
Announcements

Assignment 3 is available

Assignment 1 is now marked; see Canvas

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 1 / 35

Review: So far. . .

An agent acts in an environment

Agent has access to: abilities, goals/preferences, prior
knowledge, observations, past experiences

Search is used to find paths in graphs

Search algorithms differ in how elements of frontier are
selected

Multiple-path pruning and loop pruning can reduce search

Depth-bounded depth-first search (as used in iterative
deepening and branch-and-bound) can save space

A constraint satisfaction problem involves a set a variables, a
domain for each variable and a set of constraints.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 2 / 35

Review: So far. . .

An agent acts in an environment

Agent has access to: abilities, goals/preferences, prior
knowledge, observations, past experiences

Search is used to find paths in graphs

Search algorithms differ in how elements of frontier are
selected

Multiple-path pruning and loop pruning can reduce search

Depth-bounded depth-first search (as used in iterative
deepening and branch-and-bound) can save space

A constraint satisfaction problem involves a set a variables, a
domain for each variable and a set of constraints.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 2 / 35

Review: So far. . .

An agent acts in an environment

Agent has access to: abilities, goals/preferences, prior
knowledge, observations, past experiences

Search is used to find paths in graphs

Search algorithms differ in how elements of frontier are
selected

Multiple-path pruning and loop pruning can reduce search

Depth-bounded depth-first search (as used in iterative
deepening and branch-and-bound) can save space

A constraint satisfaction problem involves a set a variables, a
domain for each variable and a set of constraints.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 2 / 35

Posing a Constraint Satisfaction Problem

A CSP is characterized by

A set of variables V1,V2, . . . ,Vn.

Each variable Vi has a domain dom(Vi)
the set of possible values for Vi .
(We assume domains are finite.)

A possible world or total assignment is an assignment of a
value to each variable.

A scope is a subset of the variables

A hard constraint on a scope specifies which combination of
values of the variables in the scope are legal.
It is a function from the scope into {true, false}.
A solution to CSP (a model) is possible world that satisfies all
the constraints.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 3 / 35

Posing a Constraint Satisfaction Problem

A CSP is characterized by

A set of variables V1,V2, . . . ,Vn.

Each variable Vi has a domain dom(Vi)
the set of possible values for Vi .
(We assume domains are finite.)

A possible world or total assignment is an assignment of a
value to each variable.

A scope is a subset of the variables

A hard constraint on a scope specifies which combination of
values of the variables in the scope are legal.
It is a function from the scope into {true, false}.
A solution to CSP (a model) is possible world that satisfies all
the constraints.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 3 / 35

Clicker Question

Suppose there were 100 variables, each with domain size 17. How
many possible worlds are there?

A 1700

B 117

C 17100

D 10017

E None of the above

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 4 / 35

Today: Learning Objectives

Today: Constraint Satisfaction Problems

At the end of the class you should be able to:

show how constraint satisfaction problems can be solved with
generate-and-test

show how constraint satisfaction problems can be solved with
search

explain and trace arc-consistency of a constraint graph

show how domain splitting can solve constraint problems

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 5 / 35

Generate-and-Test Algorithm

Generate the assignment space
D = dom(V1)× dom(V2)× . . .× dom(Vn). Test each
assignment with the constraints.

Example:

D = dom(A)× dom(B)× dom(C)× dom(D)× dom(E)

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
= {〈1, 1, 1, 1, 1〉 , 〈1, 1, 1, 1, 2〉 , ..., 〈4, 4, 4, 4, 4〉}.

Can be implemented with n nested for-loops.

for A in dom_A:

for B in dom_B:

...

if constraints are satisfied: return (A,B,...)

How many assignments need to be tested for n variables each
with domain size d?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 6 / 35

Generate-and-Test Algorithm

Generate the assignment space
D = dom(V1)× dom(V2)× . . .× dom(Vn). Test each
assignment with the constraints.

Example:

D = dom(A)× dom(B)× dom(C)× dom(D)× dom(E)

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
= {〈1, 1, 1, 1, 1〉 , 〈1, 1, 1, 1, 2〉 , ..., 〈4, 4, 4, 4, 4〉}.

Can be implemented with n nested for-loops.

for A in dom_A:

for B in dom_B:

...

if constraints are satisfied: return (A,B,...)

