- Solution to Assignment 3 is posted
- Assignment 4 is available. Use AlSpace 1 or AlPython; AlSpace 2 is a graphical tracer for AlPython and is not necessary.
- Midterm next Thursday.
 - 75 minutes anytime in 24 hour period.
 - Invidualized exams.
 - You may use programs and the Intenet, but you may not not consult or talk to anyone about the exam.
 - Be prepared for an oral exam after to explain how you got your answer.

- Constraint satisfaction problems are defined in terms of variables, domains, constraints
- Constraint satisfactions problems can be solved with:
 - Search
 - Arc consistency with domain splitting
 - Local search
- Local search maintains a complete assignment of a value to each variable, and has a mix of improving and randomized steps.

Today: Local Search

At the end of the class you should be able to:

- show how a CSP can be solved using local search
- compare stochastic algorithms
- explain how randomness helps
- know a bit about population methods

Local Search:

- Maintain a complete assignment of a value to each variable.
- Start with random assignment (or a good guess)
- Repeat:
 - Select a variable to change
 - Select a new value for that variable
- Until a satisfying assignment is found

Runtime Distribution

- Run the same algorithm on the same instance for a number of trials (e.g., 100 or 1000)
- Sort the trials according to the run time.
- Plot:

x-axis run time of the trial y-axis index of the trial

This produces a cumulative distribution

- Do this this a few times to gauge the variability (take a statistics course!)
- Sometimes use number of steps instead of run time (because computers measure small run times inaccurately) ... not good measure to compare algorithms if steps take different times

5 / 26

To select a variable to change and a new value for it:

• Find a variable-value pair that minimizes the number of conflicts.

To select a variable to change and a new value for it:

• Find a variable-value pair that minimizes the number of conflicts.

To select a variable to change and a new value for it:

• Find a variable-value pair that minimizes the number of conflicts.

What data structures are required?

• Select a variable that participates in the most conflicts. Select a value that minimizes the number of conflicts.

To select a variable to change and a new value for it:

• Find a variable-value pair that minimizes the number of conflicts.

What data structures are required?

• Select a variable that participates in the most conflicts. Select a value that minimizes the number of conflicts. What data structures are required?

To select a variable to change and a new value for it:

• Find a variable-value pair that minimizes the number of conflicts.

- Select a variable that participates in the most conflicts. Select a value that minimizes the number of conflicts. What data structures are required?
- Select a variable that appears in any conflict. Select a value that minimizes the number of conflicts.

To select a variable to change and a new value for it:

• Find a variable-value pair that minimizes the number of conflicts.

- Select a variable that participates in the most conflicts. Select a value that minimizes the number of conflicts. What data structures are required?
- Select a variable that appears in any conflict. Select a value that minimizes the number of conflicts. What data structures are required?

To select a variable to change and a new value for it:

• Find a variable-value pair that minimizes the number of conflicts.

- Select a variable that participates in the most conflicts. Select a value that minimizes the number of conflicts. What data structures are required?
- Select a variable that appears in any conflict. Select a value that minimizes the number of conflicts. What data structures are required?
- Select a variable at random. Select a value that minimizes the number of conflicts.

To select a variable to change and a new value for it:

• Find a variable-value pair that minimizes the number of conflicts.

- Select a variable that participates in the most conflicts. Select a value that minimizes the number of conflicts. What data structures are required?
- Select a variable that appears in any conflict. Select a value that minimizes the number of conflicts. What data structures are required?
- Select a variable at random.
 Select a value that minimizes the number of conflicts.
 What needs to be done at every step?

To select a variable to change and a new value for it:

• Find a variable-value pair that minimizes the number of conflicts.

- Select a variable that participates in the most conflicts. Select a value that minimizes the number of conflicts. What data structures are required?
- Select a variable that appears in any conflict. Select a value that minimizes the number of conflicts. What data structures are required?
- Select a variable at random.
 Select a value that minimizes the number of conflicts.
 What needs to be done at every step?
- Select a variable and value at random; accept this change if it doesn't increase the number of conflicts.

