Announcements

@ Solution to Assignment 1 is posted

@ Assignment 2 is available
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Review: Searching

A frontier is a set of paths

Generic search algorithm: Repeatedly:

» select a path from the frontier

» stop of it is a path to a goal

» otherwise expand it in all ways, and add the resulting paths to
the frontier

Frontier is a stack — depth-firt search

Frontier is a queue — breadth-firt search

@ Frontier is a priority queue ordered by path cost —
least-cost-first search
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Alspace examples

@ Vancouver neighbourhood graph

@ Misleading heuristic demo
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How do good heuristics help?

Suppose c is the cost of an optimal solution. What happens to a
path p from start, where

e cost(p) + h(p) < c
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How do good heuristics help?

Suppose c is the cost of an optimal solution. What happens to a
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It will be expanded
e cost(p) + h(p) > ¢
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@ cost(p) + h(p) = ¢
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How do good heuristics help?

Suppose c is the cost of an optimal solution. What happens to a
path p from start, where

e cost(p) + h(p) < c
It will be expanded

e cost(p) + h(p) > ¢
It will not be expanded

@ cost(p) + h(p) = ¢
It might or might not be expanded.

How can a better heuristic function help?
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Summary of Search Strategies

Strategy Frontier Selection | Complete | Halts | Space
Depth-first Last node added

Breadth-first First node added

Lowest-cost-first | Minimal cost(p)

Best-first Minimal h(p)

A* Minimal f(p)

Complete — if there a path to a goal, it can find one, even on
infinite graphs.

Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current path
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Summary of Search Strategies

Strategy Frontier Selection | Complete | Halts | Space
Depth-first Last node added | No No Linear
Breadth-first First node added | Yes No Exp
Lowest-cost-first | Minimal cost(p) | Yes No Exp
Best-first Minimal h(p) No No Exp
A* Minimal f(p) Yes No Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.

Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current path
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Cycle Pruning

S

@ In depth-first search, checking for cycles can be done in
time in path length.
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Cycle Pruning

S

@ In depth-first search, checking for cycles can be done in
constant time in path length.
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Cycle Pruning

S

@ In depth-first search, checking for cycles can be done in
constant time in path length.

@ For other methods, checking for cycles can be done in
time in path length.
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Cycle Pruning

S

@ In depth-first search, checking for cycles can be done in
constant time in path length.

@ For other methods, checking for cycles can be done in linear
time in path length.
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Cycle Pruning

S

@ In depth-first search, checking for cycles can be done in
constant time in path length.

@ For other methods, checking for cycles can be done in linear
time in path length.

e With cycle pruning, which algorithms halt on finite graphs?
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Multiple-Path Pruning

o-b] 0o

@ Multiple path pruning: prune a path to node n that the
searcher has already found a path to.
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o-b] 0o

@ Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

@ What needs to be stored?
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Multiple-Path Pruning

o-b] 0o

@ Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

@ What needs to be stored?

@ Lowest-cost-first search with multiple-path pruning is
Dijkstra's algorithm.
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Graph searching with multiple-path pruning

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.
frontier :== {(s) : s is a start node}
expanded := {}
while frontier is not empty:
select and remove path (ng, ..., ng) from frontier
if n, & expanded :
add ny to expanded
if goal(ny):
return (ng, ..., ng)
Frontier := Frontier U{(no, ..., nk,n) : (ng,n) € A}
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Multiple-Path Pruning

@ How does multiple-path pruning compare to cycle pruning?
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Multiple-Path Pruning

@ How does multiple-path pruning compare to cycle pruning?

@ Which search algorithms with multiple-path pruning always
halt on finite graphs?

@ What is the time overhead of multiple-path pruning?
@ What is the space overhead of multiple-path pruning?
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Multiple-Path Pruning

How does multiple-path pruning compare to cycle pruning?

Which search algorithms with multiple-path pruning always
halt on finite graphs?

What is the time overhead of multiple-path pruning?