How many assignments need to be tested for n variables each
with domain size d?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 6 / 35

Generate-and-Test Algorithm

Generate the assignment space
D = dom(V1)× dom(V2)× . . .× dom(Vn). Test each
assignment with the constraints.

Example:

D = dom(A)× dom(B)× dom(C)× dom(D)× dom(E)

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
= {〈1, 1, 1, 1, 1〉 , 〈1, 1, 1, 1, 2〉 , ..., 〈4, 4, 4, 4, 4〉}.

Can be implemented with n nested for-loops.

for A in dom_A:

for B in dom_B:

...

if constraints are satisfied: return (A,B,...)

How many assignments need to be tested for n variables each
with domain size d?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 6 / 35

Generate-and-Test Algorithm

Generate the assignment space
D = dom(V1)× dom(V2)× . . .× dom(Vn). Test each
assignment with the constraints.

Example:

D = dom(A)× dom(B)× dom(C)× dom(D)× dom(E)

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
= {〈1, 1, 1, 1, 1〉 , 〈1, 1, 1, 1, 2〉 , ..., 〈4, 4, 4, 4, 4〉}.

Can be implemented with n nested for-loops.

for A in dom_A:

for B in dom_B:

...

if constraints are satisfied: return (A,B,...)

How many assignments need to be tested for n variables each
with domain size d?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 6 / 35

Generate-and-test as Graph Searching

A CSP can be solved by graph-searching:

Nodes:

A node is an assignment values to some of the
variables.

Neighbors:

Suppose node N is the assignment
X1 = v1, . . . ,Xk = vk . Select a variable Y that isn’t assigned
in N.
For each value yi ∈ dom(Y)
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour.

Start node:

the empty assignment

Goal:

A goal node is a total assignment that satisfies all
constraints.

There are no cycles or multiple paths to a node.
The search space does not depend in the variable selected.
All paths to a solution have same length.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 7 / 35

Generate-and-test as Graph Searching

A CSP can be solved by graph-searching:

Nodes: A node is an assignment values to some of the
variables.

Neighbors:

Suppose node N is the assignment
X1 = v1, . . . ,Xk = vk . Select a variable Y that isn’t assigned
in N.
For each value yi ∈ dom(Y)
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour.

Start node:

the empty assignment

Goal:

A goal node is a total assignment that satisfies all
constraints.

There are no cycles or multiple paths to a node.
The search space does not depend in the variable selected.
All paths to a solution have same length.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 7 / 35

Generate-and-test as Graph Searching

A CSP can be solved by graph-searching:

Nodes: A node is an assignment values to some of the
variables.

Neighbors: Suppose node N is the assignment
X1 = v1, . . . ,Xk = vk . Select a variable Y that isn’t assigned
in N.
For each value yi ∈ dom(Y)
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour.

Start node:

the empty assignment

Goal:

A goal node is a total assignment that satisfies all
constraints.

There are no cycles or multiple paths to a node.
The search space does not depend in the variable selected.
All paths to a solution have same length.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 7 / 35

Generate-and-test as Graph Searching

A CSP can be solved by graph-searching:

Nodes: A node is an assignment values to some of the
variables.

Neighbors: Suppose node N is the assignment
X1 = v1, . . . ,Xk = vk . Select a variable Y that isn’t assigned
in N.
For each value yi ∈ dom(Y)
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour.

Start node: the empty assignment

Goal:

A goal node is a total assignment that satisfies all
constraints.

There are no cycles or multiple paths to a node.
The search space does not depend in the variable selected.
All paths to a solution have same length.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 7 / 35

Generate-and-test as Graph Searching

A CSP can be solved by graph-searching:

Nodes: A node is an assignment values to some of the
variables.

Neighbors: Suppose node N is the assignment
X1 = v1, . . . ,Xk = vk . Select a variable Y that isn’t assigned
in N.
For each value yi ∈ dom(Y)
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour.

Start node: the empty assignment

Goal: A goal node is a total assignment that satisfies all
constraints.

There are no cycles or multiple paths to a node.
The search space does not depend in the variable selected.
All paths to a solution have same length.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 7 / 35

Generate-and-test as Graph Searching

A CSP can be solved by graph-searching:

Nodes: A node is an assignment values to some of the
variables.

Neighbors: Suppose node N is the assignment
X1 = v1, . . . ,Xk = vk . Select a variable Y that isn’t assigned
in N.
For each value yi ∈ dom(Y)
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour.

Start node: the empty assignment

Goal: A goal node is a total assignment that satisfies all
constraints.

