
Announcements

Solution to Assignment 3 is posted

Assignment 4 is available

Midterm next Thursday.
I 75 minutes anytime in 24 hour period.
I Invidualized exams.
I You may use programs and the Intenet, but you may not not

consult or talk to anyone about the exam.
I Be prepared for an oral exam after to explain how you got your

answer.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 1 / 12

Review: So far. . .

Constraint satisfaction problems are defined in terms of
variables, domains, constraints

Constraint satisfactions problems can be solved with:
I Search
I Arc consistency with domain splitting
I Local search (today!)

Local search maintains a complete assignment of a value to
each variable, and has a mix of improving and randomized
steps.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 2 / 12

Today: Learning Objectives

Today:

Assignment 3 solution discussion

Local Search

At the end of the class you should be able to:

show how a CSP can be solved using local search

compare stochastic algorithms

explain how randomness works

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 3 / 12

Assignment 3 solution

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 4 / 12

Clicker Question

Which of the following is false:

A If there is a solution, arc consistency will not make any
domains empty

B Arc consistency always halts for finite CSPs

C Arc consistency involves checking constraints multiple times

D Arc consistency always results in singleton domains if there is
only one solution.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 5 / 12

Clicker Question

What is not true of arc consistency with domain splitting:

A Arc consistency needs domain splitting to solve problems in
general

B Together they can solve CSPs in polynomial time

C They typically result in a smaller search space than using
search without arc consistency

D They always terminate with a solution if there is one for finite
CSPs

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 6 / 12

Local Search

Local Search:

Maintain a complete assignment of a value to each variable.

Start with random assignment or a best guess.

Repeat:
I Select a variable to change
I Select a new value for that variable

Until a satisfying assignment is found

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 7 / 12

Local Search

Local Search:

Maintain a complete assignment of a value to each variable.

Start with random assignment or a best guess.

Repeat:
I Select a variable to change
I Select a new value for that variable

Until a satisfying assignment is found

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 7 / 12

Local Search for CSPs

Aim: find an assignment with zero unsatisfied constraints.

Given an assignment of a value to each variable, a conflict is
an unsatisfied constraint.

The goal is an assignment with zero conflicts.

Function to be minimized: the number of conflicts.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 8 / 12

Local Search for CSPs

Aim: find an assignment with zero unsatisfied constraints.

Given an assignment of a value to each variable, a conflict is
an unsatisfied constraint.

The goal is an assignment with zero conflicts.

Function to be minimized: the number of conflicts.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 8 / 12

Local Search for CSPs

Aim: find an assignment with zero unsatisfied constraints.

Given an assignment of a value to each variable, a conflict is
an unsatisfied constraint.

The goal is an assignment with zero conflicts.

Function to be minimized: the number of conflicts.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 8 / 12

Iterative Best Improvement (2 stage) “greedy descent”

Start with random assignment (for each variable, select a
value for that variable at random)

Repeat:
I Select a variable that participates in the most conflicts
I Select a different value for that variable

Until a satisfying assignment is found

All selections are random and uniform.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 9 / 12

Any Conflict

Start with random assignment (for each variable, select a
value for that variable at random)

Repeat:
I Select a variable at random that participates in any conflict
I Select a different value for that variable

Until a satisfying assignment is found

All selections are random and uniform.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 10 / 12

Comparing Stochastic Algorithms

Which of the preceding algorithms work better?

How would we tell if one is better than the other?

How can you compare three algorithms when
I one solves the problem 30% of the time very quickly but

doesn’t halt for the other 70% of the cases
I one solves 60% of the cases reasonably quickly but doesn’t

solve the rest
I one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time,
and mode run time don’t make much sense.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 11 / 12

Comparing Stochastic Algorithms

Which of the preceding algorithms work better?
How would we tell if one is better than the other?