Which of the following is true:

- A If an algorithm is above and to the left of another algorithm in a runtime distribution, it is always faster
- B A random walk cannot escape a local minima
- C The amount of time taken per step is about the same for all local search methods given modern data structures and the speed of computers
- D Carrying out arc consistency before doing a local search can reduce the search space

Variant: Simulated Annealing

- Pick a variable at random and a new value at random.
- If it isn't worse, accept it.
- If it is worse, accept it probabilistically depending on a temperature parameter, *T*:
 - With current assignment A and proposed assignment A' accept A' with probability e^{(h(A)-h(A'))/T}

Note: h(A) - h(A') is negative if A' is worse

• Temperature can be reduced.

Variant: Simulated Annealing

- Pick a variable at random and a new value at random.
- If it isn't worse, accept it.
- If it is worse, accept it probabilistically depending on a temperature parameter, *T*:
 - With current assignment A and proposed assignment A' accept A' with probability e^{(h(A)-h(A'))/T}

Note: h(A) - h(A') is negative if A' is worse

• Temperature can be reduced.

Probability of accepting a change:

Temperature	1-worse	2-worse	3-worse
10	0.91	0.81	0.74
1	0.37	0.14	0.05
0.25	0.02	0.0003	0.000006
0.1	0.00005	$2 imes 10^{-9}$	$9 imes 10^{-14}$

< 🗆 I

- A random restart involves reassigning all variables to values at random.
- allows for exploration of a different part of the search space.

- A random restart involves reassigning all variables to values at random.
- allows for exploration of a different part of the search space.
- Each run is independent of the others, so probabilities can be derived analytically.
 Suppose each run has a probability of p of finding a solution.

We do n runs or until a solution is found.

- A random restart involves reassigning all variables to values at random.
- allows for exploration of a different part of the search space.
- Each run is independent of the others, so probabilities can be derived analytically.
 Suppose each run has a probability of p of finding a solution.
 We do n runs or until a solution is found.
 - The probability of n runs failing to find a solution is

- A random restart involves reassigning all variables to values at random.
- allows for exploration of a different part of the search space.
- Each run is independent of the others, so probabilities can be derived analytically.
 - Suppose each run has a probability of p of finding a solution. We do n runs or until a solution is found.
 - The probability of *n* runs failing to find a solution is $(1-p)^n$ The probability of finding a solution in n-runs is

- A random restart involves reassigning all variables to values at random.
- allows for exploration of a different part of the search space.
- Each run is independent of the others, so probabilities can be derived analytically.
 - Suppose each run has a probability of p of finding a solution. We do n runs or until a solution is found.
 - The probability of *n* runs failing to find a solution is $(1-p)^n$ The probability of finding a solution in n-runs is $1-(1-p)^n$

- A random restart involves reassigning all variables to values at random.
- allows for exploration of a different part of the search space.
- Each run is independent of the others, so probabilities can be derived analytically.

Suppose each run has a probability of p of finding a solution. We do n runs or until a solution is found.

The probability of *n* runs failing to find a solution is $(1-p)^n$ The probability of finding a solution in n-runs is $1-(1-p)^n$

n	p = 0.1	<i>p</i> = 0.3	p = 0.5	<i>p</i> = 0.8
5	0.410	0.832	0.969	0.9997
10	0.65	0.971	0.9990	0.9999998
20	0.878	0.9992	0.9999991	0.999999999999
50	0.995	0.99999998	0.999999999999999999	1.0
				• • •

- To prevent cycling we can maintain a tabu list of the k last assignments.
- Don't allow an assignment that is already on the tabu list.

- To prevent cycling we can maintain a tabu list of the k last assignments.
- Don't allow an assignment that is already on the tabu list.
- If k = 1, we don't allow an assignment of to the same value to the variable chosen.