There are no cycles or multiple paths to a node.
The search space does not depend in the variable selected.
All paths to a solution have same length.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 7 / 35

Backtracking Algorithms

Systematically explore D by instantiating the variables one at
a time

evaluate each constraint predicate as soon as all its variables
are bound

any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Variables A,B,C , domains {1, 2, 3, 4},
constraints A < B,B < C .
Assignment A = 1 ∧ B = 1 is inconsistent with constraint A < B
regardless of the value of the other variables.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 8 / 35

Backtracking Algorithms

Systematically explore D by instantiating the variables one at
a time

evaluate each constraint predicate as soon as all its variables
are bound

any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Variables A,B,C , domains {1, 2, 3, 4},
constraints A < B,B < C .
Assignment A = 1 ∧ B = 1 is inconsistent with constraint A < B
regardless of the value of the other variables.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 8 / 35

Backtracking Algorithms

Systematically explore D by instantiating the variables one at
a time

evaluate each constraint predicate as soon as all its variables
are bound

any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Variables A,B,C , domains {1, 2, 3, 4},
constraints A < B,B < C .
Assignment A = 1 ∧ B = 1 is inconsistent with constraint A < B
regardless of the value of the other variables.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 8 / 35

Backtracking Algorithms

Systematically explore D by instantiating the variables one at
a time

evaluate each constraint predicate as soon as all its variables
are bound

any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Variables A,B,C , domains {1, 2, 3, 4},
constraints A < B,B < C .

Assignment A = 1 ∧ B = 1 is inconsistent with constraint A < B
regardless of the value of the other variables.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 8 / 35

Backtracking Algorithms

Systematically explore D by instantiating the variables one at
a time

evaluate each constraint predicate as soon as all its variables
are bound

any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Variables A,B,C , domains {1, 2, 3, 4},
constraints A < B,B < C .
Assignment A = 1 ∧ B = 1 is inconsistent with constraint A < B
regardless of the value of the other variables.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 8 / 35

CSP as Graph Searching

A CSP can be solved by graph-searching:

Nodes:

A node is an assignment values to some of the
variables.

Neighbors:

Suppose node N is the assignment
X1 = v1, . . . ,Xk = vk . Select a variable Y that isn’t assigned
in N.
For each value yi ∈ dom(Y)
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

Start node:

the empty assignment

Goal:

A goal node is a

total assignment.

The search space depends on which variable is selected to be
assigned for each node.
There are no cycles or multiple paths to a node.
Depth-first search is appropriate.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 9 / 35

CSP as Graph Searching

A CSP can be solved by graph-searching:

Nodes: A node is an assignment values to some of the
variables.

Neighbors:

Suppose node N is the assignment
X1 = v1, . . . ,Xk = vk . Select a variable Y that isn’t assigned
in N.
For each value yi ∈ dom(Y)
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

Start node:

the empty assignment

Goal:

A goal node is a total assignment.

The search space depends on which variable is selected to be
assigned for each node.
There are no cycles or multiple paths to a node.
Depth-first search is appropriate.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 9 / 35

CSP as Graph Searching

A CSP can be solved by graph-searching:

Nodes: A node is an assignment values to some of the
variables.

Neighbors: Suppose node N is the assignment
X1 = v1, . . . ,Xk = vk . Select a variable Y that isn’t assigned
in N.
For each value yi ∈ dom(Y)
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

Start node:

the empty assignment

Goal:

A goal node is a total assignment.

The search space depends on which variable is selected to be
assigned for each node.
There are no cycles or multiple paths to a node.
Depth-first search is appropriate.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 9 / 35

CSP as Graph Searching

A CSP can be solved by graph-searching:

Nodes: A node is an assignment values to some of the
variables.

Neighbors: Suppose node N is the assignment
X1 = v1, . . . ,Xk = vk . Select a variable Y that isn’t assigned
in N.
For each value yi ∈ dom(Y)
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

Start node: the empty assignment

Goal:

A goal node is a total assignment.

The search space depends on which variable is selected to be
assigned for each node.
There are no cycles or multiple paths to a node.
Depth-first search is appropriate.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 9 / 35

CSP as Graph Searching

A CSP can be solved by graph-searching:

Nodes: A node is an assignment values to some of the
variables.