How can you compare three algorithms when
I one solves the problem 30% of the time very quickly but

doesn’t halt for the other 70% of the cases
I one solves 60% of the cases reasonably quickly but doesn’t

solve the rest
I one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time,
and mode run time don’t make much sense.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 11 / 12

Comparing Stochastic Algorithms

Which of the preceding algorithms work better?
How would we tell if one is better than the other?

How can you compare three algorithms when
I one solves the problem 30% of the time very quickly but

doesn’t halt for the other 70% of the cases
I one solves 60% of the cases reasonably quickly but doesn’t

solve the rest
I one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time,
and mode run time don’t make much sense.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 11 / 12

Comparing Stochastic Algorithms

Which of the preceding algorithms work better?
How would we tell if one is better than the other?

How can you compare three algorithms when
I one solves the problem 30% of the time very quickly but

doesn’t halt for the other 70% of the cases
I one solves 60% of the cases reasonably quickly but doesn’t

solve the rest
I one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time,
and mode run time don’t make much sense.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 11 / 12

Runtime Distribution

x-axis runtime (or number of steps)

y-axis the proportion (or number) of runs that are solved within that
runtime

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 12 / 12

Runtime Distribution

Run the same algorithm on the same
instance for a number of trials (e.g., 100 or
1000)

Sort the trials according to the run time.

Plot:

x-axis run time of the trial
y-axis index of the trial

This produces a cumulative distribution

Do this this a few times to gauge the
variability (take a statistics course!)

Sometimes use number of steps instead of
run time (because computers measure small
run times inaccurately) . . . not good
measure to compare algorithms if steps take
different times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 13 / 12

Runtime Distribution

Run the same algorithm on the same
instance for a number of trials (e.g., 100 or
1000)

Sort the trials according to the run time.

Plot:

x-axis run time of the trial
y-axis index of the trial

This produces a cumulative distribution

Do this this a few times to gauge the
variability (take a statistics course!)

Sometimes use number of steps instead of
run time (because computers measure small
run times inaccurately) . . . not good
measure to compare algorithms if steps take
different times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 13 / 12

Runtime Distribution

Run the same algorithm on the same
instance for a number of trials (e.g., 100 or
1000)

Sort the trials according to the run time.

Plot:

x-axis run time of the trial
y-axis index of the trial

This produces a cumulative distribution

Do this this a few times to gauge the
variability (take a statistics course!)

Sometimes use number of steps instead of
run time (because computers measure small
run times inaccurately) . . . not good
measure to compare algorithms if steps take
different times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 13 / 12

Runtime Distribution

Run the same algorithm on the same
instance for a number of trials (e.g., 100 or
1000)

Sort the trials according to the run time.

Plot:

x-axis run time of the trial
y-axis index of the trial

This produces a cumulative distribution

Do this this a few times to gauge the
variability (take a statistics course!)

Sometimes use number of steps instead of
run time (because computers measure small
run times inaccurately) . . . not good
measure to compare algorithms if steps take
different times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 13 / 12

Runtime Distribution

Run the same algorithm on the same
instance for a number of trials (e.g., 100 or
1000)

Sort the trials according to the run time.

Plot:

x-axis run time of the trial
y-axis index of the trial

This produces a cumulative distribution

Do this this a few times to gauge the
variability (take a statistics course!)

Sometimes use number of steps instead of
run time (because computers measure small
run times inaccurately) . . . not good
measure to compare algorithms if steps take
different times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 13 / 12

Randomized Algorithms

A probabilistic mix of greedy and any-conflict — e.g., 70% of
time pick best variable, otherwise pick any variable in a
conflict – works better than either alone.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 14 / 12

Stochastic Local Search

Stochastic local search is a mix of:

Greedy descent: pick the best variable and/or value

Random walk: picking variables and values at random

Random restart: reassigning values to all variables

Some of these might be more complex than the others.
A probabilistic mix might work better.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 15 / 12

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 16 / 12

Greedy Descent Variants

To select a variable to change and a new value for it:

Most Improving Step: Find a variable-value pair that
minimizes the number of conflicts.

