CPSC 312 — Functional and Logic Programming

@ Midterm #3 next week — more details posted on web site
(yes, it's like the last two)

“Contrariwise,’ continued Tweedledee, 'if it was so, it might be;
and if it were so, it would be; but as it isn't, it ain't. That's logic.”

Lewis Carroll, Through the Looking-Glass

©D. Poole 2024 CPSC 312 — Lecture 24 1/24

Since the midterm...

Done:

Syntax and semantics of propositional definite clauses
Model a simple domain using propositional definite clauses

Bottom-up proof procedure computes a consequence set using
modus ponens.

@ Top-down proof procedure answers a query using resolution.

@ The box model provides a way to procedurally understand the

top-down proof procedure with depth-first search.

Prolog Syntax: Predicate symbols, constants, variables,
function symbols.

Prolog Semantics: Interpretations, variable assignments,
models, logical consequence.

Functions applied to arguments refer to individuals.
Individuals are described using clauses.

(Prolog's function symbols are like Haskell constructors.)
Special syntax for lists; internally a binary function > [1]°.

©D. Poole 2024 CPSC 312 — Lecture 24 2/24

Trees (bstree.pl)

A binary search tree can be used as a representation for
dictionaries.
@ A binary search tree is either
> empty or
» bnode(Key, Val, TO, T1) where Key has value Val and TO is
the tree of keys less than Key and T1 is the tree of keys
greater than Key

o Define val(K, V, T) is true if key K has value V in tree T

e Define insert(K, V, T0, T1) true if T1 is the result of
inserting K = V into tree TO

©D. Poole 2024 CPSC 312 — Lecture 24 3/24

Trees (bstreec.pl)

@ In Prolog, when X < Y is called, both X and Y must be
ground (variable free) numbers

@ There are constraint solvers that let Prolog act more logically.
X #< Y specifies the constraint that X < Y.
o Eg, consider the query
val(K,V,bnode (2,22, bnode(1,57,empty,empty),
bnode (5,105, empty,empty))) .
@ < is much faster as it can be evaluated immediately.
@ #< requires more sophisticated reasoning.
7- val(X,V,bnode(2,22, bnode(1,57,empty,empty),
bnode (5,105, empty,empty))), V #< 99.
?7- V #< 99, val(K,V,bnode(2,22,
bnode(1,57,empty,empty),
bnode (5,105, empty,empty))) .

©D. Poole 2024 CPSC 312 — Lecture 24 4/24

Clicker Question

What is the answer to query

?- append([a,b,c],R,L), append([1,2,3],S,R).
There are no proofs

=, 2, 3Is],L=1I1, 2, 3, a, b, cl|s].
= [1, 2, 3I8], L =R.

=11, 2, 3Is], L=1[a, b, ¢, 1, 2, 3]|8].
=L, L=[a, b, ¢, 1, 2, 3]|8].

A
B
C
D
E

o ® X X

©D. Poole 2024 CPSC 312 — Lecture 24 5/24

Natural Language Understanding

@ We want to communicate with computers using natural
language (spoken and written).
» unstructured natural language — allow any statements, but
make mistakes or failure.
» controlled natural language — only allow unambiguous
statements with fixed vocabulary (e.g., in supermarkets or for
doctors).

@ There is a vast amount of information in natural language.

@ Understanding language to answer questions is more difficult
than extracting gestalt properties such as topic, or choosing a
web page.

©D. Poole 2024 CPSC 312 — Lecture 24 6/24

Syntax, Semantics, Pragmatics

@ Syntax describes the form of language (using a grammar).
@ Semantics provides the meaning of language.

@ Pragmatics explains the purpose or the use of language
(how utterances relate to the world).

Examples:
@ This lecture is about natural language.
@ The green frogs sleep soundly.
o Colorless green ideas sleep furiously.
o

Furiously sleep ideas green colorless.

©D. Poole 2024 CPSC 312 — Lecture 24 7/24

Parsing Language

@ A person with a big hairy cat drank the cold milk.
@ Who or what drank the milk?