Neighbors: Suppose node N is the assignment
X1 = v1, . . . ,Xk = vk . Select a variable Y that isn’t assigned
in N.
For each value yi ∈ dom(Y)
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

Start node: the empty assignment

Goal: A goal node is a total assignment.

The search space depends on which variable is selected to be
assigned for each node.
There are no cycles or multiple paths to a node.
Depth-first search is appropriate.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 9 / 35

CSP as Graph Searching

A CSP can be solved by graph-searching:

Nodes: A node is an assignment values to some of the
variables.

Neighbors: Suppose node N is the assignment
X1 = v1, . . . ,Xk = vk . Select a variable Y that isn’t assigned
in N.
For each value yi ∈ dom(Y)
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

Start node: the empty assignment

Goal: A goal node is a total assignment.

The search space depends on which variable is selected to be
assigned for each node.
There are no cycles or multiple paths to a node.
Depth-first search is appropriate.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 9 / 35

Simple Examples

Example 1:

Variables: A,B,C

Domains: {1, 2, 3, 4}
Constraints A < B, B < C

Example 2:

Variables: A,B,C ,D

Domains: {1, 2, 3, 4}
Constraints A < B, B < C ,C < D

Example 3:

Variables: A,B,C ,D,E

Domains: {1, 2, 3, 4}
Constraints A < B, B < C ,C < D,D < E

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 10 / 35

Simple Examples

Example 1:

Variables: A,B,C

Domains: {1, 2, 3, 4}
Constraints A < B, B < C

Example 2:

Variables: A,B,C ,D

Domains: {1, 2, 3, 4}
Constraints A < B, B < C ,C < D

Example 3:

Variables: A,B,C ,D,E

Domains: {1, 2, 3, 4}
Constraints A < B, B < C ,C < D,D < E

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 10 / 35

Simple Examples

Example 1:

Variables: A,B,C

Domains: {1, 2, 3, 4}
Constraints A < B, B < C

Example 2:

Variables: A,B,C ,D

Domains: {1, 2, 3, 4}
Constraints A < B, B < C ,C < D

Example 3:

Variables: A,B,C ,D,E

Domains: {1, 2, 3, 4}
Constraints A < B, B < C ,C < D,D < E

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 10 / 35

Example: scheduling activities

Variables: A, B, C , D, E that represent the starting times of
various activities.

Domains: dom(A) = {1, 2, 3, 4}, dom(B) = {1, 2, 3, 4},
dom(C) = {1, 2, 3, 4}, dom(D) = {1, 2, 3, 4},
dom(E) = {1, 2, 3, 4}
Constraints:

(B 6= 3) ∧ (C 6= 2) ∧ (A 6= B) ∧ (B 6= C) ∧
(C < D) ∧ (A = D) ∧ (E < A) ∧ (E < B) ∧
(E < C) ∧ (E < D) ∧ (B 6= D).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 11 / 35

Consistency Algorithms

Idea: prune the domains as much as possible before selecting
values from them.

A variable is domain consistent if no value of the domain of
the variable is ruled impossible by any of the constraints.

Example: Is the scheduling example domain consistent?

dom(B) = {1, 2, 3, 4} isn’t domain consistent as B = 3
violates the constraint B 6= 3.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 12 / 35

Consistency Algorithms

Idea: prune the domains as much as possible before selecting
values from them.

A variable is domain consistent if no value of the domain of
the variable is ruled impossible by any of the constraints.

Example: Is the scheduling example domain consistent?
dom(B) = {1, 2, 3, 4} isn’t domain consistent as B = 3
violates the constraint B 6= 3.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 12 / 35

Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable
node.

There is an arc from variable X to each constraint that
involves X .
An arc is written as

〈
X , r(X ,Y)

〉
E.g., 〈X ,X < Y 〉, 〈Y ,X < Y 〉
〈X ,X + Y = Z 〉, 〈Y ,X + Y = Z 〉, 〈Z ,X + Y = Z 〉

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 13 / 35

Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable
node.

There is an arc from variable X to each constraint that
involves X .
An arc is written as

〈
X , r(X ,Y)

〉
E.g., 〈X ,X < Y 〉, 〈Y ,X < Y 〉
〈X ,X + Y = Z 〉, 〈Y ,X + Y = Z 〉, 〈Z ,X + Y = Z 〉

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 13 / 35

Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable
node.

