Question 1 [10 marks]

Consider the following knowledge base, \(KB \):

\[
\begin{align*}
p & : - v. & t & : - m. \\
p & : - q, r. & t & : - n. \\
q & : - s, t. & n. \\
v & : - w. & r & : - s. \\
s. \\
\end{align*}
\]

(a) [4 marks] \(v \) is not a logical consequence of \(KB \). Explain what this means and show why \(v \) isn’t a logical consequence of \(KB \).

(b) [6 marks] \(p \) is a logical consequence of \(KB \). Give a successful top-down derivation for the query \(?- p\).

<table>
<thead>
<tr>
<th>Answer clause</th>
<th>Clause resolved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Question 2 [12 marks]

(a) [6 marks] Suppose we want to represent the defaults: Birds fly. Emus are birds that don’t fly. Penguins are birds that don’t fly. Things on planes fly, unless the plane is broken. Planes are not broken by default.

Write a program, using negation as failure and only propositional atoms (no arguments to predicates) that has the following behaviour:

- It should answer “false” to the query \(?- flies\).
- If someone were to add the fact \(bird \), it should answer “true” to the query \(?- flies\).
- If someone were to add just the fact \(emu \), it should answer “true” to the query \(?- bird\) and answer “false” to the query \(?- flies\).
- If someone were to add just the fact \(penguin \), it should answer “true” to the query \(?- bird\).
- If someone were to add just the fact \(emu \) and \(on_plane \), it should answer “true” to the query \(?- flies\).
- If someone were to add the facts \(emu \) and \(on_plane \) and \(plane_broken \), it should answer “false” to the query \(?- flies\).

You do not need to worry about dynamic declarations.
(b) [6 marks] Consider the logic program with negation as failure:

\[
\begin{align*}
 a & : - b. \\
 b & : - \ \not+ d. \\
 a & : - \ \not+ c. \\
 d. \\
 e & : - \ \not+ f.
\end{align*}
\]

Give the set of all atoms and negations of atoms that are a logical consequence (i.e., the atoms and their negations that would be produced by the bottom-up proof procedure for negation as failure). You do not need to give the derivation.

Question 3 [10 marks]

Suppose that times are represented as \(am(H, M)\) for the time \(M\) minutes after hour \(H\) in the morning or as \(pm(H, M)\) for \(M\) minutes after hour \(H\) in the afternoon. For example, \(am(11, 30)\) is 11:30 in the morning, \(pm(1, 30)\) is 1:30 in the afternoon, and \(pm(12, 30)\) is halfway between these times. Write a predicate \(\text{next_hour}(T1, T2)\) that is true when time \(T2\) is exactly one hour after \(T1\). It does not need to wrap over midnight. You can only use the built-in predicates \(<\) (which compares two arithmetic expressions) and \(\text{is}\) (where \(V\) is \(E\) is true if arithmetic expression \(E\) evaluates to number \(V\)). You can assume that \(T1\) does not contain variables when called.

An example of its use is:

?- next_hour(am(10, 23), T).
T = am(11, 23).

?- next_hour(am(11, 23), T1), next_hour(T1, T2).
T1 = pm(12, 23),
T2 = pm(1, 23).

Question 4 [10 marks]

(a) [6 marks] Write a program \(\text{del1}(E, L, R)\) which is true when \(R\) is a list with the same elements as list \(L\) (in the same order) but with one instance of \(E\) removed. For example, it should have the following behaviour:

?- del1(a, [a, v, a, t, a, r], R).
R = [v, a, t, a, r];
R = [a, v, t, a, r];
R = [a, v, a, t, r];
false.
?- del1(a, [f, u, n], R).
false.

(b) [4 marks] What are all of the answers to the query

?- del1(2, L, [a, b, c, a]).

(Note that you should be able to do this, even if you cannot do part (a).)