- To prevent cycling we can maintain a tabu list of the k last assignments.
- Don't allow an assignment that is already on the tabu list.
- If k = 1, we don't allow an assignment of to the same value to the variable chosen.
- We can implement it more efficiently than as a list of complete assignments.

- To prevent cycling we can maintain a tabu list of the k last assignments.
- Don't allow an assignment that is already on the tabu list.
- If k = 1, we don't allow an assignment of to the same value to the variable chosen.
- We can implement it more efficiently than as a list of complete assignments.
- It can be expensive if k is large.

 When the domains are small or unordered, the neighbors of an assignment can correspond to choosing another value for one of the variables.

- When the domains are small or unordered, the neighbors of an assignment can correspond to choosing another value for one of the variables.
- When the domains are large and ordered, the neighbors of an assignment are the adjacent values for one of the variables.

- When the domains are small or unordered, the neighbors of an assignment can correspond to choosing another value for one of the variables.
- When the domains are large and ordered, the neighbors of an assignment are the adjacent values for one of the variables.
- If the domains are continuous, Gradient descent changes each variable proportionally to the gradient of the heuristic function in that direction.

The value of variable X_i goes from v_i to

- When the domains are small or unordered, the neighbors of an assignment can correspond to choosing another value for one of the variables.
- When the domains are large and ordered, the neighbors of an assignment are the adjacent values for one of the variables.
- If the domains are continuous, Gradient descent changes each variable proportionally to the gradient of the heuristic function in that direction.

The value of variable X_i goes from v_i to $v_i - \eta \frac{\partial h}{\partial X_i}$. η is the step size.

- When the domains are small or unordered, the neighbors of an assignment can correspond to choosing another value for one of the variables.
- When the domains are large and ordered, the neighbors of an assignment are the adjacent values for one of the variables.
- If the domains are continuous, Gradient descent changes each variable proportionally to the gradient of the heuristic function in that direction.

The value of variable X_i goes from v_i to $v_i - \eta \frac{\partial h}{\partial X_i}$. η is the step size.

 Neural networds do gradient descent with thousands or millions or billions of dimensions to minimize error on a dataset. (See CPSC 340).

11 / 26

• a local optimum that is not a global optimum

- a local optimum that is not a global optimum
- a plateau where the heuristic values are uninformative

- a local optimum that is not a global optimum
- a plateau where the heuristic values are uninformative
- a ridge is a local minimum where *n*-step look-ahead might help

- a local optimum that is not a global optimum
- a plateau where the heuristic values are uninformative
- a ridge is a local minimum where *n*-step look-ahead might help
- a saddle is a flat area where steps need to change direction

1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

• Which method would most easily find the global minimum?

1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

- Which method would most easily find the global minimum?
- What happens in hundreds or thousands of dimensions?

1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

- Which method would most easily find the global minimum?
- What happens in hundreds or thousands of dimensions?
- What if different parts of the search space have different structure?

A total assignment is called an individual.

- Idea: maintain a population of k individuals instead of one.
- At every stage, update each individual in the population.

A total assignment is called an individual.

- Idea: maintain a population of k individuals instead of one.
- At every stage, update each individual in the population.
- Whenever an individual is a solution, it can be reported.

A total assignment is called an individual.

- Idea: maintain a population of k individuals instead of one.
- At every stage, update each individual in the population.
- Whenever an individual is a solution, it can be reported.
- Like k restarts, but uses k times the *minimum* number of steps.

• Like parallel search, with k individuals, but choose the k best out of all of the neighbors.

- Like parallel search, with k individuals, but choose the k best out of all of the neighbors.
- When k = 1, it is greedy descent.

- Like parallel search, with k individuals, but choose the k best out of all of the neighbors.
- When k = 1, it is greedy descent.
- The value of k lets us limit space and parallelism.

- Like parallel search, with k individuals, but choose the k best out of all of the neighbors.
- When k = 1, it is greedy descent.
- The value of k lets us limit space and parallelism.
- Problem: lack of diversity of individuals.

