
CPSC 312 — Functional and Logic Programming

Midterm #3 next week — more details posted on web site
(yes, it’s like the last two)

“Contrariwise,’ continued Tweedledee, ’if it was so, it might be;
and if it were so, it would be; but as it isn’t, it ain’t. That’s logic.”

Lewis Carroll, Through the Looking-Glass

©D. Poole 2024 CPSC 312 — Lecture 24 1 / 24

Since the midterm...

Done:

Syntax and semantics of propositional definite clauses

Model a simple domain using propositional definite clauses

Bottom-up proof procedure computes a consequence set using
modus ponens.

Top-down proof procedure answers a query using resolution.

The box model provides a way to procedurally understand the
top-down proof procedure with depth-first search.

Prolog Syntax: Predicate symbols, constants, variables,
function symbols.

Prolog Semantics: Interpretations, variable assignments,
models, logical consequence.

Functions applied to arguments refer to individuals.
Individuals are described using clauses.
(Prolog’s function symbols are like Haskell constructors.)
Special syntax for lists; internally a binary function ’[|]’.

©D. Poole 2024 CPSC 312 — Lecture 24 2 / 24

Trees (bstree.pl)

A binary search tree can be used as a representation for
dictionaries.

A binary search tree is either
▶ empty or
▶ bnode(Key ,Val ,T0,T1) where Key has value Val and T0 is

the tree of keys less than Key and T1 is the tree of keys
greater than Key

Define val(K ,V ,T) is true if key K has value V in tree T

Define insert(K ,V ,T0,T1) true if T1 is the result of
inserting K = V into tree T0

©D. Poole 2024 CPSC 312 — Lecture 24 3 / 24

Trees (bstreec.pl)

In Prolog, when X < Y is called, both X and Y must be
ground (variable free) numbers

There are constraint solvers that let Prolog act more logically.
X #< Y specifies the constraint that X < Y .

Eg, consider the query

val(K,V,bnode(2,22, bnode(1,57,empty,empty),

bnode(5,105,empty,empty))).

< is much faster as it can be evaluated immediately.

#< requires more sophisticated reasoning.

?- val(K,V,bnode(2,22, bnode(1,57,empty,empty),

bnode(5,105,empty,empty))), V #< 99.

?- V #< 99, val(K,V,bnode(2,22,

bnode(1,57,empty,empty),

bnode(5,105,empty,empty))).

©D. Poole 2024 CPSC 312 — Lecture 24 4 / 24

Clicker Question

What is the answer to query

?- append([a,b,c],R,L), append([1,2,3],S,R).

A There are no proofs

B R = [1, 2, 3|S], L = [1, 2, 3, a, b, c|S].

C R = [1, 2, 3|S], L = R.

D R = [1, 2, 3|S], L = [a, b, c, 1, 2, 3|S].

E R = L, L = [a, b, c, 1, 2, 3|S].

©D. Poole 2024 CPSC 312 — Lecture 24 5 / 24

Natural Language Understanding

We want to communicate with computers using natural
language (spoken and written).
▶ unstructured natural language — allow any statements, but

make mistakes or failure.
▶ controlled natural language — only allow unambiguous

statements with fixed vocabulary (e.g., in supermarkets or for
doctors).

There is a vast amount of information in natural language.

Understanding language to answer questions is more difficult
than extracting gestalt properties such as topic, or choosing a
web page.

©D. Poole 2024 CPSC 312 — Lecture 24 6 / 24

Syntax, Semantics, Pragmatics

Syntax describes the form of language (using a grammar).

Semantics provides the meaning of language.

Pragmatics explains the purpose or the use of language
(how utterances relate to the world).

Examples:

This lecture is about natural language.

The green frogs sleep soundly.

Colorless green ideas sleep furiously.

Furiously sleep ideas green colorless.

©D. Poole 2024 CPSC 312 — Lecture 24 7 / 24

Parsing Language

A person with a big hairy cat drank the cold milk.

Who or what drank the milk?

