = false as the ¬x ,
“not x”.
A literal is an atom or the negation of an atom.

Clausal constraints: a clause is an expression of the form
l1 ∨ l2 ∨ · · · ∨ lk , where each li is a literal, and ∨ means “or”.
The clause is true if at least one of the li is true.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 22 / 26



Propositional Satisfiability Problems

A Propositional Satisfiability (SAT) Problem is an instance of a
CSP with

Boolean variables: a variable with domain {true, false}.
We write X = true as the atom x , and X = false as the ¬x ,
“not x”.
A literal is an atom or the negation of an atom.

Clausal constraints: a clause is an expression of the form
l1 ∨ l2 ∨ · · · ∨ lk , where each li is a literal, and ∨ means “or”.
The clause is true if at least one of the li is true.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 22 / 26



Propositional Satisfiability Problems

A Propositional Satisfiability (SAT) Problem is an instance of a
CSP with

Boolean variables: a variable with domain {true, false}.
We write X = true as the atom x , and X = false as the ¬x ,
“not x”.
A literal is an atom or the negation of an atom.

Clausal constraints: a clause is an expression of the form
l1 ∨ l2 ∨ · · · ∨ lk , where each li is a literal, and ∨ means “or”.
The clause is true if at least one of the li is true.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 22 / 26



Representing finite CSPs as SAT problems

It is possible to convert any finite CSP into a propositional
satisfiable problem:

A variable Y with domain {v1, . . . , vk} can be converted into
k Boolean variables {Y1, . . . ,Yk}, where Yi is true when Y
has value vi and is false otherwise.
Each Yi is called an indicator variable.

I for i < j , yi and yj cannot both be true, so ¬yi ∨ ¬yj .
I one of the yi must be true, so: y1 ∨ · · · ∨ yk .

A clause ¬xi ∨ ¬yj ∨ ¬zk is equivalent to ¬(xi ∧ yj ∧ zk).
Therefore each false assignment of values can be represented
as a clause. So clausal form can represent any finite
constraints.
Often we can much more concise.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 23 / 26



Representing finite CSPs as SAT problems

It is possible to convert any finite CSP into a propositional
satisfiable problem:

A variable Y with domain {v1, . . . , vk} can be converted into
k Boolean variables {Y1, . . . ,Yk}, where Yi is true when Y
has value vi and is false otherwise.
Each Yi is called an indicator variable.
I for i < j , yi and yj cannot both be true, so ¬yi ∨ ¬yj .

I one of the yi must be true, so: y1 ∨ · · · ∨ yk .

A clause ¬xi ∨ ¬yj ∨ ¬zk is equivalent to ¬(xi ∧ yj ∧ zk).
Therefore each false assignment of values can be represented
as a clause. So clausal form can represent any finite
constraints.
Often we can much more concise.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 23 / 26



Representing finite CSPs as SAT problems

It is possible to convert any finite CSP into a propositional
satisfiable problem:

A variable Y with domain {v1, . . . , vk} can be converted into
k Boolean variables {Y1, . . . ,Yk}, where Yi is true when Y
has value vi and is false otherwise.
Each Yi is called an indicator variable.
I for i < j , yi and yj cannot both be true, so ¬yi ∨ ¬yj .
I one of the yi must be true, so: y1 ∨ · · · ∨ yk .

A clause ¬xi ∨ ¬yj ∨ ¬zk is equivalent to ¬(xi ∧ yj ∧ zk).
Therefore each false assignment of values can be represented
as a clause. So clausal form can represent any finite
constraints.
Often we can much more concise.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 23 / 26



Representing finite CSPs as SAT problems

It is possible to convert any finite CSP into a propositional
satisfiable problem:

A variable Y with domain {v1, . . . , vk} can be converted into
k Boolean variables {Y1, . . . ,Yk}, where Yi is true when Y
has value vi and is false otherwise.
Each Yi is called an indicator variable.
I for i < j , yi and yj cannot both be true, so ¬yi ∨ ¬yj .
I one of the yi must be true, so: y1 ∨ · · · ∨ yk .