• Like beam search, but it probabilistically chooses the k individuals at the next generation.

- Like beam search, but it probabilistically chooses the k individuals at the next generation.
- The probability that a neighbor is chosen is proportional to its heuristic value.

- Like beam search, but it probabilistically chooses the k individuals at the next generation.
- The probability that a neighbor is chosen is proportional to its heuristic value.
- This maintains diversity amongst the individuals.
- The heuristic value reflects the fitness of the individual.

- Like beam search, but it probabilistically chooses the k individuals at the next generation.
- The probability that a neighbor is chosen is proportional to its heuristic value.
- This maintains diversity amongst the individuals.
- The heuristic value reflects the fitness of the individual.
- Like asexual reproduction: each individual mutates and the fittest ones survive.

- Like stochastic beam search, but pairs of individuals are combined to create the offspring.
- For each generation:
 - Randomly choose pairs of individuals where the fittest individuals are more likely to be chosen.
 - For each pair, perform a crossover: form two offspring each taking different parts of their parents.

- Like stochastic beam search, but pairs of individuals are combined to create the offspring.
- For each generation:
 - Randomly choose pairs of individuals where the fittest individuals are more likely to be chosen.
 - For each pair, perform a crossover: form two offspring each taking different parts of their parents.
 - Mutate some values.
- Stop when a solution is found.

• Given two individuals:

$$X_1 = a_1, X_2 = a_2, \dots, X_m = a_m$$

 $X_1 = b_1, X_2 = b_2, \dots, X_m = b_m$

- Select *i* at random.
- Form two offspring:

$$X_1 = a_1, \ldots, X_i = a_i, X_{i+1} = b_{i+1}, \ldots, X_m = b_m$$

$$X_1 = b_1, \ldots, X_i = b_i, X_{i+1} = a_{i+1}, \ldots, X_m = a_m$$

• The effectiveness depends on the ordering of the variables.

• Given two individuals:

$$X_1 = a_1, X_2 = a_2, \dots, X_m = a_m$$

 $X_1 = b_1, X_2 = b_2, \dots, X_m = b_m$

- Select i at random.
- Form two offspring:

$$X_1 = a_1, \dots, X_i = a_i, X_{i+1} = b_{i+1}, \dots, X_m = b_m$$

$$X_1 = b_1, \ldots, X_i = b_i, X_{i+1} = a_{i+1}, \ldots, X_m = a_m$$

- The effectiveness depends on the ordering of the variables.
- Many variations are possible.

Which of the following is false:

- A Population based methods carry out multiple local searches at once
- B The time taken by population-based methods is number of individuals (local searches) multiplied by the *minimum* time one the local searches finds a solution
- C Crossover with selecting fittest individuals allows genetic algorithms to combine good parts of potential solutions
- D It is more likely that a population-based method will find a solution than a local search with no restart
- E Population-based methods are guaranteed to find a solution if there is one, even without randomness

An optimization problem is given

- a set of variables, each with an associated domain
- an objective function that maps total assignments to real numbers, and
- an optimality criterion, which is typically to find a total assignment that minimizes (or maximizes) the objective function.

- In a constraint optimization problem the objective function is factored into a sum of soft constraints
- A soft constraint is a function from scope of constraint into non-negative reals (the cost)

- In a constraint optimization problem the objective function is factored into a sum of soft constraints
- A soft constraint is a function from scope of constraint into non-negative reals (the cost)
- The aim is to find a total assignment that minimizes the sum of the values of the soft constraints.

