Announcements

@ Assignment 0 on Canvas. Please add (at top)

P> ‘“presented” if you present it in class
P> “posted first” if you posted your application first.

@ Assignment 1 available (see schedule).

@ If you are on waiting list you need to do assignments
(no guarantees).

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 1/22

e Al Applications (assignment 0)

@ Graph searching as an abstraction of problems

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 2/22

What is the application?

What does the applications do?

Give a goal, prior knowledge, past experiences, stimuli,
actions.

What Al technology does it us?
Why is it intelligent?

How well does it perform?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 3/22

o Often we are not given an algorithm to solve a problem, but
only a specification of what is a solution — we have to search
for a solution.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 4/22

o Often we are not given an algorithm to solve a problem, but
only a specification of what is a solution — we have to search
for a solution.

@ A typical problem is when the agent knows its current state, it
has a set of deterministic actions it can carry out, and wants
to get to a goal state.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 4/22

o Often we are not given an algorithm to solve a problem, but
only a specification of what is a solution — we have to search
for a solution.

@ A typical problem is when the agent knows its current state, it
has a set of deterministic actions it can carry out, and wants
to get to a goal state.

@ Many Al problems can be abstracted into the problem of
finding a path in a directed graph.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 4/22

o Often we are not given an algorithm to solve a problem, but
only a specification of what is a solution — we have to search
for a solution.

@ A typical problem is when the agent knows its current state, it
has a set of deterministic actions it can carry out, and wants
to get to a goal state.

@ Many Al problems can be abstracted into the problem of
finding a path in a directed graph.

@ Often there is more than one way to represent a problem as a
graph.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 4/22

State-space Problem

A state-space problem consists of

a set of states (perhaps infinite)
@ a start state

@ a set of actions

°

an action function: given a state and an action, returns a new
state

@ a way to recognize goal states, specified as function, goal(s)
that is true if s is a goal state

@ a criterion that specifies the quality of an acceptable solution.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 5/22

Directed Graphs

@ A (directed) graph consists of a set N of nodes and a set A of
ordered pairs of nodes, called arcs.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 6/22

Directed Graphs

@ A (directed) graph consists of a set N of nodes and a set A of
ordered pairs of nodes, called arcs.

@ Node ny is a neighbor of ny if there is an arc from n; to ny.
That is, if (n1, n) € A.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 6/22

Directed Graphs

@ A (directed) graph consists of a set N of nodes and a set A of
ordered pairs of nodes, called arcs.

@ Node ny is a neighbor of ny if there is an arc from n; to ny.
That is, if (n1, n) € A.

@ A path is a sequence of nodes (ng, n1, ..., ng) such that
<n,-,1, n,-> € A

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 6/22

Directed Graphs

@ A (directed) graph consists of a set N of nodes and a set A of
ordered pairs of nodes, called arcs.

@ Node ny is a neighbor of ny if there is an arc from n; to ny.
That is, if (n1, n) € A.

@ A path is a sequence of nodes (ng, n1, ..., ng) such that
<n,-,1, n,-> € A

@ Given start nodes and goal nodes, a solution is a path from a
start node to a goal node.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 6/22

Directed Graphs

@ A (directed) graph consists of a set N of nodes and a set A of
ordered pairs of nodes, called arcs.

@ Node ny is a neighbor of ny if there is an arc from n; to ny.
That is, if (n1, n) € A.

@ A path is a sequence of nodes (ng, n1, ..., ng) such that
<n,-,1, n,-> € A

@ Given start nodes and goal nodes, a solution is a path from a
start node to a goal node.

@ When there is a cost associated with arcs, the cost of a path
is the sum of the costs of the arcs in the path:

cost({ng, n1, ..., Nk Zcost ni—1, n;))

An optimal solution is one Wlth minimum cost.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 6/22

What is a state (clicker)?

(©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 7/22

What is a state (clicker)?

A state needs to include enough information to

@ determine what is the next state

(©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 7/22

What is a state (clicker)?