Simple parse tree:

s

np vp

pp

np

npa person

with

a big hairy cat

drank

the cold milk

©D. Poole 2024 CPSC 312 — Lecture 24 8 / 24

Context-free grammar

A terminal symbol is a string representing a word (perhaps
including punctuation and composite words, such as “hot
dog” or “Buenos Aires”).
A non-terminal symbol can be rewritten as a sequence of
terminal and non-terminal symbols, e.g.,

sentence 7−→ noun phrase, verb phrase

verb phrase 7−→ verb, noun phrase

verb 7−→ [”drank”]

Can be written as a logic program, where a sentence is a
sequence of words:

sentence(S) :- noun phrase(N), verb phrase(V), append(N,V , S).

verb phrase(P) :- verb(V), noun phrase(N), append(V ,N,P).

To say word “drank” is a verb:

verb([”drank”]).
©D. Poole 2024 CPSC 312 — Lecture 24 9 / 24

Difference Lists

Non-terminal symbol s becomes a predicate with two
arguments, s(T1,T2), meaning:
▶ T2 is an ending of the list T1

▶ all of the words in T1 before T2 form a sequence of words of
the category s.

Lists T1 and T2 together form a difference list.

“the student” is a noun phrase:

noun phrase([”the”, ”student”, ”passed”, ”the”, ”course”],

[”passed”, ”the”, ”course”])

The words “drank” and “passed” are verbs:

verb([”drank” | W],W).

verb([”passed” | W],W).

©D. Poole 2024 CPSC 312 — Lecture 24 10 / 24

Definite clause grammar

The grammar rule

sentence 7−→ noun phrase, verb phrase

represented as: there is a sentence between T0 and T2 if there is a
noun phrase between T0 and T1 and a verb phrase between T1

and T2:

sentence(T0,T2) :-

noun phrase(T0,T1),

verb phrase(T1,T2).

sentence︷ ︸︸ ︷
T0︸ ︷︷ ︸

noun phrase

T1︸ ︷︷ ︸
verb phrase

T2

©D. Poole 2024 CPSC 312 — Lecture 24 11 / 24

Definite clause grammar rules

The rewriting rule

h 7−→ b1, b2, . . . , bn

says that h is b1 followed by b2, . . . , followed by bn:

h(T0,Tn) :-

b1(T0,T1),

b2(T1,T2),
...

bn(Tn−1,Tn).

using the interpretation

h︷ ︸︸ ︷
T0︸ ︷︷ ︸

b1

T1︸ ︷︷ ︸
b2

T2 · · ·Tn−1︸ ︷︷ ︸
bn

Tn

©D. Poole 2024 CPSC 312 — Lecture 24 12 / 24

Terminal Symbols

Non-terminal h gets mapped to the terminal symbols, t1, ..., tn:

h([t1, · · · , tn | T],T)

using the interpretation

h︷ ︸︸ ︷
t1, · · · , tn T

Thus, h(T1,T2) is true if T1 = [t1, ..., tn | T2].

©D. Poole 2024 CPSC 312 — Lecture 24 13 / 24

Context Free Grammar Example

see
https:

//artint.info/3e/resources/ch15/geography_CFG.pl

(also load https:

//artint.info/3e/resources/ch15/geography_DB.pl)

What will the following query return?

noun_phrase(["a","country","that","borders","Chile"], L3).

How many answers does the following query have?

noun_phrase(["a", "Spanish", "speaking", "country",

"that", "borders", "Chile"], L3).

©D. Poole 2024 CPSC 312 — Lecture 24 14 / 24

https://artint.info/3e/resources/ch15/geography_CFG.pl
https://artint.info/3e/resources/ch15/geography_CFG.pl
https://artint.info/3e/resources/ch15/geography_DB.pl
https://artint.info/3e/resources/ch15/geography_DB.pl

Example

% a noun phrase is a determiner followed by adjectives

% followed by a noun followed by a prepositional phrase.

noun_phrase(L0,L4) :-

det(L0,L1),

adjectives(L1,L2),

noun(L2,L3),

pp(L3,L4).

% dictionary for determiners

det(L,L).

det(["a"|L],L).

det(["the"|L],L).

% adjectives is a sequence of adjectives

adjectives(L,L).

adjectives(L0,L2) :-

adj(L0,L1),

adjectives(L1,L2).