There is an arc from variable X to each constraint that
involves X .
An arc is written as

〈
X , r(X ,Y)

〉
E.g., 〈X ,X < Y 〉, 〈Y ,X < Y 〉
〈X ,X + Y = Z 〉, 〈Y ,X + Y = Z 〉, 〈Z ,X + Y = Z 〉

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 13 / 35

Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable
node.

There is an arc from variable X to each constraint that
involves X .

An arc is written as
〈
X , r(X ,Y)

〉
E.g., 〈X ,X < Y 〉, 〈Y ,X < Y 〉
〈X ,X + Y = Z 〉, 〈Y ,X + Y = Z 〉, 〈Z ,X + Y = Z 〉

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 13 / 35

Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable
node.

There is an arc from variable X to each constraint that
involves X .
An arc is written as

〈
X , r(X ,Y)

〉
E.g., 〈X ,X < Y 〉, 〈Y ,X < Y 〉
〈X ,X + Y = Z 〉, 〈Y ,X + Y = Z 〉, 〈Z ,X + Y = Z 〉

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 13 / 35

Example Constraint Network

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A B

D C

E

A ≠ B

B ≠ D

C < D

A = D

E < A

B ≠ C

E < B

E < D E < C

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 14 / 35

Arc Consistency

An arc
〈
X , r(X ,Y)

〉
is arc consistent if, for each value

x ∈ dom(X), there is some value y ∈ dom(Y) such that
r(x , y) is satisfied.

A network is arc consistent if all its arcs are arc consistent.

What if arc
〈
X , r(X ,Y)

〉
is not arc consistent?

All values of X in dom(X) for which there is no corresponding
value in dom(Y) can be deleted from dom(X) to make the
arc

〈
X , r(X ,Y)

〉
consistent.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 15 / 35

Arc Consistency

An arc
〈
X , r(X ,Y)

〉
is arc consistent if, for each value

x ∈ dom(X), there is some value y ∈ dom(Y) such that
r(x , y) is satisfied.

A network is arc consistent if all its arcs are arc consistent.

What if arc
〈
X , r(X ,Y)

〉
is not arc consistent?

All values of X in dom(X) for which there is no corresponding
value in dom(Y) can be deleted from dom(X) to make the
arc

〈
X , r(X ,Y)

〉
consistent.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 15 / 35

Arc Consistency

An arc
〈
X , r(X ,Y)

〉
is arc consistent if, for each value

x ∈ dom(X), there is some value y ∈ dom(Y) such that
r(x , y) is satisfied.

A network is arc consistent if all its arcs are arc consistent.

What if arc
〈
X , r(X ,Y)

〉
is not arc consistent?

All values of X in dom(X) for which there is no corresponding
value in dom(Y) can be deleted from dom(X) to make the
arc

〈
X , r(X ,Y)

〉
consistent.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 15 / 35

Clicker Question

dom(X) = {1, 3, 5}
dom(Y) = {2, 3, 4}
Making the arc 〈X ,X < Y 〉 arc consistent:

A does nothing because it is already arc consistent

B results in just 5 being removed from the domain of X

C results in 3 and 5 being removed from the domain of X

D results in 3 and 5 being removed from the domain of X , and 2
and 3 removed from the domain of Y

E results in 3 being removed from both domains

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 16 / 35

Clicker Question

dom(X) = {1, 3, 5}
dom(Y) = {2, 3, 4}
Making the arc 〈Y ,X < Y 〉 arc consistent:

A does nothing because it is already arc consistent

B results in just 2 being removed from the domain of Y

C results in 2 and 3 being removed from the domain of Y

D results in the domain of Y becoming empty

E results in 3 being removed from each domain

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 17 / 35

Clicker Question

dom(X) = {1, 3, 5}
dom(Y) = {2, 3, 4}
Making the arc 〈X ,X 6= Y 〉 arc consistent:

A does nothing because it is already arc consistent

B results in just 3 being removed from the domain of X

C results in 1 and 5 being removed from the domain of X

D results in 1, 3 and 5 being removed from the domain of X

E results in both domains becoming empty

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 18 / 35

Clicker Question

1 2

3

4

dom(1-across) = {ant, big , bus, car , has}
dom(2-down) = {ginger, search, symbol,
yogurt}
For the constraint C : 3rd letter of 1-across =
1st letter of 2-down.
After making 〈1-across,C 〉 arc consistent, the
domain of 1-across is

A {ant, big , bus, car , has}
B {big , bus, car , has}
C {big , bus, has}
D {ant, big , car}
E {ant, car}