A state needs to include enough information to
@ determine what is the next state

@ determine whether the goal is achieved

(©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 7/22

What is a state (clicker)?

A state needs to include enough information to
@ determine what is the next state
@ determine whether the goal is achieved

@ determine the cost.

(©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 7/22

What is a state (clicker)?

A state needs to include enough information to
@ determine what is the next state
@ determine whether the goal is achieved
@ determine the cost.

Often there are many options for what to include in the state.
Keep the states as simple as possible but no simpler.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 7/22

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of

room 123.
131 | 129 | 127 | r125 | r123 | r121 | r119
storage
0131 0129 5127 0125 o123 o121 o119
d1 a2 > otz |/ M7
c2
d3 c3 o115 |/r115
at b1 b2
0113 | \r113
a2 a3 b3 b4
mail ts 0101 0103 0105 0107 0109 o111
main -
office [~ Stair's = 101 | 103 | 105 | r107 | r109 | ri11

©D.L. Poole and A.K. Mackworth 2010-2020

CPSC 322 — Lecture 2

8/22

State-Space Graph for the Delivery Robot

(acyclic_delivery_problem)

(GEED)
A
4
R GRS :

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2

Robot Cleaner

@ 2 rooms, one cleaning robot
@ rooms can be clean or dirty

@ robot actions:
suck: makes the room that the robot is in clean
move: move to other room

@ Goal: have both rooms clean

(©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 10 /22

Robot Cleaner

2 rooms, one cleaning robot
@ rooms can be clean or dirty

@ robot actions:
suck: makes the room that the robot is in clean
move: move to other room

@ Goal: have both rooms clean

@ How many states are there? What are they?

(©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 10 /22

Graph Search Algorithm

Input: a graph

a start node s

Boolean procedure goal(n) that tests if nis a goal node
frontier := {(s)}
while frontier is not empty:

select and remove path (no, ..., ng) from frontier
if goal(ny)
return (ng, ..., ng)
Frontier := Frontier U {(ng, ..., nk,n) : (ng, ny € A}
end while

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 11/22

Graph Search Algorithm

@ Which value is selected from the frontier at each stage defines
the search strategy.

@ The neighbors define the graph.
@ goal defines what is a solution.

@ If more than one answer is required, the search can continue
from the return.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 12 /22

Depth-first Search

@ Depth-first search treats the frontier as a stack. (First-in
last-out)

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 13/22

Depth-first Search

@ Depth-first search treats the frontier as a stack. (First-in
last-out)

@ It always selects one of the last elements added to the frontier.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 13 /22

lllustrative Graph — Depth-first Search

R%

@AOROR

@ OROO

Which shaded goal will depth-first search find first?

/O\

R A O\ N
s

OROO

O

Complexity of Depth-first Search

@ Does depth-first search guarantee to find the path with fewest
arcs?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 16 /22

Complexity of Depth-first Search

@ Does depth-first search guarantee to find the path with fewest
arcs?

@ What happens on infinite graphs or on graphs with cycles if
there is a solution?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 16 /22

Complexity of Depth-first Search

@ Does depth-first search guarantee to find the path with fewest
arcs?

@ What happens on infinite graphs or on graphs with cycles if
there is a solution?

@ What is the time complexity as a function of length of the
path selected?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 16 /22

Complexity of Depth-first Search

@ Does depth-first search guarantee to find the path with fewest
arcs?

@ What happens on infinite graphs or on graphs with cycles if
there is a solution?

@ What is the time complexity as a function of length of the
path selected?

@ What is the space complexity as a function of length of the
path selected?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 16 /22

Complexity of Depth-first Search

@ Does depth-first search guarantee to find the path with fewest
arcs?

@ What happens on infinite graphs or on graphs with cycles if
there is a solution?

@ What is the time complexity as a function of length of the
path selected?

@ What is the space complexity as a function of length of the
path selected?

@ How does the goal affect the search?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 16 /22

Breadth-first Search

@ Breadth-first search treats the frontier as a queue (first-in,
first-out).