What is the space overhead of multiple-path pruning?
Is it better for depth-first or breadth-first searches?
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Multiple-Path Pruning

How does multiple-path pruning compare to cycle pruning?

Which search algorithms with multiple-path pruning always
halt on finite graphs?

What is the time overhead of multiple-path pruning?
What is the space overhead of multiple-path pruning?
Is it better for depth-first or breadth-first searches?

Can multiple-path pruning prevent an optimal solution being
found?
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Summary of Search Strategies

Strategy Frontier Complete | Halts | Space
Depth-first w/o CP Last added
Depth-first w CP Last added
Depth-first w MPP Last added

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 10/11



Summary of Search Strategies

Strategy Frontier Complete | Halts | Space
Depth-first w/o CP Last added | No No Linear
Depth-first w CP Last added | No Yes Linear
Depth-first w MPP Last added | No Yes Exp
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Summary of Search Strategies
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Summary of Search Strategies

Strategy Frontier Complete | Halts | Space
Depth-first w/o CP Last added | No No Linear
Depth-first w CP Last added | No Yes Linear
Depth-first w MPP Last added | No Yes Exp
Breadth-first w/o MPP | First added | Yes No Exp
Breadth-first w MPP First added | Yes Yes Exp
Best-first w/o MPP Min h(p) No

Best-first w MPP Min h(p) No

A* w/o MPP Min f(p) Yes

A* w MPP Min f(p) Yes

Complete — if there a path to a goal, it can find one, even on

infinite graphs.

Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current path

Assume graph satisfies the assumptions of A* proof + montonicity
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Summary of Search Strategies

Strategy Frontier Complete | Halts | Space
Depth-first w/o CP Last added | No No Linear
Depth-first w CP Last added | No Yes Linear
Depth-first w MPP Last added | No Yes Exp
Breadth-first w/o MPP | First added | Yes No Exp
Breadth-first w MPP First added | Yes Yes Exp
Best-first w/o MPP Min h(p) No No Exp
Best-first w MPP Min h(p) No Yes | Exp
A* w/o MPP Min f(p) Yes No Exp
A* w MPP Min f(p) Yes Yes | Exp
Complete — if there a path to a goal, it can find one, even on

infinite graphs.

Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current path

Assume graph satisfies the assumptions of A* proof + montonicity
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Clicker Question

Which of the following is false:

A All of the search methods based on the generic
search algorithm (without cycle pruning and MPP)
can go into an infinite loop on finite graphs

B Heuristics in spatial domains have to be straight-line
distances

C Arc costs must be non-negative to make sure
least-cost-search finds least-cost solutions first

D Complete search algorithms find a solution if one
exists even in infinite graphs.

E A* uses the cost of the path to a node as well as
heuristic information about the node.
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Clicker Question

“A* is admissible” means:
A The first solution returned is a least-cost solution
B It always halts on finite graphs
C It can get stuck in cycles
D Multiple-path pruning is not used
E Multiple-path pruning is used
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Clicker Question

Which of the following assumptions was not made in the result
that A* is admissible:

A Arc costs are bounded above 0
B Branching factor is finite

C h(n) is an underestimate of the cost of the shortest
path from n to a goal

D The costs around a cycle must sum to zero

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 13/11



Clicker Question

The monotone restriction:
A restricts the possible graphs that can be searched
B restricts the possible heuristics that can be used
C restricts which goals can be searched for
D

implies that spatial domains must use the
straight-line (Euclidean or Manhattan) distance

E means poor singers won't get recording contracts
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Clicker Question

Which of the following is true:

A Multiple-path pruning increases the space used by
breadth-first search from linear to exponential

B Multiple-path pruning increases the space used by A*
search from linear to exponential

C Multiple-path pruning increases the space used by
depth-first search from linear to exponential

D Multiple-path pruning doesn't increase the space
used of any of these methods.
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Clicker Question

With a heuristic that does not satisfy the monotone restriction,
how might A* search with multiple-path pruning not be
admissible?

