
Announcements

Solution to Assignment 1 is posted

Assignment 2 is available

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 1 / 11

Review: Searching

A frontier is a set of paths

Generic search algorithm: Repeatedly:
I select a path from the frontier
I stop of it is a path to a goal
I otherwise expand it in all ways, and add the resulting paths to

the frontier

Frontier is a stack −→ depth-firt search

Frontier is a queue −→ breadth-firt search

Frontier is a priority queue ordered by path cost −→
least-cost-first search

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 2 / 11

AIspace examples

Vancouver neighbourhood graph

Misleading heuristic demo

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 3 / 11

How do good heuristics help?

Suppose c is the cost of an optimal solution. What happens to a
path p from start, where

cost(p) + h(p) < c

It will be expanded

cost(p) + h(p) > c
It will not be expanded

cost(p) + h(p) = c
It might or might not be expanded.

How can a better heuristic function help?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 4 / 11

How do good heuristics help?

Suppose c is the cost of an optimal solution. What happens to a
path p from start, where

cost(p) + h(p) < c
It will be expanded

cost(p) + h(p) > c

It will not be expanded

cost(p) + h(p) = c
It might or might not be expanded.

How can a better heuristic function help?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 4 / 11

How do good heuristics help?

Suppose c is the cost of an optimal solution. What happens to a
path p from start, where

cost(p) + h(p) < c
It will be expanded

cost(p) + h(p) > c
It will not be expanded

cost(p) + h(p) = c

It might or might not be expanded.

How can a better heuristic function help?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 4 / 11

How do good heuristics help?

Suppose c is the cost of an optimal solution. What happens to a
path p from start, where

cost(p) + h(p) < c
It will be expanded

cost(p) + h(p) > c
It will not be expanded

cost(p) + h(p) = c
It might or might not be expanded.

How can a better heuristic function help?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 4 / 11

How do good heuristics help?

Suppose c is the cost of an optimal solution. What happens to a
path p from start, where

cost(p) + h(p) < c
It will be expanded

cost(p) + h(p) > c
It will not be expanded

cost(p) + h(p) = c
It might or might not be expanded.

How can a better heuristic function help?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 4 / 11

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added

No No Linear

Breadth-first First node added

Yes No Exp

Lowest-cost-first Minimal cost(p)

Yes No Exp

Best-first Minimal h(p)

No No Exp

A∗ Minimal f (p)

Yes No Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 5 / 11

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes No Exp
Lowest-cost-first Minimal cost(p) Yes No Exp
Best-first Minimal h(p)

No No Exp

A∗ Minimal f (p)

Yes No Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 5 / 11

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes No Exp
Lowest-cost-first Minimal cost(p) Yes No Exp
Best-first Minimal h(p) No

No Exp

A∗ Minimal f (p)

Yes No Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 5 / 11

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes No Exp
Lowest-cost-first Minimal cost(p) Yes No Exp
Best-first Minimal h(p) No

No Exp

A∗ Minimal f (p) Yes

No Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 5 / 11

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes No Exp
Lowest-cost-first Minimal cost(p) Yes No Exp
Best-first Minimal h(p) No No

Exp

A∗ Minimal f (p) Yes

No Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 5 / 11

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes No Exp
Lowest-cost-first Minimal cost(p) Yes No Exp
Best-first Minimal h(p) No No

Exp

A∗ Minimal f (p) Yes No

Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 5 / 11

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes No Exp
Lowest-cost-first Minimal cost(p) Yes No Exp
Best-first Minimal h(p) No No Exp
A∗ Minimal f (p) Yes No

Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 5 / 11

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes No Exp
Lowest-cost-first Minimal cost(p) Yes No Exp
Best-first Minimal h(p) No No Exp
A∗ Minimal f (p) Yes No Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 5 / 11

Cycle Pruning

s

In depth-first search, checking for cycles can be done in

constant

time in path length.

For other methods, checking for cycles can be done in

linear

time in path length.