/\
AN\

a person drank /rlp\
) he cold milk
with np

/J\\A

a big hairy cat

©D. Poole 2024 CPSC 312 — Lecture 24 8/24

Context-free grammar

@ A terminal symbol is a string representing a word (perhaps
including punctuation and composite words, such as “hot
dog” or "Buenos Aires").

@ A non-terminal symbol can be rewritten as a sequence of
terminal and non-terminal symbols, e.g.,

sentence — noun_phrase, verb_phrase
verb_phrase — verb, noun_phrase
verb — [" drank”]

@ Can be written as a logic program, where a sentence is a
sequence of words:

sentence(S) :- noun_phrase(N), verb_phrase(V'), append(N, V,S).
verb_phrase(P) :- verb(V), noun_phrase(N), append(V, N, P).
To say word “drank” is a verb:

verb([" drank”]).

©D. Poole 2024 CPSC 312 — Lecture 24 9/24

Difference Lists

@ Non-terminal symbol s becomes a predicate with two
arguments, s(Ty, T2), meaning:
» T, is an ending of the list Ty
» all of the words in Ty before T, form a sequence of words of
the category s.

o Lists T1 and T, together form a difference list.

@ “the student” is a noun phrase:

noun_phrase([" the” ," student” " passed” " the" " course”],

[" passed”," the"," course”])

@ The words “drank” and “passed” are verbs:
verb([" drank” | W], W).

verb([" passed” | W], W).

©D. Poole 2024 CPSC 312 — Lecture 24 10/24

Definite clause grammar

The grammar rule
sentence — noun_phrase, verb_phrase

represented as: there is a sentence between Ty and T if there is a
noun phrase between Ty and T; and a verb phrase between T3
and T5:
sentence(Ty, To) :-
noun_phrase(Ty, T1),
verb_phrase(Ty, T2).
sentence

To Ty 7>

-~

noun_phrase verb_phrase

©D. Poole 2024 CPSC 312 — Lecture 24 11/24

Definite clause grammar rules

The rewriting rule
h+— by,by,..., b,
says that h is by followed by b, ..., followed by b,:
h(To, Tp) :-
bi(To, T1),
by(T1, Ta),

bn(Tnfla Tn)

using the interpretation

To T1 Tr---Tho1 Th
bl b2 bn

©D. Poole 2024 CPSC 312 — Lecture 24 12/24

Terminal Symbols

Non-terminal h gets mapped to the terminal symbols, ti, ..., t,:
h([th oyt ‘ T]a T)

using the interpretation

h

——
tr, o ta T

Thus, h(Tl, T2) is true if 71 = [t'l, ey tp ’ T2]

©D. Poole 2024 CPSC 312 — Lecture 24 13/24

Context Free Grammar Example

see
https:
//artint.info/3e/resources/chl5/geography_CFG.pl

(also load https:
//artint.info/3e/resources/chi15/geography_DB.pl)

What will the following query return?

noun_phrase(["a","country","that","borders","Chile"], L3).
How many answers does the following query have?

noun_phrase(["a", "Spanish", "speaking", "country",
"that", "borders", "Chile"], L3).

©D. Poole 2024 CPSC 312 — Lecture 24 14 /24

https://artint.info/3e/resources/ch15/geography_CFG.pl
https://artint.info/3e/resources/ch15/geography_CFG.pl
https://artint.info/3e/resources/ch15/geography_DB.pl
https://artint.info/3e/resources/ch15/geography_DB.pl

% a noun phrase is a determiner followed by adjectives
% followed by a noun followed by a prepositional phrase.
noun_phrase(L0,L4) :-
det(LO,L1),
adjectives(L1,L2),
noun(L2,L3),
pp(L3,L4).
% dictionary for determiners
det (L,L).
det(["a"|L],L).
det (["the"|L],L).
% adjectives is a sequence of adjectives
adjectives(L,L).
adjectives(LO,L2) :-
adj(LO,L1),
adjectives(L1,L2).

©D. Poole 2024 CPSC 312 — Lecture 24 15/24

Clicker Question

If the query for the grammar rule
noun_phrase([the,cat,on,the,mat,sat,on,the,hat], R).

returns with substitution R=[sat,on,the,hat]
What is the noun-phrase it found?