©D. Poole 2024 CPSC 312 — Lecture 24 15 / 24

Clicker Question

If the query for the grammar rule

noun_phrase([the,cat,on,the,mat,sat,on,the,hat], R).

returns with substitution R=[sat,on,the,hat]

What is the noun-phrase it found?

A the cat

B the mat

C the cat on the mat

D sat on the hat

E either “the cat”, “the mat” or “the hat”, we can’t tell

©D. Poole 2024 CPSC 312 — Lecture 24 16 / 24

Clicker Question

If the query for the grammar rule

noun_phrase([the,cat,on,the,mat,sat,on,the,hat], R).

returns with substitution R=[on,the,mat,sat,on,the,hat]

What is the noun-phrase it found?

A the cat

B the mat

C the cat on the mat

D sat on the hat

E either “the cat”, “the mat” or “the hat”, we can’t tell

©D. Poole 2024 CPSC 312 — Lecture 24 17 / 24

Augmenting the Grammar

Two mechanisms can make the grammar more expressive:
extra arguments to the non-terminal symbols
arbitrary conditions on the rules.

We have a Turing-complete programming language at our disposal!

©D. Poole 2024 CPSC 312 — Lecture 24 18 / 24

Question-answering

How can we get from natural language directly to the answer?

Goal: map natural language to a query that is asked of a
knowledge base.

Add arguments representing the individual

noun phrase(T0,T1,O)

means
▶ T0 − T1 is a difference list forming a noun phrase.
▶ The noun phrase refers to the individual O.

Can be implemented by the parser directly calling the
knowledge base.

©D. Poole 2024 CPSC 312 — Lecture 24 19 / 24

Example natural language to query

see
https://artint.info/3e/resources/ch15/geography_QA.pl

©D. Poole 2024 CPSC 312 — Lecture 24 20 / 24

https://artint.info/3e/resources/ch15/geography_QA.pl

Noun Phrases

% A noun phrase is a determiner followed by adjectives followed

% by a noun followed by an optional modifying phrase.

% They all refer to the same individual.

noun_phrase(L0, L4, Ind) :-

det(L0, L1, Ind),

adjectives(L1, L2, Ind),

noun(L2, L3, Ind),

omp(L3, L4, Ind).

©D. Poole 2024 CPSC 312 — Lecture 24 21 / 24

Adjectives provide properties

% adj(T0,T1,Entity) is true if T0-T1

% is an adjective that is true of Entity

adj(["large" | L], L, Ind) :- large(Ind).

adj([LangName, "speaking" | L], L, Ind) :-

language(Ind, Lang), name(Lang, LangName).

% adjectives(T0,T1,Entity) is true if

% T0-T1 is a sequence of adjectives that true of Entity

adjectives(T0,T2,Entity) :-

adj(T0,T1,Entity),

adjectives(T1,T2,Entity).

adjectives(T,T,_).

©D. Poole 2024 CPSC 312 — Lecture 24 22 / 24

Verbs and propositions provide relations

reln(T0,T1,Subject,Object)

T0− T1 is a verb or preposition that provides

a relation that true between Subject and Object

reln(["borders" | L], L, Sub, Obj) :- borders(Sub, Obj).

reln(["bordering" | L], L, Sub, Obj) :- borders(Sub, Obj).

reln(["next", "to" | L], L, Sub, Obj) :- borders(Sub, Obj).

reln(["the", "capital", "of" | L], L, Sub, Obj) :-

capital(Obj, Sub).

reln(["the", "name", "of" | L], L, Sub, Obj) :-

name(Obj, Sub).

©D. Poole 2024 CPSC 312 — Lecture 24 23 / 24

Verbs and propositions provide relations

% A modifying phrase / relative clause is either

% a relation (verb or preposition)

% followed by a phrase or

% ’that’ followed by a relation then a phrase

mp(L0, L2, Subject) :-

reln(L0, L1, Subject, Object),

aphrase(L1, L2, Object).

mp(["that" | L0], L2, Subject) :-

reln(L0, L1, Subject, Object),

aphrase(L1, L2, Object).

% An optional modifying phrase is either a modifying phrase or nothing

omp(L0,L1,E) :-

mp(L0,L1,E).

omp(L, L, _).

©D. Poole 2024 CPSC 312 — Lecture 24 24 / 24