With cycle pruning, which algorithms halt on finite graphs?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 6 / 11

Cycle Pruning

s

In depth-first search, checking for cycles can be done in
constant time in path length.

For other methods, checking for cycles can be done in

linear

time in path length.

With cycle pruning, which algorithms halt on finite graphs?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 6 / 11

Cycle Pruning

s

In depth-first search, checking for cycles can be done in
constant time in path length.

For other methods, checking for cycles can be done in

linear

time in path length.

With cycle pruning, which algorithms halt on finite graphs?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 6 / 11

Cycle Pruning

s

In depth-first search, checking for cycles can be done in
constant time in path length.

For other methods, checking for cycles can be done in linear
time in path length.

With cycle pruning, which algorithms halt on finite graphs?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 6 / 11

Cycle Pruning

s

In depth-first search, checking for cycles can be done in
constant time in path length.

For other methods, checking for cycles can be done in linear
time in path length.

With cycle pruning, which algorithms halt on finite graphs?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 6 / 11

Multiple-Path Pruning

s

Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

What needs to be stored?

Lowest-cost-first search with multiple-path pruning is
Dijkstra’s algorithm.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 7 / 11

Multiple-Path Pruning

s

Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

What needs to be stored?

Lowest-cost-first search with multiple-path pruning is
Dijkstra’s algorithm.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 7 / 11

Multiple-Path Pruning

s

Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

What needs to be stored?

Lowest-cost-first search with multiple-path pruning is
Dijkstra’s algorithm.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 7 / 11

Graph searching with multiple-path pruning

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node}
expanded := {}
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier
if nk 6∈ expanded :

add nk to expanded
if goal(nk):

return 〈n0, . . . , nk〉
Frontier := Frontier ∪ {〈n0, . . . , nk , n〉 : 〈nk , n〉 ∈ A}

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 8 / 11

Multiple-Path Pruning

How does multiple-path pruning compare to cycle pruning?

Which search algorithms with multiple-path pruning always
halt on finite graphs?

What is the time overhead of multiple-path pruning?

What is the space overhead of multiple-path pruning?

Is it better for depth-first or breadth-first searches?

Can multiple-path pruning prevent an optimal solution being
found?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 9 / 11

Multiple-Path Pruning

How does multiple-path pruning compare to cycle pruning?

Which search algorithms with multiple-path pruning always
halt on finite graphs?

What is the time overhead of multiple-path pruning?

What is the space overhead of multiple-path pruning?

Is it better for depth-first or breadth-first searches?

Can multiple-path pruning prevent an optimal solution being
found?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 9 / 11

Multiple-Path Pruning

How does multiple-path pruning compare to cycle pruning?

Which search algorithms with multiple-path pruning always
halt on finite graphs?

What is the time overhead of multiple-path pruning?

What is the space overhead of multiple-path pruning?

Is it better for depth-first or breadth-first searches?

Can multiple-path pruning prevent an optimal solution being
found?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 9 / 11

Multiple-Path Pruning

How does multiple-path pruning compare to cycle pruning?

Which search algorithms with multiple-path pruning always
halt on finite graphs?

What is the time overhead of multiple-path pruning?

What is the space overhead of multiple-path pruning?

Is it better for depth-first or breadth-first searches?

Can multiple-path pruning prevent an optimal solution being
found?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 9 / 11

Multiple-Path Pruning

How does multiple-path pruning compare to cycle pruning?

Which search algorithms with multiple-path pruning always
halt on finite graphs?

What is the time overhead of multiple-path pruning?

What is the space overhead of multiple-path pruning?

Is it better for depth-first or breadth-first searches?

Can multiple-path pruning prevent an optimal solution being
found?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 9 / 11

Multiple-Path Pruning

How does multiple-path pruning compare to cycle pruning?

Which search algorithms with multiple-path pruning always
halt on finite graphs?

What is the time overhead of multiple-path pruning?

What is the space overhead of multiple-path pruning?

Is it better for depth-first or breadth-first searches?