A it might not expand a path on frontier with lowest f-value

B it might not return a lowest-cost path

C it is always admissible, even without the monotone restriction
D

it only considers the heuristic value and not both path cost
and heuristic cost

E it might use space exponential in the path length instead of
linear
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Clicker Question

With of the following is false:
A With multiple-path pruning, we don't need cycle
pruning
B With multiple path pruning all search algorithms halt
on finite graphs
C All algorithms have exponential space with
multiple-path pruning

D Cycle pruning without multiple-path pruning makes
A* no longer admissible

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 17 /11



Direction of Search

@ The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).
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Direction of Search

@ The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

@ Forward branching factor: number of arcs out of a node.

@ Backward branching factor: number of arcs into a node.
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Direction of Search

@ The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

@ Forward branching factor: number of arcs out of a node.
@ Backward branching factor: number of arcs into a node.

@ Search complexity is b". Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.
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Direction of Search

@ The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

@ Forward branching factor: number of arcs out of a node.

@ Backward branching factor: number of arcs into a node.

@ Search complexity is b". Should use forward search if forward

branching factor is less than backward branching factor, and
vice versa.

@ Note: when graph is dynamically constructed, the backwards
graph may not be available. One might be more difficult to
compute than the other.
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Bidirectional Search

@ Idea: search backward from the goal and forward from the
start simultaneously.
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Bidirectional Search

@ Idea: search backward from the goal and forward from the
start simultaneously.

o This wins as 2b%/2 <« bk.
This can result in an exponential saving in time and space.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 19/11



Bidirectional Search

@ Idea: search backward from the goal and forward from the
start simultaneously.

o This wins as 2b%/2 <« bk.
This can result in an exponential saving in time and space.

@ The main problem is making sure the frontiers meet.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 19/11



Bidirectional Search

@ Idea: search backward from the goal and forward from the
start simultaneously.
o This wins as 2b%/2 < b,
This can result in an exponential saving in time and space.
@ The main problem is making sure the frontiers meet.

@ This is often used with
> a breadth-first method (e.g., least-cost-first search) that builds
a set of states that can lead to the goal quickly.
» in the other direction, another method (typically depth-first)
can be used to find a path to these interesting states.
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Bidirectional Search

@ Idea: search backward from the goal and forward from the
start simultaneously.

o This wins as 2b%/2 <« bk.
This can result in an exponential saving in time and space.

@ The main problem is making sure the frontiers meet.

@ This is often used with
> a breadth-first method (e.g., least-cost-first search) that builds
a set of states that can lead to the goal quickly.
» in the other direction, another method (typically depth-first)
can be used to find a path to these interesting states.
» How much is stored in the breadth-first method, can be tuned
depending on the space available.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 19/11



Island Driven Search

@ |dea: find a set of islands between s and g.
S—ip—h— ... —ipn1—&

There are m smaller problems rather than 1 big problem.
@ This can win as mb*/™ < bk,
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Island Driven Search

@ |dea: find a set of islands between s and g.
S—ip—h— ... —ipn1—&

There are m smaller problems rather than 1 big problem.
@ This can win as mb*/™ < bk,

@ The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

@ Requires more knowledge than just the graph and a heuristic
function.
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Island Driven Search

@ |dea: find a set of islands between s and g.
S—ip—h— ... —ipn1—&

There are m smaller problems rather than 1 big problem.
@ This can win as mb*/™ < bk,

@ The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

@ Requires more knowledge than just the graph and a heuristic
function.

@ The subproblems can be solved using islands = hierarchy of
abstractions.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 20/11



Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual
distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

_ [0 if is_goal(n),
dist(n) = { min(, mea(|(n, my| + dist(m)) otherwise.

using least-cost-first search in the reverse graph.
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Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual
distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

_ [0 if is_goal(n),
dist(n) = { min(, mea(|(n, my| + dist(m)) otherwise.

using least-cost-first search in the reverse graph.
@ This can be used locally to determine what to do from any
state.
o Why not use A*?

@ There are two main problems:

P It requires enough space to store the graph.
» The dist function needs to be recomputed for each goal.
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