- In a constraint optimization problem the objective function is factored into a sum of soft constraints
- A soft constraint is a function from scope of constraint into non-negative reals (the cost)
- The aim is to find a total assignment that minimizes the sum of the values of the soft constraints.
- Can use systematic search (e.g., *A** or branch-and-bound search)

- In a constraint optimization problem the objective function is factored into a sum of soft constraints
- A soft constraint is a function from scope of constraint into non-negative reals (the cost)
- The aim is to find a total assignment that minimizes the sum of the values of the soft constraints.
- Can use systematic search (e.g., *A** or branch-and-bound search)
- Arc consistency can be used to prune dominated values

- In a constraint optimization problem the objective function is factored into a sum of soft constraints
- A soft constraint is a function from scope of constraint into non-negative reals (the cost)
- The aim is to find a total assignment that minimizes the sum of the values of the soft constraints.
- Can use systematic search (e.g., *A** or branch-and-bound search)
- Arc consistency can be used to prune dominated values
- Can use local search

- In a constraint optimization problem the objective function is factored into a sum of soft constraints
- A soft constraint is a function from scope of constraint into non-negative reals (the cost)
- The aim is to find a total assignment that minimizes the sum of the values of the soft constraints.
- Can use systematic search (e.g., *A*^{*} or branch-and-bound search)
- Arc consistency can be used to prune dominated values
- Can use local search
- Problem: we can't tell if a value is a global minimum unless we do systematic search

- A Propositional Satisfiability (SAT) Problem is an instance of a CSP with
 - Boolean variables: a variable with domain {*true*, *false*}.

A Propositional Satisfiability (SAT) Problem is an instance of a CSP with

Boolean variables: a variable with domain {true, false}.
 We write X = true as the atom x, and X = false as the ¬x, "not x".

A literal is an atom or the negation of an atom.

A Propositional Satisfiability (SAT) Problem is an instance of a CSP with

Boolean variables: a variable with domain {*true*, *false*}. We write X = *true* as the atom x, and X = *false* as the ¬x, "not x".

A literal is an atom or the negation of an atom.

 Clausal constraints: a clause is an expression of the form *l*₁ ∨ *l*₂ ∨ · · · ∨ *l_k*, where each *l_i* is a literal, and ∨ means "or". The clause is true if at least one of the *l_i* is true.

A variable Y with domain {v₁,..., v_k} can be converted into k Boolean variables {Y₁,..., Y_k}, where Y_i is true when Y has value v_i and is false otherwise.
 Each Y_i is called an indicator variable.

A variable Y with domain {v₁,..., v_k} can be converted into k Boolean variables {Y₁,..., Y_k}, where Y_i is true when Y has value v_i and is false otherwise.
 Each Y_i is called an indicator variable.

• for i < j, y_i and y_j cannot both be true, so $\neg y_i \lor \neg y_j$.

- A variable Y with domain {v₁,..., v_k} can be converted into k Boolean variables {Y₁,..., Y_k}, where Y_i is true when Y has value v_i and is false otherwise.
 Each Y_i is called an indicator variable.
 - for i < j, y_i and y_j cannot both be true, so $\neg y_i \lor \neg y_j$.
 - one of the y_i must be true, so: $y_1 \vee \cdots \vee y_k$.

- A variable Y with domain {v₁,..., v_k} can be converted into k Boolean variables {Y₁,..., Y_k}, where Y_i is true when Y has value v_i and is false otherwise.
 Each Y_i is called an indicator variable.
 - for i < j, y_i and y_j cannot both be true, so $\neg y_i \lor \neg y_j$.
 - one of the y_i must be true, so: $y_1 \vee \cdots \vee y_k$.

• A clause $\neg x_i \lor \neg y_j \lor \neg z_k$ is equivalent to $\neg (x_i \land y_j \land z_k)$.

- A variable Y with domain {v₁,..., v_k} can be converted into k Boolean variables {Y₁,..., Y_k}, where Y_i is true when Y has value v_i and is false otherwise.
 Each Y_i is called an indicator variable.
 - for i < j, y_i and y_j cannot both be true, so $\neg y_i \lor \neg y_j$.
 - one of the y_i must be true, so: $y_1 \vee \cdots \vee y_k$.
- A clause ¬x_i ∨ ¬y_j ∨ ¬z_k is equivalent to ¬(x_i ∧ y_j ∧ z_k). Therefore each false assignment of values can be represented as a clause. So clausal form can represent any finite constraints.

