- Solution to Assignment 1 is posted. (One fix for coffee.py)
- Assignment 2 is available

At the end of the class you should be able to:

- Explain how iterative deepening saves space
- Explain how and branch and bound can find optimal solutions with linear space
- Explain what search algorithm should be used for any problem.

Review: Searching

- A frontier is a set of paths
- Generic search algorithm: Repeatedly:
 - select a path from the frontier
 - stop of it is a path to a goal
 - otherwise expand it in all ways, and add the resulting paths to the frontier
- \bullet Frontier is a stack \longrightarrow depth-firt search
- Frontier is a queue \longrightarrow breadth-firt search
- Frontier is a priority queue ordered by path cost \longrightarrow least-cost-first search
- Frontier is a priority queue ordered by f(p) = cost(p) + h(p)
 → A* search
- Cycle pruning prunes paths that loop back on themselves
- Multiple-path pruning prunes paths to nodes that have already been expanded.

With a heuristic that does not satisfy the monotone restriction, how might A^* search with multiple-path pruning not be admissible?

- A it might not expand a path on frontier with lowest f-value
- B it might not return a lowest-cost path
- ${\sf C}\,$ it is always admissible, even without the monotone restriction
- D it only considers the heuristic value and not both path cost and heuristic cost
- E it might use space exponential in the path length instead of linear

With of the following is false:

- A With multiple-path pruning, we don't need cycle pruning
- B With multiple path pruning all search algorithms halt on finite graphs
- C All algorithms have exponential space with multiple-path pruning
- D Cycle pruning without multiple-path pruning makes *A*^{*} no longer admissible

Summary of Search Strategies

Strategy	Complete	Halts	Space
Depth-first	No	No	Linear
Depth-first with cycle pruning	No	Yes	Linear
Depth-first with MPP	No	Yes	Exp
Breadth-first with MPP	Yes	Yes	Exp
Lowest-cost-first with MPP	Yes	Yes	Exp
Best-first with MPP (min $h(p)$)	No	Yes	Exp
A* without cycle or MP pruning	Yes	No	Exp
A* with cycle pruning	Yes	Yes	Exp
A [*] with MPP	Yes	Yes	Exp

Complete — if there a path to a goal, it can find one, even on infinite graphs.

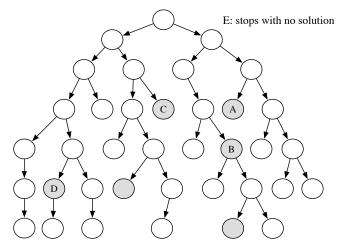
Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current or longest path (Assume the graph and heustic follow assumptions of A^* proof)

- A bounded depth-first search takes a bound (cost or depth) and does not expand paths that exceed the bound.
 - explores part of the search graph
 - uses space linear in the depth of the search.

Which shaded goal will a depth-bounded search find first

when the depth bound is 012345?



• Iterative-deepening search:

- Start with a bound b = 0.
- Do a bounded depth-first search with length bound b
- If a solution is found return that solution
- Otherwise increment b by 1 and repeat.
- This will find the same first solution as what other method?
- How much space is used?
- What happens if there is no path to a goal?
- Surely recomputing paths is wasteful!!!

Complexity with solution at depth k & branching factor b:

level	breadth-first	iterative deepening	# nodes
1	1	k	b
2	1	k-1	<i>b</i> ²
k-1	1	2	b^{k-1} b^k
k	1	1	b^k
total	$\geq b^k$	$\leq b^k \left(rac{b}{b-1} ight)^2$	

10/18

- combines depth-first search with heuristic information.
- finds optimal solution.
- most useful when there are multiple solutions, and we want an optimal one.
- uses the space of depth-first search.

Suppose we want to find a single optimal solution.

- Suppose *bound* is the cost of the lowest-cost path found to a goal so far.
- What if the search encounters a path p such that cost(p) + h(p) ≥ bound? — p can be pruned.
- What can we do if a non-pruned path to a goal is found? bound can be set to the cost of p, and p can be remembered as the best solution so far.
- What can be guaranteed when the search completes? It has found an optimal solution if there is a solution with cost less than bound.
- Why should this use a depth-first search? Uses linear space.

Input: a graph a set of start nodes Boolean procedure goal(n) that tests if n is a goal node Real bound *frontier* := { $\langle s \rangle$: *s* is a start node} best := 1expanded := $\{\}$ while frontier is not empty: **select** and **remove** path $\langle n_0, \ldots, n_k \rangle$ from *frontier* if $cost(\langle n_0, \ldots, n_k \rangle) + h(n_k) < bound$ if goal (n_k) : best := $\langle n_0, \ldots, n_k \rangle$ bound := $cost(\langle n_0, \ldots, n_k \rangle)$ else Frontier := Frontier $\cup \{ \langle n_0, \ldots, n_k, n \rangle : \langle n_k, n \rangle \in A \}$ return best 13/18

How should bound be initialized?

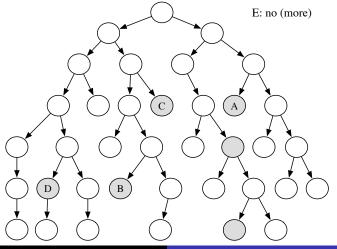
- The bound can be initialized to ∞ .
- The bound can be set to an estimate of the optimal path cost. After depth-bounded depth-first search terminates either:
 - A solution was found.
 - this is an optimal solution
 - No solution was found, and no path was pruned.
 - $\ensuremath{ \mbox{there}}$ is no solution
 - No solution was found, and a path was pruned.
 - the bound can be increased, and search started again
 - \longrightarrow Depth-first Branch-and-Bound with Iterative Deepening

The efficiency is very sensitive to the bound (and how it is increased).

Which shaded goals will be best solutions

Suppose bound is initially set to 6 (or greater). Expand nodes from left to right.

Which shaded goal will be found first?second?third?



Summary of Search Strategies

Strategy	Complete	Halts	Space
Depth-first	No	No	Linear
Depth-first with cycle pruning	No	Yes	Linear
Depth-first with MPP	No	Yes	Exp
A* without cycle or MP pruning	Yes	No	Exp
A* with MPP	Yes	Yes	Exp
DFBnB with inf bound	No	No	Linear
DFBnB + ID + MP pruning	Yes	Yes	Exp
DFBnB + ID + cycle pruning	Yes	Yes	Linear

Complete — if there a path to a goal, it can find one, even on infinite graphs.

Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current or longest path

ID = iterative deepening

(Assume the graph and heustic follow assumptions of A^* proof)

if we need an optimal solution:

if we know the goal (before knowing start start): use DP to improve heuristic if there is enough space to store the graph: use A* with MPP

else:

use depth-first BnB + ID (with cycle pruning) else if there is space:

use A* with a non-admisible heursitic

else:

use use depth-bounded depth-first search