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 19 / 35

Clicker Question

1 2

3

4

dom(1-across) = {ant, big , bus, car , has}
dom(2-down) = {ginger, search, symbol,
yogurt}
For the constraint C : 3rd letter of 1-across =
1st letter of 2-down.
After making 〈2-down,C 〉 arc consistent, the
domain of 2-down is

A {ginger, search, symbol, yogurt}
B {ginger, yogurt}
C {ginger, search, symbol}
D {yogurt}
E {}

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 20 / 35

Clicker Question

dom(X) = {1, 3, 5}
dom(Y) = {2, 3, 4}
Making the arc 〈X ,X = Y 〉 arc consistent:

A does nothing because it is already arc consistent

B results in just 3 being removed from the domain of X

C results in 1 and 5 being removed from the domain of X

D results in 1, 3 and 5 being removed from the domain of X

E results in both domains becoming empty

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 21 / 35

Clicker Question

dom(X) = {1, 3, 5}
dom(Y) = {2, 3, 4}
Making the arc 〈X ,X = Y + 1〉 arc consistent:

A does nothing because it is already arc consistent

B results in 3 being removed from the domain of X

C results in 1 being removed from the domain of X

D results in 3 and 5 being removed from the domain of X

E results in domain of X becoming empty

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 22 / 35

Arc Consistency Algorithm

The arcs can be considered in turn making each arc consistent.

When an arc has been made arc consistent, does it ever need
to be checked again?

An arc
〈
X , r(X ,Y)

〉
needs to be revisited if the domain of

one of the Y ’s is reduced.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 23 / 35

Arc Consistency Algorithm

The arcs can be considered in turn making each arc consistent.

When an arc has been made arc consistent, does it ever need
to be checked again?
An arc

〈
X , r(X ,Y)

〉
needs to be revisited if the domain of

one of the Y ’s is reduced.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 23 / 35

Generalized Arc Consistency

for each variable X :
DX := dom(X)

to do := {〈X , c〉 | c ∈ C and X ∈ scope(c)}
while to do is not empty:

select and remove path 〈X , c〉 from to do
suppose scope of c is {X ,Y1, . . . ,Yk}
NDX := {x | x ∈ DX and

exists y1 ∈ DY1 ,. . . , yk ∈ DYk

s.th. c(X = x ,Y1 = y1, . . . ,Yk = yk) = true }
if NDX 6= DX :

to do := to do ∪ {〈Z , c ′〉 | X ∈ scope(c ′),
c ′ is not c, Z ∈ scope(c ′) \ {X}}

DX := NDX

return {DX | X is a variable}

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 24 / 35

Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

One domain is empty =⇒

no solution

Each domain has a single value =⇒

unique solution

Some domains have more than one value =⇒

there may or
may not be a solution

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 25 / 35

Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

One domain is empty =⇒

no solution

Each domain has a single value =⇒

unique solution

Some domains have more than one value =⇒

there may or
may not be a solution

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 25 / 35

Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

One domain is empty =⇒ no solution

Each domain has a single value =⇒

unique solution

Some domains have more than one value =⇒

there may or
may not be a solution

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 25 / 35

Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

One domain is empty =⇒ no solution

Each domain has a single value =⇒ unique solution

Some domains have more than one value =⇒

there may or
may not be a solution

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 25 / 35

Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

One domain is empty =⇒ no solution

Each domain has a single value =⇒ unique solution

Some domains have more than one value =⇒ there may or
may not be a solution

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 25 / 35

Complexity of Arc Consistency

Consider binary constraints

Each variable domain is of size d

There are e arcs.

Checking an arc takes time

O(d2)
〈X , c(X ,Y)〉 for each value for X , check each value for Y

Each constraint needs to be checked at most d times.
〈X , c(X ,Y)〉 rechecked when a value for Y is removed.

Thus the algorithm GAC takes time O(ed3).

Solving a CSP is an NP-complete problem where n the number of
variables

Give a solution it can be checked in polynomial time

But it can be made arc consistent in polynomial time. How?
Making the network arc consistent does not solve the
problem. We need to search for a solution.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 26 / 35

Complexity of Arc Consistency

Consider binary constraints

Each variable domain is of size d

There are e arcs.

Checking an arc takes time O(d2)
〈X , c(X ,Y)〉 for each value for X , check each value for Y

Each constraint needs to be checked at most

d times.
〈X , c(X ,Y)〉 rechecked when a value for Y is removed.