- A variable Y with domain {v₁,..., v_k} can be converted into k Boolean variables {Y₁,..., Y_k}, where Y_i is true when Y has value v_i and is false otherwise.
 Each Y_i is called an indicator variable.
 - for i < j, y_i and y_j cannot both be true, so $\neg y_i \lor \neg y_j$.
 - one of the y_i must be true, so: $y_1 \vee \cdots \vee y_k$.
- A clause ¬x_i ∨ ¬y_j ∨ ¬z_k is equivalent to ¬(x_i ∧ y_j ∧ z_k). Therefore each false assignment of values can be represented as a clause. So clausal form can represent any finite constraints.

Often we can much more concise.

Arc consistency can be made much more efficient in SAT problems than for general CSPs.

• Because domains are binary, pruning a domain is equivalent to assigning a value to the variable.
Arc consistency can be made much more efficient in SAT problems than for general CSPs.

- Because domains are binary, pruning a domain is equivalent to assigning a value to the variable.
- If X is assigned *true*, all of the clauses with x can be removed, as they are all satisfied.
- If X is assigned *true*, all of the clauses with $\neg x$, of the form $\neg x \lor w$ can be simplified to w.

Arc consistency can be made much more efficient in SAT problems than for general CSPs.

- Because domains are binary, pruning a domain is equivalent to assigning a value to the variable.
- If X is assigned *true*, all of the clauses with x can be removed, as they are all satisfied.
- If X is assigned *true*, all of the clauses with $\neg x$, of the form $\neg x \lor w$ can be simplified to w.
- If we get to a clause with one element, we can assign the corresponding Boolean variable.
- If all of the literals in a clause are removed, there is no solution.

Arc consistency can be made much more efficient in SAT problems than for general CSPs.

- Because domains are binary, pruning a domain is equivalent to assigning a value to the variable.
- If X is assigned *true*, all of the clauses with x can be removed, as they are all satisfied.
- If X is assigned *true*, all of the clauses with $\neg x$, of the form $\neg x \lor w$ can be simplified to w.
- If we get to a clause with one element, we can assign the corresponding Boolean variable.
- If all of the literals in a clause are removed, there is no solution.
- uniformity of the constraints means efficient data structures.

• A complete assignment can be represented as a bit-vector

- A complete assignment can be represented as a bit-vector
- There is only one alternative value for a variable

- A complete assignment can be represented as a bit-vector
- There is only one alternative value for a variable
- Changing any value in an unsatisfied clause makes the clause satisfied.

- A complete assignment can be represented as a bit-vector
- There is only one alternative value for a variable
- Changing any value in an unsatisfied clause makes the clause satisfied.
- If a variable X is changed to be true
 - all of the clauses containing x become satisfied

- A complete assignment can be represented as a bit-vector
- There is only one alternative value for a variable
- Changing any value in an unsatisfied clause makes the clause satisfied.
- If a variable X is changed to be true
 - all of the clauses containing x become satisfied
 - only those clauses with $\neg x$ can become unsatisfied.

- A complete assignment can be represented as a bit-vector
- There is only one alternative value for a variable
- Changing any value in an unsatisfied clause makes the clause satisfied.
- If a variable X is changed to be true
 - all of the clauses containing x become satisfied
 - only those clauses with $\neg x$ can become unsatisfied.

This allows for efficient indexing of clauses.

- A complete assignment can be represented as a bit-vector
- There is only one alternative value for a variable
- Changing any value in an unsatisfied clause makes the clause satisfied.
- If a variable X is changed to be true
 - all of the clauses containing x become satisfied
 - only those clauses with $\neg x$ can become unsatisfied.

This allows for efficient indexing of clauses.

 The search space is expanded. Before a solution has been found, more than one of the indicator variables for a variable Y could be true, or all of the indicator variables could be false.