A clause ¬xi ∨ ¬yj ∨ ¬zk is equivalent to ¬(xi ∧ yj ∧ zk).

Therefore each false assignment of values can be represented
as a clause. So clausal form can represent any finite
constraints.
Often we can much more concise.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 23 / 26



Representing finite CSPs as SAT problems

It is possible to convert any finite CSP into a propositional
satisfiable problem:

A variable Y with domain {v1, . . . , vk} can be converted into
k Boolean variables {Y1, . . . ,Yk}, where Yi is true when Y
has value vi and is false otherwise.
Each Yi is called an indicator variable.
I for i < j , yi and yj cannot both be true, so ¬yi ∨ ¬yj .
I one of the yi must be true, so: y1 ∨ · · · ∨ yk .

A clause ¬xi ∨ ¬yj ∨ ¬zk is equivalent to ¬(xi ∧ yj ∧ zk).
Therefore each false assignment of values can be represented
as a clause. So clausal form can represent any finite
constraints.

Often we can much more concise.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 23 / 26



Representing finite CSPs as SAT problems

It is possible to convert any finite CSP into a propositional
satisfiable problem:

A variable Y with domain {v1, . . . , vk} can be converted into
k Boolean variables {Y1, . . . ,Yk}, where Yi is true when Y
has value vi and is false otherwise.
Each Yi is called an indicator variable.
I for i < j , yi and yj cannot both be true, so ¬yi ∨ ¬yj .
I one of the yi must be true, so: y1 ∨ · · · ∨ yk .

A clause ¬xi ∨ ¬yj ∨ ¬zk is equivalent to ¬(xi ∧ yj ∧ zk).
Therefore each false assignment of values can be represented
as a clause. So clausal form can represent any finite
constraints.
Often we can much more concise.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 23 / 26



Consistency Algorithms with SAT

Arc consistency can be made much more efficient in SAT problems
than for general CSPs.

Because domains are binary, pruning a domain is equivalent to
assigning a value to the variable.

If X is assigned true, all of the clauses with x can be
removed, as they are all satisfied.

If X is assigned true, all of the clauses with ¬x , of the form
¬x ∨ w can be simplified to w .

If we get to a clause with one element, we can assign the
corresponding Boolean variable.

If all of the literals in a clause are removed, there is no
solution.

— uniformity of the constraints means efficient data structures.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 24 / 26



Consistency Algorithms with SAT

Arc consistency can be made much more efficient in SAT problems
than for general CSPs.

Because domains are binary, pruning a domain is equivalent to
assigning a value to the variable.

If X is assigned true, all of the clauses with x can be
removed, as they are all satisfied.

If X is assigned true, all of the clauses with ¬x , of the form
¬x ∨ w can be simplified to w .

If we get to a clause with one element, we can assign the
corresponding Boolean variable.

If all of the literals in a clause are removed, there is no
solution.

— uniformity of the constraints means efficient data structures.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 24 / 26



Consistency Algorithms with SAT

Arc consistency can be made much more efficient in SAT problems
than for general CSPs.

Because domains are binary, pruning a domain is equivalent to
assigning a value to the variable.

If X is assigned true, all of the clauses with x can be
removed, as they are all satisfied.

If X is assigned true, all of the clauses with ¬x , of the form
¬x ∨ w can be simplified to w .

If we get to a clause with one element, we can assign the
corresponding Boolean variable.

If all of the literals in a clause are removed, there is no
solution.

— uniformity of the constraints means efficient data structures.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 24 / 26



Consistency Algorithms with SAT

Arc consistency can be made much more efficient in SAT problems
than for general CSPs.

Because domains are binary, pruning a domain is equivalent to
assigning a value to the variable.

If X is assigned true, all of the clauses with x can be
removed, as they are all satisfied.

If X is assigned true, all of the clauses with ¬x , of the form
¬x ∨ w can be simplified to w .

