Announcements

@ Midterm #2 Monday after break — same format as midterm 1

@ One must learn by doing the thing; for though you think you
know it, you have no certainty until you try.

Sophocles (= 497- 406 BCE)

©D. Poole 2024 CPSC 312 — Lecture 16 1/12

Review: Haskell since midterm

@ type defines a type name as an abbreviation for other types

e data defines new data structures (and a type) and
constructors / deconstuctors

@ I0 t is the input/output monad

@ do can be used to sequence input/output operations

©D. Poole 2024 CPSC 312 — Lecture 16 2/12

Overview

Last classes:

@ Abstraction for games, so we can write interfaces and solvers
for any games that fit the abstraction

@ Representation of magic-sum game and count game
@ A simple human interface for the abstraction
e mm_player: a player that searches through all possible games

and returns a best move. (Using minimax).
@ Make minimax more efficient (Caching / Memoization)
@ Abstract data types
@ Threading state
Today:
@ More on games and abstract data types

©D. Poole 2024 CPSC 312 — Lecture 16 3/12

Making Caching Useful

@ Caching doesn't prune any nodes in magic-sum game! Why?

@ Represent each state in canonical form:
unique representation for each state. (sorted lists)

@ with import MagicSum and TreeDict (top of Minimax_mem):
*Minimax_mem> minimax magicsum magicsum_start emptyDict
((9,0.0),dict)

*Minimax_mem> mema = (snd it)
*Minimax_mem> stats mema
"Number of elements=294778, Depth=103"

@ with import MagicSum _ord and TreeDict (at the top of
Minimax_mem):

*Minimax_mem> minimax magicsum magicsum_start emptyDict
((9,0.0),dict)

*Minimax_mem> mema = (snd it)

*Minimax_mem> stats mema

"Number of elements=4520, Depth=52"

©D. Poole 2024 CPSC 312 — Lecture 16 4/12

Balancing Trees

@ "Number of elements=294778, Depth=103"
"Number of elements=4520, Depth=52"

@ What is suspicious about this?
The trees are are very unbalanced. The first dictionary should
be able to be represented with a tree of depth 19, and the
second one with a tree of depth 13.

@ Is there a simple way to keep the tree approximately balanced?

@ use (hash k, k) as the key in the tree, as long as hask k
randomizes the ordering.

©D. Poole 2024 CPSC 312 — Lecture 16 5/12

Clicker Question

Using (hash k, k) as the key in the tree

A has to be done as a special case each time because hash needs
to be defined for each type, and Haskell needs a type for the
hash function

B could be done in DictTree just by calling hash

C could be done if we define a class for types that include a
hash function, and only use hash for types in the class

D requires support in a low level language like C4++, because
hash functions could only improve performance if defined
efficiently in C4++.

©D. Poole 2024 CPSC 312 — Lecture 16 6/12

Building a hashing dictionary

@ Define a class for types that implement hash
o Make the type State be in that class

@ Define a hashing tree dictionary that uses hash, but does not
change the definition of TreeDict

©D. Poole 2024 CPSC 312 — Lecture 16 7/12

Defining classes (Hash.hs)

@ Define a class for types that implement hash

class Hash t where
hash :: t -> Int

A type in the Hash class implements hash.
@ Define hash functions for Ints e.g.:

instance Hash Int where
hash n = floor(numHashVals *
fractionalPart (arbMun *fromIntegral n))

@ Define a hash function for lists (as long as the base type is
hashable):

instance Hash t => Hash [t] where
hash [] = 1741
hash (h:t) = hash (hash h + hash t)

©D. Poole 2024 CPSC 312 — Lecture 16 8/12

Clicker Questions

For the two definitions of Hash for lists:

i) instance Hash t => Hash [t] where
hash [] = 1741
hash (h:t) = hash (hash h + hash t)

i) instance Hash t => Hash [t] where
hash 1st = hash (sum [hash e | e <- 1st])

Which one always maps permutations to the same value?
A Both (i) and (ii)
B (i) but not (ii)
C (ii) but not (i)
D neither

©D. Poole 2024 CPSC 312 — Lecture 16 9/12

Defining a tree dictionary with hashing

@ How can we build a hashing tree dictionary, without changing
TreeDict?

@ See HashTreeDict.hs

@ Note that Haskell has a standard class Hashable that act like
our Hash.

©D. Poole 2024 CPSC 312 — Lecture 16 10/12

Incorporate Hashing into game playing

@ Import HashTreeDict into Minimax
@ See Minimax_mem_hash.hs
@ What else do we need to do?

@ See MagicSum_ord_hash.hs

©D. Poole 2024 CPSC 312 — Lecture 16 11/12

Building a game abstraction

What do we need to represent:

@ Magic sum game and other “fully observable” games

@ Blackjack (or other card game)

@ Adventure game where agent can move around, collect
rewards, get penalties (without necessarily turn-taking with an
opponent)

@ Agents that can have state (e.g., agents that learn)

e Multiple games at the same time (e.g, simultaneously play
magic sum and count games)

Questions

@ What did we need to put the game abstraction at the top of
the Magic sum game?

@ What is wrong with having
type Player = State -> Action

See: Games2.hs

©D. Poole 2024 CPSC 312 — Lecture 16 12/12

Games2.hs

