
Announcements

Assignment 0 on Canvas. Please add (at top)
I “presented” if you present it in class
I “posted first” if you posted your application first.

Assignment 1 available (see schedule).

If you are on waiting list you need to do assignments
(no guarantees).
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Today

AI Applications (assignment 0)

Graph searching as an abstraction of problems
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Assignment 0

What is the application?

What does the applications do?

Give a goal, prior knowledge, past experiences, stimuli,
actions.

What AI technology does it us?

Why is it intelligent?

How well does it perform?
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Searching

Often we are not given an algorithm to solve a problem, but
only a specification of what is a solution — we have to search
for a solution.

A typical problem is when the agent knows its current state, it
has a set of deterministic actions it can carry out, and wants
to get to a goal state.

Many AI problems can be abstracted into the problem of
finding a path in a directed graph.

Often there is more than one way to represent a problem as a
graph.
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State-space Problem

A state-space problem consists of

a set of states (perhaps infinite)

a start state

a set of actions

an action function: given a state and an action, returns a new
state

a way to recognize goal states, specified as function, goal(s)
that is true if s is a goal state

a criterion that specifies the quality of an acceptable solution.
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Directed Graphs

A (directed) graph consists of a set N of nodes and a set A of
ordered pairs of nodes, called arcs.

Node n2 is a neighbor of n1 if there is an arc from n1 to n2.
That is, if 〈n1, n2〉 ∈ A.

A path is a sequence of nodes 〈n0, n1, . . . , nk〉 such that
〈ni−1, ni 〉 ∈ A.

Given start nodes and goal nodes, a solution is a path from a
start node to a goal node.

When there is a cost associated with arcs, the cost of a path
is the sum of the costs of the arcs in the path:

cost(〈n0, n1, . . . , nk〉) =
k∑

i=1

cost(〈ni−1, ni 〉)

An optimal solution is one with minimum cost.
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What is a state (clicker)?

A state needs to include enough information to

determine what is the next state

determine whether the goal is achieved

determine the cost.

Often there are many options for what to include in the state.
Keep the states as simple as possible but no simpler.
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Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.
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State-Space Graph for the Delivery Robot
(acyclic delivery problem)
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Robot Cleaner

2 rooms, one cleaning robot

rooms can be clean or dirty

robot actions:
suck: makes the room that the robot is in clean
move: move to other room

Goal: have both rooms clean

How many states are there? What are they?
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Graph Search Algorithm

Input: a graph
a start node s
Boolean procedure goal(n) that tests if n is a goal node

frontier := {〈s〉}
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier
if goal(nk)
return 〈n0, . . . , nk〉

Frontier := Frontier ∪ {〈n0, . . . , nk , n〉 : 〈nk , n〉 ∈ A}
end while
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Graph Search Algorithm

Which value is selected from the frontier at each stage defines
the search strategy.

The neighbors define the graph.

goal defines what is a solution.

If more than one answer is required, the search can continue
from the return.
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Depth-first Search

Depth-first search treats the frontier as a stack. (First-in
last-out)

It always selects one of the last elements added to the frontier.
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Illustrative Graph — Depth-first Search
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Which shaded goal will depth-first search find first?

C A

D B

E
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Complexity of Depth-first Search

Does depth-first search guarantee to find the path with fewest
arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of length of the
path selected?

What is the space complexity as a function of length of the
path selected?

How does the goal affect the search?
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Breadth-first Search

Breadth-first search treats the frontier as a queue (first-in,
first-out).

It always selects one of the earliest elements added to the
frontier.
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Illustrative Graph — Breadth-first Search
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Which shaded goal will breadth-first search find first?

C A

D B

E

©D.L. Poole and A.K. Mackworth 2010-2020 CPSC 322 — Lecture 2 19 / 22



Complexity of Breadth-first Search

Does breadth-first search guarantee to find the path with
fewest arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of the length of the
path selected?

What is the space complexity as a function of the length of
the path selected?

How does the goal affect the search?
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Lowest-cost-first Search

Sometimes there are costs associated with arcs. The cost of a
path is the sum of the costs of its arcs.

cost(〈n0, . . . , nk〉) =
k∑

i=1

cost(〈ni−1, ni 〉)

An optimal solution is one with minimum cost.

At each stage, lowest-cost-first search selects a path on the
frontier with lowest cost.

The frontier is a priority queue ordered by path cost.

The first path to a goal is a least-cost path to a goal node.

When arc costs are equal =⇒breadth-first search.
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Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added

No No Linear

Breadth-first First node added

Yes No Exp

Lowest-cost-first Minimal cost(p)

Yes No Exp

Complete — guaranteed to find a solution if there is one (for
graphs with finite number of neighbours, even on infinite graphs)
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path
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