“Learn at least a half dozen programming languages.
Include one language that emphasizes class abstractions
(like Java or C++), one that emphasizes functional ab-
straction (like Lisp or ML or Haskell), one that supports
syntactic abstraction (like Lisp), one that supports declar-
ative specifications (like Prolog or C++ templates), and
one that emphasizes parallelism (like Clojure or Go).”

Peter Norvig “Teach Yourself Programming in Ten Years"
http://norvig.com/21-days.html

©D. Poole 2024 CPSC 312 — Lecture 1 1/14


http://norvig.com/21-days.html

CPSC 312 — Functional and Logic Programming

@ Professor: David Poole

o URL: http://www.cs.ubc.ca/~poole/cs312/2024/
Assignment 1 is due next Tuesday!

@ We will use Canvas for assignment submission, grades and
Zooming. Classes will be simulcast on Zoom and also
recorded an available on Canvas. (You may have to remind
me to record).

@ Every student should expect to struggle, but can succeed!
You learn by doing and making mistakes.

@ Ask questions!

@ Quote of the day: “Apparently, the university is the only place
where you pay for something, and then try as hard as you can

NOT to get your money's worth.”
(https://people.cs.kuleuven.be/~bart.demoen/)

©D. Poole 2024 CPSC 312 — Lecture 1 2/14


http://www.cs.ubc.ca/~poole/cs312/2024/
https://people.cs.kuleuven.be/~bart.demoen/

CPSC 312 — Assessment

@ Marks:

» 40%: 2 projects (groups 2 or 3) with demos

> 30%: 3 midterms (10% each). Tentative dates on web page
(subject to change).

» 25%: final exam

» 3%: assignments (marked for participation)

» 2% informative discussion posts.

Estimates:
@ Everyone can pass

@ If you memorize and can reproduce everything presented in
class you can get a B- or C+.

@ For an A or A+ you have to “get it" (“aha!” moment).

©D. Poole 2024 CPSC 312 — Lecture 1 3/14



Clicker Question

| am taking CPSC 312 because (pick best answer)

A | want to learn as many programming paradigms as
possible

B Haskell and Prolog programmers make lots of money

C | am fascinated by the ideas of functional and/or
logic programming
D | heard that 312 is an easy course

E | just need another (3rd year) course

©D. Poole 2024 CPSC 312 — Lecture 1 4/14



Lecture Overview

@ What is logic and functional programming?
@ Simple Haskell programs and queries.

Learning objectives: at the end of the class, you should be able to
@ recognize syntax and semantics of Haskell

@ write a simple Haskell program

©D. Poole 2024 CPSC 312 — Lecture 1 5/14



What is functional and logic programming?

@ Program is a high-level specification of what should be
computed, not how it should be computed.

@ Try to find representations that are as close to the problem
domain as possible

@ Abstract away from the state of a computer

@ Programming and debugging should all be questions about
the domain, not about the computation.

@ Allow computer to decide how to most efficiently implement
the program.

@ To solve a complex problem, break it into simpler problems.
@ Variables cannot change their values. Controlled side effects.

@ Haskell is a strongly typed language. You don't need to
declare types. Type checking is done at compile time.

©D. Poole 2024 CPSC 312 — Lecture 1 6/14



Choosing a Representation Language

We need to represent a problem to solve it on a computer.

problem
— specification of problem
— appropriate computation

Example specification languages: Machine Language, C++, Java,
Haskell, Prolog, English

©D. Poole 2024 CPSC 312 — Lecture 1 7/14



Haskell

Haskell lets one:

@ evaluate expressions

@ define functions
http://cs.ubc.ca/~poole/cs312/2024/haskell/First.hs

©D. Poole 2024 CPSC 312 — Lecture 1 8/14


http://cs.ubc.ca/~poole/cs312/2024/haskell/First.hs

comments are either

-- comment to end of line or
{- comment -}

variables either:

» prefix: made up of letters, digits, > or _ and start with a
lower-case letter
» infix: made up of sequences of other characters

@ indentation is significant

parentheses are used for precedence and tuples (not for
arguments of functions)

Function application binds most strongly

fac 3*5 means

(fac 3)*5

Binary prefix functions can be made infix using back-quotes,
e.g. ‘div‘

Infix operators can be made prefix using parentheses, e.g. (*)

©D. Poole 2024 CPSC 312 — Lecture 1 9/14



Clicker Question

Which of the following is not true:
A Haskell functions require parentheses (like Java and C)
B Haskell variables cannot change their values
C Haskell is a strongly typed language

D You don't need to declare the types of all functions

©D. Poole 2024 CPSC 312 — Lecture 1 10/14



Clicker Question

Which is the true of the expression:
foo bar zoo

A foo must be a function
B bar must be a function
C bar cannot be a function
D zoo must be a number

E bar and zoo must be of the same type

©D. Poole 2024 CPSC 312 — Lecture 1 11/14



Clicker Question

Which is the true of the expression:
foo O#3$%°& zoo

A foo must be a function

B @#3$%"& must be a function
C o#3$%"& cannot be a function
D zoo must be a number

E

foo must not be a function

©D. Poole 2024 CPSC 312 — Lecture 1 12/14



Definition of a function

@ Function Definition:
name x1 x2 ... xk = e
x1 x2 ... xk are formal parameters
e is an expression

@ xi can contain structures, but each variable can only appear
once.

@ Multiple equations can define a function; the first one to
succeed is used.

©D. Poole 2024 CPSC 312 — Lecture 1 13/14



Evaluation of Haskell program

@ Haskell evaluates expressions.

@ Haskell knows how to implement some expressions
(such as 3+4x*7)

@ Given the definition of name:
name x1 x2 ... xk = e
The expression
name vl v2 ... vk

when all k arguments are provided evaluates to value of

e {x1/v1, x2/v2, ..., xk/vk}

which is same as e but with each xi replaced with vi
@ foo x y = 1000*x+y

foo 9 3

x*x1000+y {x/9, y/3} evaluates to value of 9%1000+3

which is 9003.

©D. Poole 2024 CPSC 312 — Lecture 1 14 /14