Thus the algorithm GAC takes time O(ed3).

Solving a CSP is an NP-complete problem where n the number of
variables

Give a solution it can be checked in polynomial time

But it can be made arc consistent in polynomial time. How?
Making the network arc consistent does not solve the
problem. We need to search for a solution.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 26 / 35

Complexity of Arc Consistency

Consider binary constraints

Each variable domain is of size d

There are e arcs.

Checking an arc takes time O(d2)
〈X , c(X ,Y)〉 for each value for X , check each value for Y

Each constraint needs to be checked at most d times.
〈X , c(X ,Y)〉 rechecked when a value for Y is removed.

Thus the algorithm GAC takes time

O(ed3).

Solving a CSP is an NP-complete problem where n the number of
variables

Give a solution it can be checked in polynomial time

But it can be made arc consistent in polynomial time. How?
Making the network arc consistent does not solve the
problem. We need to search for a solution.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 26 / 35

Complexity of Arc Consistency

Consider binary constraints

Each variable domain is of size d

There are e arcs.

Checking an arc takes time O(d2)
〈X , c(X ,Y)〉 for each value for X , check each value for Y

Each constraint needs to be checked at most d times.
〈X , c(X ,Y)〉 rechecked when a value for Y is removed.

Thus the algorithm GAC takes time O(ed3).

Solving a CSP is an NP-complete problem where n the number of
variables

Give a solution it can be checked in polynomial time

But it can be made arc consistent in polynomial time. How?
Making the network arc consistent does not solve the
problem. We need to search for a solution.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 26 / 35

Complexity of Arc Consistency

Consider binary constraints

Each variable domain is of size d

There are e arcs.

Checking an arc takes time O(d2)
〈X , c(X ,Y)〉 for each value for X , check each value for Y

Each constraint needs to be checked at most d times.
〈X , c(X ,Y)〉 rechecked when a value for Y is removed.

Thus the algorithm GAC takes time O(ed3).

Solving a CSP is an NP-complete problem where n the number of
variables

Give a solution it can be checked in polynomial time

But it can be made arc consistent in polynomial time. How?

Making the network arc consistent does not solve the
problem. We need to search for a solution.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 26 / 35

Complexity of Arc Consistency

Consider binary constraints

Each variable domain is of size d

There are e arcs.

Checking an arc takes time O(d2)
〈X , c(X ,Y)〉 for each value for X , check each value for Y

Each constraint needs to be checked at most d times.
〈X , c(X ,Y)〉 rechecked when a value for Y is removed.

Thus the algorithm GAC takes time O(ed3).

Solving a CSP is an NP-complete problem where n the number of
variables

Give a solution it can be checked in polynomial time

But it can be made arc consistent in polynomial time. How?
Making the network arc consistent does not solve the
problem. We need to search for a solution.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 26 / 35

Finding solutions with AC and domain splitting

To solve a CSP:

Simplify with arc-consistency

If a domain is empty, return no solution

If all domains have size 1, return solution found

Else split a domain, and recursively solve each half.

I It is often best to split a domain in half.
I Do we need to restart from scratch?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 27 / 35

Finding solutions with AC and domain splitting

To solve a CSP:

Simplify with arc-consistency

If a domain is empty, return no solution

If all domains have size 1, return solution found

Else split a domain, and recursively solve each half.
I It is often best to split a domain in half.

I Do we need to restart from scratch?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 27 / 35

Finding solutions with AC and domain splitting

To solve a CSP:

Simplify with arc-consistency

If a domain is empty, return no solution

If all domains have size 1, return solution found

Else split a domain, and recursively solve each half.
I It is often best to split a domain in half.
I Do we need to restart from scratch?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 27 / 35

Finding one solutions with AC and domain splitting

Solve one(CSP, domains) :
simplify CSP with arc-consistency
if one domain is empty:

return False
else if all domains have one element:

return solution of that element for each variable
else:

select variable X with domain D and |D| > 1
partition D into D1 and D2

return Solve one(CSP, domains with dom(X) = D1) or
Solve one(CSP, domains with dom(X) = D2)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 28 / 35

Finding set of all solutions with AC and domain splitting

Solve all(CSP, domains) :
simplify CSP with arc-consistency
if one domain is empty:

return

{}

else if all domains have one element:
return

{solution of that element for each variable}

else:
select variable X with domain D and |D| > 1
partition D into D1 and D2

return

Solve all(CSP, domains with dom(X) = D1) ∪
Solve all(CSP, domains with dom(X) = D2)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 29 / 35