What data structures are required?
Two Stage Choice: Select a variable that participates in the
most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?
Any Conflict: Select a variable that appears in any conflict.
Select a value at random.
What data structures are required?
Select a variable at random.
Select a value that minimizes the number of conflicts.
What data structures are required?
Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.
What data structures are required?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 17 / 12

Greedy Descent Variants

To select a variable to change and a new value for it:

Most Improving Step: Find a variable-value pair that
minimizes the number of conflicts.
What data structures are required?

Two Stage Choice: Select a variable that participates in the
most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?
Any Conflict: Select a variable that appears in any conflict.
Select a value at random.
What data structures are required?
Select a variable at random.
Select a value that minimizes the number of conflicts.
What data structures are required?
Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.
What data structures are required?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 17 / 12

Greedy Descent Variants

To select a variable to change and a new value for it:

Most Improving Step: Find a variable-value pair that
minimizes the number of conflicts.
What data structures are required?
Two Stage Choice: Select a variable that participates in the
most conflicts.
Select a value that minimizes the number of conflicts.

What data structures are required?
Any Conflict: Select a variable that appears in any conflict.
Select a value at random.
What data structures are required?
Select a variable at random.
Select a value that minimizes the number of conflicts.
What data structures are required?
Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.
What data structures are required?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 17 / 12

Greedy Descent Variants

To select a variable to change and a new value for it:

Most Improving Step: Find a variable-value pair that
minimizes the number of conflicts.
What data structures are required?
Two Stage Choice: Select a variable that participates in the
most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?

Any Conflict: Select a variable that appears in any conflict.
Select a value at random.
What data structures are required?
Select a variable at random.
Select a value that minimizes the number of conflicts.
What data structures are required?
Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.
What data structures are required?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 17 / 12

Greedy Descent Variants

To select a variable to change and a new value for it:

Most Improving Step: Find a variable-value pair that
minimizes the number of conflicts.
What data structures are required?
Two Stage Choice: Select a variable that participates in the
most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?
Any Conflict: Select a variable that appears in any conflict.
Select a value at random.

What data structures are required?
Select a variable at random.
Select a value that minimizes the number of conflicts.
What data structures are required?
Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.
What data structures are required?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 17 / 12

Greedy Descent Variants

To select a variable to change and a new value for it:

Most Improving Step: Find a variable-value pair that
minimizes the number of conflicts.
What data structures are required?
Two Stage Choice: Select a variable that participates in the
most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?
Any Conflict: Select a variable that appears in any conflict.
Select a value at random.
What data structures are required?

Select a variable at random.
Select a value that minimizes the number of conflicts.
What data structures are required?
Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.
What data structures are required?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 17 / 12

Greedy Descent Variants

To select a variable to change and a new value for it:

Most Improving Step: Find a variable-value pair that
minimizes the number of conflicts.
What data structures are required?
Two Stage Choice: Select a variable that participates in the
most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?
Any Conflict: Select a variable that appears in any conflict.
Select a value at random.
What data structures are required?
Select a variable at random.
Select a value that minimizes the number of conflicts.

What data structures are required?
Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.
What data structures are required?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 17 / 12

Greedy Descent Variants

To select a variable to change and a new value for it:

Most Improving Step: Find a variable-value pair that
minimizes the number of conflicts.
What data structures are required?
Two Stage Choice: Select a variable that participates in the
most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?
Any Conflict: Select a variable that appears in any conflict.
Select a value at random.
What data structures are required?
Select a variable at random.
Select a value that minimizes the number of conflicts.
What data structures are required?

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.
What data structures are required?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 17 / 12

Greedy Descent Variants

To select a variable to change and a new value for it:

Most Improving Step: Find a variable-value pair that
minimizes the number of conflicts.
What data structures are required?
Two Stage Choice: Select a variable that participates in the
most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?
Any Conflict: Select a variable that appears in any conflict.
Select a value at random.
What data structures are required?
Select a variable at random.
Select a value that minimizes the number of conflicts.
What data structures are required?
Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.

