
Announcements

Last Class! Exam next Friday!

“Consequently he who wishes to attain to human perfection, must
therefore first study Logic, next the various branches of
Mathematics in their proper order, then Physics, and lastly
Metaphysics.”

Maimonides 1135–1204

“Logic is the beginning of wisdom, not the end.”

Leonard Nimoy
“Star Trek VI: The Undiscovered Country” 1991

©D. Poole 2024 CPSC 312 — Lecture 34 1 / 10

Since Last midterm

difference lists, definite clause grammars, and natural
language interfaces to databases

computer algebra and calculus

Triples, knowledge graphs, URIs/IRIs, Ontologies

You should know what the following mean: RDF, IRI, rdf:type,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range

Complete knowledge assumption and negation as failure

Extra-logical predicates

Substitutions and Unification

Proofs and answers. Negation with variables.

Today:

Haskell in Prolog, Prolog in Haskell, Prolog in Prolog

©D. Poole 2024 CPSC 312 — Lecture 34 2 / 10

3 implementations of not-equals

Prolog has 3 different inequalities:

\== \= dif()

which give same answers for variable-free queries, or when
both sides are identical

a \== 3, a \= 3, dif(a,3)

all succceed.

a \== a, a \= a, dif(a,a)

all fail.

They give different answers when there is a free variable.
\== means “not identical”. a \== X succeeds
\= means “not unifiable”. a \= X fails
dif is less procedural and more logical

©D. Poole 2024 CPSC 312 — Lecture 34 3 / 10

Implementing dif

dif (X ,Y)
▶ all instances fail when X and Y are identical
▶ all instances succeed when X and Y do not unify
▶ otherwise some instance succeed and some fail

To implement dif (X ,Y) in the body of a clause:
▶ Select leftmost clause — unless it is a dif which cannot be

determined to fail or succeed (delay dif calls)
▶ Return the dif calls not resolved.

Consider the calls:

dif(X,4), X=7.

dif(X,4), X=4.

dif(X,4), dif(X,7).

©D. Poole 2024 CPSC 312 — Lecture 34 4 / 10

Example of dif

passed_two_courses(S) :-

dif(C1,C2),

passed(S, C1),

passed(S, C2).

passed(S,C) :-

grade(S,C,M),

M >= 50.

grade(sam,engl101,87).

grade(sam,phys191,89).

Other predicates, such as #<, work similarly.

use_module(library(clpfd)).

% https://www.swi-prolog.org/man/clpfd.html

X #< Y, Y #< Z, Z #< X.

Constraint programming systems provide more sophisticated
constraint solving. E.g., https://eclipseclp.org.

©D. Poole 2024 CPSC 312 — Lecture 34 5 / 10

https://eclipseclp.org

A functional language in Prolog (funlog .pl)

% fib1(N) returns the N’th Fibonacci number

fib1(0) === 1.

fib1(N) === fib2(N-1,1,1).

% fib2(N,F0,F1) returns the N’th Fibonacci number given

% the current one is F1 and the previous one was F0.

fib2(0,_,F) === F.

fib2(N,F0,F1) === fib2(N-1,F1,F0+F1) :- N>0.

©D. Poole 2024 CPSC 312 — Lecture 34 6 / 10

Logic Programming in Haskell

return list of all solutions. Lazy evaluation gives backtracking.

unify :: Term -> Term -> Substitution -> [Substitution]

prove :: Term -> Substitution -> [Substitution]

unify returns empty list or list containing one element.

Use Clark’s completion:

append(X,Y,Z) :- X=[], Y=Z

; X=[H|T], Z=[H|R], append(T,Y,R).

= becomes unify
; becomes ++
, means pass each substition to the next call (like “do” but
with a list of answers)

see Curry langauge https://curry.pages.ps.informatik.
uni-kiel.de/curry-lang.org/

©D. Poole 2024 CPSC 312 — Lecture 34 7 / 10

https://curry.pages.ps.informatik.uni-kiel.de/curry-lang.org/
https://curry.pages.ps.informatik.uni-kiel.de/curry-lang.org/

Logic Programming in Prolog (meta.pl)

Object level program uses <- and & for “if” and “and”.
Meta-level treats <- and & as function symbols. See meta.pl.
Variations:

bprove.pl depth-bounded prover

Delaying prover collects assumptions (abduction).

[bprove].

[elect_a].

show(lit(l1)).

Declarative debugging (builds and then traverses a proof tree)

[trace2].

[elect_b].

show(lit(l1)).

©D. Poole 2024 CPSC 312 — Lecture 34 8 / 10

light

two-way
switch

switch
off

on

power
outlet

circuit breaker

outside power
cb1

s1

w1
s2 w2

w0

l1

w3
s3

w4

l2
p1

w5

cb2

w6

p2

©D. Poole 2024 CPSC 312 — Lecture 34 9 / 10

Functional and logic programming

Unifying ideas:

specify what not how

variables don’t change their values once assigned —
referential transparency

each function/clause can be tested and verified modularly.

high-level specification (e.g., British nationality act, Java
VM).

Haskell:

strong typing

higher-order functions allow us to create our own abstractions

lazy computation

Prolog:

unification allows for powerful pattern matching

non-determinism through search

extends relational databases

Declarative programming helps no matter what language you use!
©D. Poole 2024 CPSC 312 — Lecture 34 10 / 10

