
Thought for the day

“A language that doesn’t affect the way you think about
programming, is not worth knowing.”

— Alan J. Perlis, Epigrams on Programming, 1982

©D. Poole 2024 CPSC 312 — Lecture 2 1 / 13

Overview

Last class

Examples of simple Haskell programs.

Infix and prefix functions

How Haskell works

Today

Basic types and classes

©D. Poole 2024 CPSC 312 — Lecture 2 2 / 13

Syntax

comments are either
-- comment to end of line or {- comment -}

variables either:
▶ prefix: made up of letters, digits, ’ or and start with a

lower-case letter
▶ infix: made up of sequences of other characters

indentation is significant

parentheses are used for precedence and tuples

Function application binds most strongly
factorial 3*5 means
(factorial 3)*5

Binary prefix functions can be made infix using back-quotes,
e.g. ‘div‘
Infix operators can be made prefix using parentheses, e.g. (*)

©D. Poole 2024 CPSC 312 — Lecture 2 3 / 13

Definition of a function

Function Definition:

name x1 x2 ... xk = e

x1 x2 ... xk are formal parameters
e is an expression

Multiple equations can define a function; the first one to
succeed is used.

©D. Poole 2024 CPSC 312 — Lecture 2 4 / 13

Evaluation of Haskell program

Haskell evaluates expressions.

Haskell knows how to implement some expressions
(such as 3+4*7)

Given the defintion of name:

name x1 x2 ... xk = e

The expression

name v1 v2 ... vk

when all k arguments are provided, evaluates to value of e but
with each xi replaced with vi

foo x y = 1000*x+y

foo 9 3

bar = foo 7

bar 3

©D. Poole 2024 CPSC 312 — Lecture 2 5 / 13

Type Declarations

For the defintion of name:

name x1 x2 ... xk = e

Type declaration:

name :: t1 -> t2 -> ... -> tk -> t

ti is type of xi , and t is the type of e.

Each function takes only one argument:
name v1 is a function of type t2 -> ... -> tk -> t

name v1 v2 ... vk is a value of type t
It’s value is the value of e with each xi replaced by vi

©D. Poole 2024 CPSC 312 — Lecture 2 6 / 13

Today

Haskell Types:

Bool (&&, ||, not)
Num (+, −, ∗, abs)

Integral (div, mod)
Int
Integer

Fractional (/)
Floating (log, sin, exp, ...)

Double
Eq (==, /=)

Ord (>, >=, <=, <)
Char
String

©D. Poole 2024 CPSC 312 — Lecture 2 7 / 13

Type: Bool

Bool is a type with two values True and False.

operations:

&& and
|| or
not not

How can we define exclusive-or (xor)?

How can we define if-then-else?

What would happen if we tried to do this in Java?
(Answer: because Java evaluates a method’s arguments
before calling the method, a method implementation of
if-then-else would not halt for recursive methods.)

©D. Poole 2024 CPSC 312 — Lecture 2 8 / 13

Integral types

Intergral types represent integers.

They implement + * ^ - div mod abs negate

Two implementations:
▶ Int - fixed-precision integers
▶ Integer - arbitrary precision integers

Integral is a class.
Int and Integer are types in class Integral.
Only types have implementations.
(Haskell classes are like Java interfaces)

div :: Integral a => a -> a -> a

div takes two arguments of the same type, and returns a
value of that type.
That type must be in the Integral class.

©D. Poole 2024 CPSC 312 — Lecture 2 9 / 13

Fractional types

Fractional types represent real numbers.

They implement + * ^ - / abs negate

Floating types also implement log sin exp . . .

Multiple implementations:
▶ Double - double precision floating-point numbers (64 bit)
▶ Float - single precision floating-point numbers (32 bit)

— don’t use
▶ Rational - exact rational numbers

There are no types that are both Integral and Fractional.

Num types implement + * ^ - abs negate

Num is a class (elements are types).
Integral and Fractional are subclasses of Num

©D. Poole 2024 CPSC 312 — Lecture 2 10 / 13

Eq and Ord classes

Eq types implement == /=

Ord types implement > >= <= < max min

Int, Integer, Double implement Eq and Ord

Can you think of a Num type that isn’t an Ord type?
How about Complex?

What is the type of 3?

What is the type of div 100 3?
What is the type of 3.7?
What is the type of (div 100 3) + 3.7?

fromIntegral converts an integer to a Num.

©D. Poole 2024 CPSC 312 — Lecture 2 11 / 13

Guards

Guards are used for if-then-else structure in definition of
functions.

Example

mymax x y

| x>y = x

| otherwise = y

It evaluates the guards; the first one succeeding, the
corresponding expression is returned

©D. Poole 2024 CPSC 312 — Lecture 2 12 / 13

Guards

General case:

name x1 x2 ... xk

| g1 = e2

| g2 = e2

...

| gn = en

evaluate g1, g2 in turn until the first one gi evaluates to true,
then return value of ei .

An Exception is raised if none of the guards are True

Typical to have last condition to be otherwise which is a
variable with value True.

How can we implement max3?

Haskell also has “if ... then ... else ...” structure

©D. Poole 2024 CPSC 312 — Lecture 2 13 / 13