What data structures are required?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 17 / 12

Greedy Descent Variants

To select a variable to change and a new value for it:

Most Improving Step: Find a variable-value pair that
minimizes the number of conflicts.
What data structures are required?
Two Stage Choice: Select a variable that participates in the
most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?
Any Conflict: Select a variable that appears in any conflict.
Select a value at random.
What data structures are required?
Select a variable at random.
Select a value that minimizes the number of conflicts.
What data structures are required?
Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.
What data structures are required?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 17 / 12

Steps

One measure of an assignment is number of conflicts

It is possible to weight some conflicts higher than others.

Why would we?

Because some are easier to solve than other. E.g., in
scheduling exams....

If A is a total assignment, define h(A) to be a measure of the
difficulty of solving problem from A.

h(A) = 0 then A a solution; lower h is better

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 18 / 12

Steps

One measure of an assignment is number of conflicts

It is possible to weight some conflicts higher than others.

Why would we?
Because some are easier to solve than other. E.g., in
scheduling exams....

If A is a total assignment, define h(A) to be a measure of the
difficulty of solving problem from A.

h(A) = 0 then A a solution; lower h is better

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 18 / 12

Steps

One measure of an assignment is number of conflicts

It is possible to weight some conflicts higher than others.

Why would we?
Because some are easier to solve than other. E.g., in
scheduling exams....

If A is a total assignment, define h(A) to be a measure of the
difficulty of solving problem from A.

h(A) = 0 then A a solution; lower h is better

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 18 / 12

Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it isn’t worse, accept it.

If it is worse,

accept it probabilistically depending on a
temperature parameter, T :
I With current assignment A and proposed assignment A′ accept

A′ with probability e(h(A)−h(A
′))/T

Note: h(A) − h(A′) is negative if A′ is worse.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000006
0.1 0.00005 2 × 10−9 9 × 10−14

Temperature can be reduced.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 19 / 12

Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it isn’t worse, accept it.

If it is worse, accept it probabilistically depending on a
temperature parameter, T :
I With current assignment A and proposed assignment A′ accept

A′ with probability e(h(A)−h(A
′))/T

Note: h(A) − h(A′) is negative if A′ is worse.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000006
0.1 0.00005 2 × 10−9 9 × 10−14

Temperature can be reduced.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 19 / 12

Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it isn’t worse, accept it.

If it is worse, accept it probabilistically depending on a
temperature parameter, T :
I With current assignment A and proposed assignment A′ accept

A′ with probability e(h(A)−h(A
′))/T

Note: h(A) − h(A′) is negative if A′ is worse.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000006
0.1 0.00005 2 × 10−9 9 × 10−14

Temperature can be reduced.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 19 / 12

Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it isn’t worse, accept it.

If it is worse, accept it probabilistically depending on a
temperature parameter, T :
I With current assignment A and proposed assignment A′ accept

A′ with probability e(h(A)−h(A
′))/T

Note: h(A) − h(A′) is negative if A′ is worse.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000006
0.1 0.00005 2 × 10−9 9 × 10−14

Temperature can be reduced.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 19 / 12

Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is (1 − p)n

The probability of finding a solution in n-runs is 1 − (1 − p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 20 / 12

Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.

The probability of n runs failing to find a solution is (1 − p)n

The probability of finding a solution in n-runs is 1 − (1 − p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 20 / 12

Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is

(1 − p)n

The probability of finding a solution in n-runs is 1 − (1 − p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 20 / 12

Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is (1 − p)n

The probability of finding a solution in n-runs is

1 − (1 − p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 20 / 12

Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is (1 − p)n

The probability of finding a solution in n-runs is 1 − (1 − p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 20 / 12

Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is (1 − p)n

The probability of finding a solution in n-runs is 1 − (1 − p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 20 / 12

Tabu lists

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we don’t allow an assignment of to the same value
to the variable chosen.

We can implement it more efficiently than as a list of
complete assignments.

