
Announcements

Solution to Assignment 1 is posted. (One fix for coffee.py)

Assignment 2 is available

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 1 / 18

Learning Objectives

At the end of the class you should be able to:

Explain how iterative deepening saves space

Explain how and branch and bound can find optimal solutions
with linear space

Explain what search algorithm should be used for any problem.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 2 / 18

Review: Searching

A frontier is a set of paths

Generic search algorithm: Repeatedly:
I select a path from the frontier
I stop of it is a path to a goal
I otherwise expand it in all ways, and add the resulting paths to

the frontier

Frontier is a stack −→ depth-firt search

Frontier is a queue −→ breadth-firt search

Frontier is a priority queue ordered by path cost −→
least-cost-first search

Frontier is a priority queue ordered by f (p) = cost(p) + h(p)
−→ A∗ search

Cycle pruning prunes paths that loop back on themselves

Multiple-path pruning prunes paths to nodes that have already
been expanded.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 3 / 18

Clicker Question

With a heuristic that does not satisfy the monotone restriction,
how might A∗ search with multiple-path pruning not be
admissible?

A it might not expand a path on frontier with lowest f -value

B it might not return a lowest-cost path

C it is always admissible, even without the monotone restriction

D it only considers the heuristic value and not both path cost
and heuristic cost

E it might use space exponential in the path length instead of
linear

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 4 / 18

Clicker Question

With of the following is false:

A With multiple-path pruning, we don’t need cycle
pruning

B With multiple path pruning all search algorithms halt
on finite graphs

C All algorithms have exponential space with
multiple-path pruning

D Cycle pruning without multiple-path pruning makes
A∗ no longer admissible

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 5 / 18

Summary of Search Strategies

Strategy Complete Halts Space

Depth-first No No Linear
Depth-first with cycle pruning No Yes Linear
Depth-first with MPP No Yes Exp
Breadth-first with MPP Yes Yes Exp
Lowest-cost-first with MPP Yes Yes Exp
Best-first with MPP (min h(p)) No Yes Exp
A∗ without cycle or MP pruning Yes No Exp
A∗ with cycle pruning Yes Yes Exp
A∗ with MPP Yes Yes Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current or longest path
(Assume the graph and heustic follow assumptions of A∗ proof)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 6 / 18

Bounded Depth-first search

A bounded depth-first search takes a bound (cost or depth)
and does not expand paths that exceed the bound.
I explores part of the search graph
I uses space linear in the depth of the search.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 7 / 18

Which shaded goal will a depth-bounded search find first

when the depth bound is 012345?

C A

D

B

E: stops with no solution

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 8 / 18

Iterative-deepening search

Iterative-deepening search:
I Start with a bound b = 0.
I Do a bounded depth-first search with length bound b
I If a solution is found return that solution
I Otherwise increment b by 1 and repeat.

This will find the same first solution as what other method?

How much space is used?

What happens if there is no path to a goal?

Surely recomputing paths is wasteful!!!

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 9 / 18

Iterative Deepening Complexity

Complexity with solution at depth k & branching factor b:

level breadth-first iterative deepening # nodes

1 1 k b
2 1 k − 1 b2

.
k − 1 1 2 bk−1

k 1 1 bk

total ≥ bk ≤ bk
(

b
b−1

)2

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 10 / 18

Depth-first Branch-and-Bound

combines depth-first search with heuristic information.

finds optimal solution.

most useful when there are multiple solutions, and we want an
optimal one.

uses the space of depth-first search.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 11 / 18

Depth-first Branch-and-Bound

Suppose we want to find a single optimal solution.

Suppose bound is the cost of the lowest-cost path found to a
goal so far.

What if the search encounters a path p such that
cost(p) + h(p) ≥ bound?
— p can be pruned.

What can we do if a non-pruned path to a goal is found?
bound can be set to the cost of p, and p can be remembered
as the best solution so far.

What can be guaranteed when the search completes?
It has found an optimal solution if there is a solution with cost
less than bound.

Why should this use a depth-first search?
Uses linear space.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 12 / 18

Depth-first Branch-and-Bound

Input: a graph
a set of start nodes
Boolean procedure goal(n) that tests if n is a goal node
Real bound

frontier := {〈s〉 : s is a start node}
best := ⊥
expanded := {}
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier
if cost(〈n0, . . . , nk〉) + h(nk) < bound

if goal(nk):
best := 〈n0, . . . , nk〉
bound := cost(〈n0, . . . , nk〉)

else
Frontier := Frontier ∪ {〈n0, . . . , nk , n〉 : 〈nk , n〉 ∈ A}

return best

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 13 / 18

Depth-first Branch-and-Bound: Initializing Bound

How should bound be initialized?

The bound can be initialized to ∞.

The bound can be set to an estimate of the optimal path cost.
After depth-bounded depth-first search terminates either:
I A solution was found.

– this is an optimal solution
I No solution was found, and no path was pruned.

– there is no solution
I No solution was found, and a path was pruned.

– the bound can be increased, and search started again
−→ Depth-first Branch-and-Bound with Iterative Deepening

The efficiency is very sensitive to the bound (and how it is
increased).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 14 / 18

Which shaded goals will be best solutions

Suppose bound is initially set to 6 (or greater). Expand nodes from
left to right.
Which shaded goal will be found first?second?third?

C A

D B

E: no (more)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 15 / 18

Summary of Search Strategies

Strategy Complete Halts Space

Depth-first No No Linear
Depth-first with cycle pruning No Yes Linear
Depth-first with MPP No Yes Exp
A∗ without cycle or MP pruning Yes No Exp
A∗ with MPP Yes Yes Exp
DFBnB with inf bound No No Linear
DFBnB + ID + MP pruning Yes Yes Exp
DFBnB + ID + cycle pruning Yes Yes Linear

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current or longest path
ID = iterative deepening
(Assume the graph and heustic follow assumptions of A∗ proof)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 16 / 18

What search algorithm should we use?

if we need an optimal solution:
if we know the goal (before knowing start start):

use DP to improve heuristic
if there is enough space to store the graph:

use A* with MPP
else:

use depth-first BnB + ID (with cycle pruning)
else if there is space:

use A* with a non-admisible heursitic
else:

use use depth-bounded depth-first search

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 17 / 18

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 5 18 / 18