A the cat

B the mat

C the cat on the mat
D sat on the hat

E either “the cat”, “the mat” or “the hat", we can't tell

©D. Poole 2024 CPSC 312 — Lecture 24 16 /24

Clicker Question

If the query for the grammar rule
noun_phrase([the,cat,on,the,mat,sat,on,the,hat], R).

returns with substitution R=[on,the,mat,sat,on,the,hat]
What is the noun-phrase it found?

A the cat

B the mat

C the cat on the mat
D sat on the hat

E either “the cat”, “the mat” or “the hat", we can't tell

©D. Poole 2024 CPSC 312 — Lecture 24 17 /24

Augmenting the Grammar

Two mechanisms can make the grammar more expressive:
extra arguments to the non-terminal symbols
arbitrary conditions on the rules.
We have a Turing-complete programming language at our disposal!

©D. Poole 2024 CPSC 312 — Lecture 24 18 /24

Question-answering

@ How can we get from natural language directly to the answer?

@ Goal: map natural language to a query that is asked of a
knowledge base.

o Add arguments representing the individual
noun_phrase(Ty, T1, O)

means

» Ty — Ty is a difference list forming a noun phrase.
» The noun phrase refers to the individual O.

@ Can be implemented by the parser directly calling the
knowledge base.

©D. Poole 2024 CPSC 312 — Lecture 24 19/24

Example natural language to query

see
https://artint.info/3e/resources/chl5/geography_QA.pl

©D. Poole 2024 CPSC 312 — Lecture 24 20/24

https://artint.info/3e/resources/ch15/geography_QA.pl

% A noun phrase is a determiner followed by adjectives fol
% by a noun followed by an optional modifying phrase.
% They all refer to the same individual.
noun_phrase(LO, L4, Ind) :-
det(LO, L1, Ind),
adjectives(L1l, L2, Ind),
noun(L2, L3, Ind),
omp (L3, L4, Ind).

©D. Poole 2024 CPSC 312 — Lecture 24 21/24

Adjectives provide properties

% adj(TO,T1,Entity) is true if TO-T1

% is an adjective that is true of Entity

adj(["large" | L], L, Ind) :- large(Ind).

adj([LangName, "speaking" | L], L, Ind) :-
language (Ind, Lang), name(Lang, LangName).

% adjectives(TO,T1,Entity) is true if
% TO-T1 is a sequence of adjectives that true of Entity
adjectives(TO,T2,Entity) :-
adj(TO0,T1,Entity),
adjectives(T1,T2,Entity).
adjectives(T,T,_).

©D. Poole 2024 CPSC 312 — Lecture 24 22/24

Verbs and propositions provide relations

reln(TO, T1, Subject, Object)
@ 70— T1 is a verb or preposition that provides

@ a relation that true between Subject and Object

reln(["borders" | L], L, Sub, 0Obj) :- borders(Sub, 0bj).
reln(["bordering" | L], L, Sub, Obj) :- borders(Sub, Obj).
reln(["next", "to" | L], L, Sub, 0bj) :- borders(Sub, 0bj)
reln(["the", "capital", "of" | L], L, Sub, Obj) :-
capital(Obj, Sub).
reln(["the", "name", "of" | L], L, Sub, 0bj) :-
name (0bj, Sub).

©D. Poole 2024 CPSC 312 — Lecture 24 23/24

Verbs and propositions provide relations

% A modifying phrase / relative clause is either
% a relation (verb or preposition)
yA followed by a phrase or
% ’that’ followed by a relation then a phrase
mp(LO, L2, Subject) :-

reln(LO, L1, Subject, Object),

aphrase(L1, L2, Object).
mp(["that" | LO], L2, Subject) :-

reln(LO, L1, Subject, Object),

aphrase(L1, L2, Object).

% An optional modifying phrase is either a modifying phras
omp(LO,L1,E) :-

mp(LO,L1,E).
omp(L, L, _).

©D. Poole 2024 CPSC 312 — Lecture 24 24/24