@ It always selects one of the earliest elements added to the
frontier.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 17 /22

lllustrative Graph — Breadth-first Search

®
/ \
/@\ /@\

@.i@o.bb oaab @oib

5 O Jollefe
OOOO o@ o bQ

Which shaded goal will breadth-first search find first?

/O\

R A O\ N
s

OROO

O

Complexity of Breadth-first Search

@ Does breadth-first search guarantee to find the path with
fewest arcs?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 20/22

Complexity of Breadth-first Search

@ Does breadth-first search guarantee to find the path with
fewest arcs?

@ What happens on infinite graphs or on graphs with cycles if
there is a solution?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 20/22

Complexity of Breadth-first Search

@ Does breadth-first search guarantee to find the path with
fewest arcs?

@ What happens on infinite graphs or on graphs with cycles if
there is a solution?

@ What is the time complexity as a function of the length of the
path selected?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 20/22

Complexity of Breadth-first Search

@ Does breadth-first search guarantee to find the path with
fewest arcs?

@ What happens on infinite graphs or on graphs with cycles if
there is a solution?

@ What is the time complexity as a function of the length of the
path selected?

@ What is the space complexity as a function of the length of
the path selected?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 20/22

Complexity of Breadth-first Search

Does breadth-first search guarantee to find the path with
fewest arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

@ What is the time complexity as a function of the length of the
path selected?

What is the space complexity as a function of the length of
the path selected?

How does the goal affect the search?

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 20/22

Lowest-cost-first Search

@ Sometimes there are costs associated with arcs. The cost of a
path is the sum of the costs of its arcs.

k
cost({(ng,...,nk)) = Z cost({ni_1, n;))
i=1

An optimal solution is one with minimum cost.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 21/22

Lowest-cost-first Search

@ Sometimes there are costs associated with arcs. The cost of a
path is the sum of the costs of its arcs.

k
cost({(ng,...,nk)) = Z cost({ni_1, n;))
i=1

An optimal solution is one with minimum cost.

@ At each stage, lowest-cost-first search selects a path on the
frontier with lowest cost.

@ The frontier is a priority queue ordered by path cost.

@ The first path to a goal is

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 21/22

Lowest-cost-first Search

@ Sometimes there are costs associated with arcs. The cost of a
path is the sum of the costs of its arcs.

k
cost({(ng,...,nk)) = Z cost({ni_1, n;))
i=1

An optimal solution is one with minimum cost.

@ At each stage, lowest-cost-first search selects a path on the
frontier with lowest cost.

@ The frontier is a priority queue ordered by path cost.
@ The first path to a goal is a least-cost path to a goal node.

@ When arc costs are equal —

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 21/22

Lowest-cost-first Search

@ Sometimes there are costs associated with arcs. The cost of a
path is the sum of the costs of its arcs.

k
cost({(ng,...,nk)) = Z cost({ni_1, n;))
i=1

An optimal solution is one with minimum cost.

@ At each stage, lowest-cost-first search selects a path on the
frontier with lowest cost.

@ The frontier is a priority queue ordered by path cost.
@ The first path to a goal is a least-cost path to a goal node.

@ When arc costs are equal =>breadth-first search.

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 21/22

Summary of Search Strategies

Strategy Frontier Selection | Complete | Halts | Space
Depth-first Last node added
Breadth-first First node added
Lowest-cost-first | Minimal cost(p)

Complete — guaranteed to find a solution if there is one (for
graphs with finite number of neighbours, even on infinite graphs)
Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current path

(©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 22/22

Summary of Search Strategies

Strategy Frontier Selection | Complete | Halts | Space
Depth-first Last node added | No No Linear
Breadth-first First node added | Yes No Exp
Lowest-cost-first | Minimal cost(p) | Yes No Exp

Complete — guaranteed to find a solution if there is one (for
graphs with finite number of neighbours, even on infinite graphs)
Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current path

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 22/22