Can multiple-path pruning prevent an optimal solution being
found?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 9 / 11

Summary of Search Strategies

Strategy Frontier Complete Halts Space

Depth-first w/o CP Last added

No No Linear

Depth-first w CP Last added

No Yes Linear

Depth-first w MPP Last added

No Yes Exp
Breadth-first w/o MPP First added

Yes No Exp

Breadth-first w MPP First added

Yes Yes Exp

Best-first w/o MPP Min h(p)

No No Exp

Best-first w MPP Min h(p)

No Yes Exp

A∗ w/o MPP Min f (p)

Yes No Exp

A∗ w MPP Min f (p)

Yes Yes Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path
Assume graph satisfies the assumptions of A∗ proof + montonicity

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 10 / 11

Summary of Search Strategies

Strategy Frontier Complete Halts Space

Depth-first w/o CP Last added No No Linear
Depth-first w CP Last added No Yes Linear
Depth-first w MPP Last added No Yes Exp

Breadth-first w/o MPP First added Yes No Exp
Breadth-first w MPP First added Yes Yes Exp
Best-first w/o MPP Min h(p)

No No Exp

Best-first w MPP Min h(p)

No Yes Exp

A∗ w/o MPP Min f (p)

Yes No Exp

A∗ w MPP Min f (p)

Yes Yes Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path
Assume graph satisfies the assumptions of A∗ proof + montonicity

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 10 / 11

Summary of Search Strategies

Strategy Frontier Complete Halts Space

Depth-first w/o CP Last added No No Linear
Depth-first w CP Last added No Yes Linear
Depth-first w MPP Last added No Yes Exp
Breadth-first w/o MPP First added Yes No Exp
Breadth-first w MPP First added Yes Yes Exp

Best-first w/o MPP Min h(p) No

No Exp

Best-first w MPP Min h(p) No

Yes Exp

A∗ w/o MPP Min f (p)

Yes No Exp

A∗ w MPP Min f (p)

Yes Yes Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path
Assume graph satisfies the assumptions of A∗ proof + montonicity

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 10 / 11

Summary of Search Strategies

Strategy Frontier Complete Halts Space

Depth-first w/o CP Last added No No Linear
Depth-first w CP Last added No Yes Linear
Depth-first w MPP Last added No Yes Exp
Breadth-first w/o MPP First added Yes No Exp
Breadth-first w MPP First added Yes Yes Exp
Best-first w/o MPP Min h(p) No

No Exp

Best-first w MPP Min h(p) No

Yes Exp

A∗ w/o MPP Min f (p) Yes

No Exp

A∗ w MPP Min f (p) Yes

Yes Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path
Assume graph satisfies the assumptions of A∗ proof + montonicity

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 10 / 11

Summary of Search Strategies

Strategy Frontier Complete Halts Space

Depth-first w/o CP Last added No No Linear
Depth-first w CP Last added No Yes Linear
Depth-first w MPP Last added No Yes Exp
Breadth-first w/o MPP First added Yes No Exp
Breadth-first w MPP First added Yes Yes Exp
Best-first w/o MPP Min h(p) No No Exp
Best-first w MPP Min h(p) No Yes Exp
A∗ w/o MPP Min f (p) Yes No Exp
A∗ w MPP Min f (p) Yes Yes Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path
Assume graph satisfies the assumptions of A∗ proof + montonicity

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 10 / 11

Clicker Question

Which of the following is false:

A All of the search methods based on the generic
search algorithm (without cycle pruning and MPP)
can go into an infinite loop on finite graphs

B Heuristics in spatial domains have to be straight-line
distances

C Arc costs must be non-negative to make sure
least-cost-search finds least-cost solutions first

D Complete search algorithms find a solution if one
exists even in infinite graphs.