Finding set of all solutions with AC and domain splitting

Solve all(CSP, domains) :
simplify CSP with arc-consistency
if one domain is empty:

return {}
else if all domains have one element:

return

{solution of that element for each variable}

else:
select variable X with domain D and |D| > 1
partition D into D1 and D2

return

Solve all(CSP, domains with dom(X) = D1) ∪
Solve all(CSP, domains with dom(X) = D2)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 29 / 35

Finding set of all solutions with AC and domain splitting

Solve all(CSP, domains) :
simplify CSP with arc-consistency
if one domain is empty:

return {}
else if all domains have one element:

return {solution of that element for each variable}
else:

select variable X with domain D and |D| > 1
partition D into D1 and D2

return

Solve all(CSP, domains with dom(X) = D1) ∪
Solve all(CSP, domains with dom(X) = D2)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 29 / 35

Finding set of all solutions with AC and domain splitting

Solve all(CSP, domains) :
simplify CSP with arc-consistency
if one domain is empty:

return {}
else if all domains have one element:

return {solution of that element for each variable}
else:

select variable X with domain D and |D| > 1
partition D into D1 and D2

return Solve all(CSP, domains with dom(X) = D1) ∪
Solve all(CSP, domains with dom(X) = D2)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 29 / 35

AC and domain splitting as search

Domain splitting leads to search space

Nodes:

CSP with arc-consistent domains

Neighbors

of CSP:
if all domains are non-empty:

select variable X with domain D and |D| > 1
partition D into D1 and D2

neighbors are
I make AC (CSP | dom(X) = D1)
I make AC (CSP | dom(X) = D2)

Goal:

all domains have size 1

Start node:

make AC (CSP)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 30 / 35

AC and domain splitting as search

Domain splitting leads to search space

Nodes: CSP with arc-consistent domains

Neighbors

of CSP:
if all domains are non-empty:

select variable X with domain D and |D| > 1
partition D into D1 and D2

neighbors are
I make AC (CSP | dom(X) = D1)
I make AC (CSP | dom(X) = D2)

Goal:

all domains have size 1

Start node:

make AC (CSP)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 30 / 35

AC and domain splitting as search

Domain splitting leads to search space

Nodes: CSP with arc-consistent domains

Neighbors of CSP:
if all domains are non-empty:

select variable X with domain D and |D| > 1
partition D into D1 and D2

neighbors are
I make AC (CSP | dom(X) = D1)
I make AC (CSP | dom(X) = D2)

Goal:

all domains have size 1

Start node:

make AC (CSP)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 30 / 35

AC and domain splitting as search

Domain splitting leads to search space

Nodes: CSP with arc-consistent domains

Neighbors of CSP:
if all domains are non-empty:

select variable X with domain D and |D| > 1
partition D into D1 and D2

neighbors are
I make AC (CSP | dom(X) = D1)
I make AC (CSP | dom(X) = D2)

Goal: all domains have size 1

Start node:

make AC (CSP)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 30 / 35

AC and domain splitting as search

Domain splitting leads to search space

Nodes: CSP with arc-consistent domains

Neighbors of CSP:
if all domains are non-empty:

select variable X with domain D and |D| > 1
partition D into D1 and D2

neighbors are
I make AC (CSP | dom(X) = D1)
I make AC (CSP | dom(X) = D2)

Goal: all domains have size 1

Start node: make AC (CSP)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 30 / 35

Clicker Question

Which of the following is false:

A If there is a solution, arc consistency will not make any
domains empty

B Arc consistency always halts for finite CSPs

C Arc consistency involves checking constraints multiple times

D Arc consistency always results in singleton domains if there is
only one solution.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 31 / 35

Clicker Question

What is not true of arc consistency with domain splitting:

A Arc consistency needs domain splitting to solve problems in
general

B Together they can solve CSPs in polynomial time

C They typically result in a smaller search space than using
search without arc consistency

D They always terminate with a solution if there is one for finite
CSPs

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 32 / 35

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 33 / 35

Example: Crossword Puzzle

1 2

3

4

Words:

ant, big, bus, car, has
book, buys, hold,
lane, year
beast, ginger, search,
symbol, syntax

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 34 / 35

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 7 35 / 35