If we get to a clause with one element, we can assign the
corresponding Boolean variable.

If all of the literals in a clause are removed, there is no
solution.

— uniformity of the constraints means efficient data structures.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 24 / 26



Local search with SAT

Local search can be much more efficient for SAT problems:

A complete assignment can be represented as a bit-vector

There is only one alternative value for a variable

Changing any value in an unsatisfied clause makes the clause
satisfied.

If a variable X is changed to be true
I all of the clauses containing x become satisfied
I only those clauses with ¬x can become unsatisfied.

This allows for efficient indexing of clauses.

The search space is expanded. Before a solution has been
found, more than one of the indicator variables for a variable
Y could be true, or all of the indicator variables could be false.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 25 / 26



Local search with SAT

Local search can be much more efficient for SAT problems:

A complete assignment can be represented as a bit-vector

There is only one alternative value for a variable

Changing any value in an unsatisfied clause makes the clause
satisfied.

If a variable X is changed to be true
I all of the clauses containing x become satisfied
I only those clauses with ¬x can become unsatisfied.

This allows for efficient indexing of clauses.

The search space is expanded. Before a solution has been
found, more than one of the indicator variables for a variable
Y could be true, or all of the indicator variables could be false.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 25 / 26



Local search with SAT

Local search can be much more efficient for SAT problems:

A complete assignment can be represented as a bit-vector

There is only one alternative value for a variable

Changing any value in an unsatisfied clause makes the clause
satisfied.

If a variable X is changed to be true
I all of the clauses containing x become satisfied
I only those clauses with ¬x can become unsatisfied.

This allows for efficient indexing of clauses.

The search space is expanded. Before a solution has been
found, more than one of the indicator variables for a variable
Y could be true, or all of the indicator variables could be false.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 25 / 26



Local search with SAT

Local search can be much more efficient for SAT problems:

A complete assignment can be represented as a bit-vector

There is only one alternative value for a variable

Changing any value in an unsatisfied clause makes the clause
satisfied.

If a variable X is changed to be true
I all of the clauses containing x become satisfied

I only those clauses with ¬x can become unsatisfied.

This allows for efficient indexing of clauses.

The search space is expanded. Before a solution has been
found, more than one of the indicator variables for a variable
Y could be true, or all of the indicator variables could be false.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 25 / 26



Local search with SAT

Local search can be much more efficient for SAT problems:

A complete assignment can be represented as a bit-vector

There is only one alternative value for a variable

Changing any value in an unsatisfied clause makes the clause
satisfied.

If a variable X is changed to be true
I all of the clauses containing x become satisfied
I only those clauses with ¬x can become unsatisfied.

This allows for efficient indexing of clauses.

The search space is expanded. Before a solution has been
found, more than one of the indicator variables for a variable
Y could be true, or all of the indicator variables could be false.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 25 / 26



Local search with SAT

Local search can be much more efficient for SAT problems:

A complete assignment can be represented as a bit-vector

There is only one alternative value for a variable

Changing any value in an unsatisfied clause makes the clause
satisfied.

If a variable X is changed to be true
I all of the clauses containing x become satisfied
I only those clauses with ¬x can become unsatisfied.

This allows for efficient indexing of clauses.

The search space is expanded. Before a solution has been
found, more than one of the indicator variables for a variable
Y could be true, or all of the indicator variables could be false.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 25 / 26



Local search with SAT

Local search can be much more efficient for SAT problems:

A complete assignment can be represented as a bit-vector

There is only one alternative value for a variable

Changing any value in an unsatisfied clause makes the clause
satisfied.

If a variable X is changed to be true
I all of the clauses containing x become satisfied
I only those clauses with ¬x can become unsatisfied.

This allows for efficient indexing of clauses.

The search space is expanded. Before a solution has been
found, more than one of the indicator variables for a variable
Y could be true, or all of the indicator variables could be false.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 25 / 26



©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 9 26 / 26