E A∗ uses the cost of the path to a node as well as
heuristic information about the node.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 11 / 11

Clicker Question

“A∗ is admissible” means:

A The first solution returned is a least-cost solution

B It always halts on finite graphs

C It can get stuck in cycles

D Multiple-path pruning is not used

E Multiple-path pruning is used

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 12 / 11

Clicker Question

Which of the following assumptions was not made in the result
that A∗ is admissible:

A Arc costs are bounded above 0

B Branching factor is finite

C h(n) is an underestimate of the cost of the shortest
path from n to a goal

D The costs around a cycle must sum to zero

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 13 / 11

Clicker Question

The monotone restriction:

A restricts the possible graphs that can be searched

B restricts the possible heuristics that can be used

C restricts which goals can be searched for

D implies that spatial domains must use the
straight-line (Euclidean or Manhattan) distance

E means poor singers won’t get recording contracts

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 14 / 11

Clicker Question

Which of the following is true:

A Multiple-path pruning increases the space used by
breadth-first search from linear to exponential

B Multiple-path pruning increases the space used by A∗

search from linear to exponential

C Multiple-path pruning increases the space used by
depth-first search from linear to exponential

D Multiple-path pruning doesn’t increase the space
used of any of these methods.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 15 / 11

Clicker Question

With a heuristic that does not satisfy the monotone restriction,
how might A∗ search with multiple-path pruning not be
admissible?

A it might not expand a path on frontier with lowest f -value

B it might not return a lowest-cost path

C it is always admissible, even without the monotone restriction

D it only considers the heuristic value and not both path cost
and heuristic cost

E it might use space exponential in the path length instead of
linear

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 16 / 11

Clicker Question

With of the following is false:

A With multiple-path pruning, we don’t need cycle
pruning

B With multiple path pruning all search algorithms halt
on finite graphs

C All algorithms have exponential space with
multiple-path pruning

D Cycle pruning without multiple-path pruning makes
A∗ no longer admissible

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 17 / 11

Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

Note: when graph is dynamically constructed, the backwards
graph may not be available. One might be more difficult to
compute than the other.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 18 / 11

Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

Note: when graph is dynamically constructed, the backwards
graph may not be available. One might be more difficult to
compute than the other.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 18 / 11

Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

Note: when graph is dynamically constructed, the backwards
graph may not be available. One might be more difficult to
compute than the other.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 18 / 11

Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

Note: when graph is dynamically constructed, the backwards
graph may not be available. One might be more difficult to
compute than the other.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 18 / 11

Bidirectional Search

Idea: search backward from the goal and forward from the
start simultaneously.

This wins as 2bk/2 � bk .
This can result in an exponential saving in time and space.

The main problem is making sure the frontiers meet.

This is often used with
I a breadth-first method (e.g., least-cost-first search) that builds

a set of states that can lead to the goal quickly.
I in the other direction, another method (typically depth-first)

can be used to find a path to these interesting states.
I How much is stored in the breadth-first method, can be tuned

depending on the space available.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 19 / 11

Bidirectional Search

Idea: search backward from the goal and forward from the
start simultaneously.

This wins as 2bk/2 � bk .
This can result in an exponential saving in time and space.

The main problem is making sure the frontiers meet.

This is often used with
I a breadth-first method (e.g., least-cost-first search) that builds

a set of states that can lead to the goal quickly.
I in the other direction, another method (typically depth-first)

can be used to find a path to these interesting states.
I How much is stored in the breadth-first method, can be tuned

depending on the space available.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 19 / 11

Bidirectional Search

Idea: search backward from the goal and forward from the
start simultaneously.

This wins as 2bk/2 � bk .
This can result in an exponential saving in time and space.

The main problem is making sure the frontiers meet.

This is often used with
I a breadth-first method (e.g., least-cost-first search) that builds

a set of states that can lead to the goal quickly.
I in the other direction, another method (typically depth-first)

can be used to find a path to these interesting states.
I How much is stored in the breadth-first method, can be tuned

depending on the space available.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 19 / 11

Bidirectional Search

Idea: search backward from the goal and forward from the
start simultaneously.

This wins as 2bk/2 � bk .
This can result in an exponential saving in time and space.