It can be expensive if k is large.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 21 / 12

Tabu lists

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we don’t allow an assignment of to the same value
to the variable chosen.

We can implement it more efficiently than as a list of
complete assignments.

It can be expensive if k is large.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 21 / 12

Tabu lists

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we don’t allow an assignment of to the same value
to the variable chosen.

We can implement it more efficiently than as a list of
complete assignments.

It can be expensive if k is large.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 21 / 12

Tabu lists

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we don’t allow an assignment of to the same value
to the variable chosen.

We can implement it more efficiently than as a list of
complete assignments.

It can be expensive if k is large.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 21 / 12

Complex Domains

When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.
The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

η is the step size.

Neural networds do gradient descent with thousands or
millions or billions of dimensions to minimize error on a
dataset. (See CPSC 340).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 22 / 12

Complex Domains

When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.
The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

η is the step size.

Neural networds do gradient descent with thousands or
millions or billions of dimensions to minimize error on a
dataset. (See CPSC 340).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 22 / 12

Complex Domains

When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.
The value of variable Xi goes from vi to

vi − η ∂h
∂Xi

.
η is the step size.

Neural networds do gradient descent with thousands or
millions or billions of dimensions to minimize error on a
dataset. (See CPSC 340).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 22 / 12

Complex Domains

When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.
The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

η is the step size.

Neural networds do gradient descent with thousands or
millions or billions of dimensions to minimize error on a
dataset. (See CPSC 340).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 22 / 12

Complex Domains

When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent changes each
variable proportionally to the gradient of the heuristic function
in that direction.
The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

η is the step size.

Neural networds do gradient descent with thousands or
millions or billions of dimensions to minimize error on a
dataset. (See CPSC 340).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 22 / 12

Problems with Greedy Descent

a local optimum that is
not a global optimum

a plateau where the
heuristic values are
uninformative

a ridge is a local
minimum where n-step
look-ahead might help

a saddle is a flat area
where steps need to
change direction

Ridge

Plateau

Local

OptimumGlobal

optimum

Saddle

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 23 / 12

Problems with Greedy Descent

a local optimum that is
not a global optimum

a plateau where the
heuristic values are
uninformative

a ridge is a local
minimum where n-step
look-ahead might help

a saddle is a flat area
where steps need to
change direction

Ridge

Plateau

Local

OptimumGlobal

optimum

Saddle

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 23 / 12

Problems with Greedy Descent

a local optimum that is
not a global optimum

a plateau where the
heuristic values are
uninformative

a ridge is a local
minimum where n-step
look-ahead might help

a saddle is a flat area
where steps need to
change direction

Ridge

Plateau

Local

OptimumGlobal

optimum

Saddle

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 23 / 12

Problems with Greedy Descent

a local optimum that is
not a global optimum

a plateau where the
heuristic values are
uninformative

a ridge is a local
minimum where n-step
look-ahead might help

a saddle is a flat area
where steps need to
change direction

Ridge

Plateau

Local

OptimumGlobal

optimum

Saddle

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 23 / 12

1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

(a) (b)

Which method would most easily find the global minimum?

What happens in hundreds or thousands of dimensions?

What if different parts of the search space have different
structure?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 24 / 12

1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

(a) (b)

Which method would most easily find the global minimum?

What happens in hundreds or thousands of dimensions?

What if different parts of the search space have different
structure?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 24 / 12

1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

(a) (b)

Which method would most easily find the global minimum?

What happens in hundreds or thousands of dimensions?

What if different parts of the search space have different
structure?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 24 / 12

Clicker Question

Which of the following is true:

A If an algorithm is above and to the left of another algorithm in
a runtime distribution, it is always faster

B A random walk cannot escape a local minima

C The amount of time taken per step is about the same for all
local search methods given modern data structures and the
speed of computers

D Carrying out arc consistency before doing a local search can
reduce the search space

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 25 / 12

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 8 26 / 12