The main problem is making sure the frontiers meet.

This is often used with
I a breadth-first method (e.g., least-cost-first search) that builds

a set of states that can lead to the goal quickly.
I in the other direction, another method (typically depth-first)

can be used to find a path to these interesting states.

I How much is stored in the breadth-first method, can be tuned
depending on the space available.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 19 / 11

Bidirectional Search

Idea: search backward from the goal and forward from the
start simultaneously.

This wins as 2bk/2 � bk .
This can result in an exponential saving in time and space.

The main problem is making sure the frontiers meet.

This is often used with
I a breadth-first method (e.g., least-cost-first search) that builds

a set of states that can lead to the goal quickly.
I in the other direction, another method (typically depth-first)

can be used to find a path to these interesting states.
I How much is stored in the breadth-first method, can be tuned

depending on the space available.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 19 / 11

Island Driven Search

Idea: find a set of islands between s and g .

s −→ i1 −→ i2 −→ . . . −→ im−1 −→ g

There are m smaller problems rather than 1 big problem.

This can win as mbk/m � bk .

The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

Requires more knowledge than just the graph and a heuristic
function.

The subproblems can be solved using islands =⇒ hierarchy of
abstractions.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 20 / 11

Island Driven Search

Idea: find a set of islands between s and g .

s −→ i1 −→ i2 −→ . . . −→ im−1 −→ g

There are m smaller problems rather than 1 big problem.

This can win as mbk/m � bk .

The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

Requires more knowledge than just the graph and a heuristic
function.

The subproblems can be solved using islands =⇒ hierarchy of
abstractions.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 20 / 11

Island Driven Search

Idea: find a set of islands between s and g .

s −→ i1 −→ i2 −→ . . . −→ im−1 −→ g

There are m smaller problems rather than 1 big problem.

This can win as mbk/m � bk .

The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

Requires more knowledge than just the graph and a heuristic
function.

The subproblems can be solved using islands =⇒ hierarchy of
abstractions.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 20 / 11

Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual
distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

dist(n) =

{
0 if is goal(n),
min〈n,m〉∈A(|〈n,m〉|+ dist(m)) otherwise.

using least-cost-first search in the reverse graph.

This can be used locally to determine what to do from any
state.

Why not use A∗?

There are two main problems:
I It requires enough space to store the graph.
I The dist function needs to be recomputed for each goal.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 21 / 11

Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual
distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

dist(n) =

{
0 if is goal(n),
min〈n,m〉∈A(|〈n,m〉|+ dist(m)) otherwise.

using least-cost-first search in the reverse graph.

This can be used locally to determine what to do from any
state.

Why not use A∗?

There are two main problems:
I It requires enough space to store the graph.
I The dist function needs to be recomputed for each goal.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 21 / 11

Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual
distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

dist(n) =

{
0 if is goal(n),
min〈n,m〉∈A(|〈n,m〉|+ dist(m)) otherwise.

using least-cost-first search in the reverse graph.

This can be used locally to determine what to do from any
state.

Why not use A∗?

There are two main problems:
I It requires enough space to store the graph.
I The dist function needs to be recomputed for each goal.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 21 / 11

Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual
distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

dist(n) =

{
0 if is goal(n),
min〈n,m〉∈A(|〈n,m〉|+ dist(m)) otherwise.

using least-cost-first search in the reverse graph.

This can be used locally to determine what to do from any
state.

Why not use A∗?

There are two main problems:

I It requires enough space to store the graph.
I The dist function needs to be recomputed for each goal.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 21 / 11

Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual
distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

dist(n) =

{
0 if is goal(n),
min〈n,m〉∈A(|〈n,m〉|+ dist(m)) otherwise.

using least-cost-first search in the reverse graph.

This can be used locally to determine what to do from any
state.

Why not use A∗?

There are two main problems:
I It requires enough space to store the graph.
I The dist function needs to be recomputed for each goal.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 21 / 11

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 4 22 / 11

