
Computational Intelligence
A Logical Approach

Problems for Chapter 4

Here are some problems to help you understand the material inComputational Intelligence: A
Logical Approach. They are designed to help students understand the material and practice for
exams.

This file is available inhtml, or in pdf format, eitherwithout solutionsor with solutions. (The
pdf can be read using the freeacrobat readeror with recent versions ofGhostscript).

1 Finding Paths in a Grid

Consider the problem of finding a path in the grid shown below from the positions to the position
g. The robot can move on the grid horizontally and vertically, one square at a time (each step has a
cost of one). No step may be made into a forbidden shaded area.

s

g

(a) On the grid, number the nodes in the order in which they are removed from the frontier in a
depth-first search froms to g, given that the order of the operators you will test is: up, left,
right, then down. Assume there is a cycle check.

(b) Number the nodes in order in which they are taken off the frontier for anA∗ search for the
same graph. Manhattan distance should be used as the heuristic function. That is,h(n) for
any noden is the Manhattan distance fromn tog. The Manhattan distance between two points

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html
http://www.adobe.com/prodindex/acrobat/readstep.html
http://www.cs.wisc.edu/~ghost/index.html

Computational Intelligence - Problems for Chapter 4 2

is the distance in thex-direction plus the distance in they-direction. It corresponds to the
distance traveled along city streets arranged in a grid. For example, the Manhattan distance
betweeng ands is 4. What is the path that is found by theA∗ search?

(c) Assume that you were to solve the same problem using dynamic programming. Give thedist
value for each node, and show which path is found.

(d) Based on this experience, discuss which algorithms are best suited for this problem.

(e) Suppose that the graph extended infinitely in all directions. That is, there is no boundary, but
s, g, and the forbidden area are in the same relative positions to each other. Which methods
would no longer find a path? Which would be the best method, and why?

Solution to part (a)

Depth-first search:

s

g

1

23 4 5 6 7

8

9

10

1112131415161718

19 20 21 22 23 24 25

2627282930

Solution to part (b)

A∗ search:

Computational Intelligence - Problems for Chapter 4 3

s

g

1

23

4

44 6

6

66

8

8

8

88

8

8

10

10

1010

10

10

10

10 10

10 10 10

4

5

678

9

10 11

12

13

14 15

16

1718

19

20

21

22 23

24 25

12

12

1212

12

f-value
order

Note that here we assumed that for those nodes whosef -value is the same, that the last added to
the queue is used. You can use any other convention.

Solution to part (c)

Dynamic Programming:

s

g 41 2 3 5

1

1

22

2

2

2

3

33

3

3 4

44

4

5

5

5 6

6

6

6

6

7

7

7

78

8

8

8

9

9

9

9

10

10

10

10

10

10

10 11

11

11

1111 12

12

Solution to part (d)

It seems as thoughA∗ and dynamic programming are best for this problem.A∗ would be best
if you were solving it once. If you wanted to solve it multiple times for the same goal dynamic

Computational Intelligence - Problems for Chapter 4 4

programming would be good.
Depth-first search looks pretty stupid given this ordering of neighbors. If you had searched in

the order: left, up, right, down, depth-first search would have looked much more sensible.

Solution to part (e)

If the graph had extended infinitely in all directions,A∗ would still find a solution. Depth-first
search would wander off infinitely. Dynamic programming would find a path froms to g, but then
continue off forever. If you stopped it when it had includeds in the distance map, it would find the
shortest path, but this would be the same as a shortest-first search fromg, which still isn’t as good
asA∗. It would, however, let us reuse the distance function built for other starting positions to the
same goal.

2 Searching on a simple graph

Consider the graph (not drawn to scale) with arc lengths shown on the arcs:

UBC

JB KB

DTSP

KD MP

RM

BBY

SRY

3

4

2

2

3

4

3

4

3

6

5 22

21AP 3

Suppose we have the following heuristic values for the distance tosp.
h(sp)=0 h(dt)=2 h(kb)=3
h(jb)=3 h(ubc)=5 h(kd)=6
h(mp)=7 h(bby)=8 h(ap)=8
h(rm)=9 h(sry)=29

(a) Show the nodes expanded (taken off the frontier), in order, and thef -value for each node
added to the frontier for anA∗ search fromubc to sp. Assume that multiple-path pruning is
used, and that the search stops after the first path is found. Show clearly the path found.
[Explain clearly what your notation means.]

Computational Intelligence - Problems for Chapter 4 5

(b) Show how dynamic programming can be used to find a path fromubctosp. Show all distance
values that are computed, and how these are used to find the shortest path. What path is found?

(c) Suppose you were contacted by TecnoTaxi to advise on a method for finding routes between
locations in your city. What method would you recommend, and why. Give one shortcoming
of the method you propose. You must use full sentences.

Solution to part (a)

The following shows the nodes added to and removed from the queue:

Node f -value Order Removed
UBC 5 1
JB 6 2
KD 9 3
KB 10 4
MP 13
BBY 21
DT 11 5
SP 11 6

Note that the other three nodes (AP, RM and SRY) are never placed on the queue, and theirf -value
is not computed.

The final path computed is:

UBC → JB → KB → DT → SP

Solution to part (b)

Dynamic programming builds the following distance map tosp

Node Distance
SP 0
DT 2
KB 4
JB 8
MP 8
BBY 10
UBC 11
KD 11
RM 11
AP 14
SRY 32

To get from UBC to SP, you need to compare going via JB (with distance 3+8) with going via KD
(distance 3+11). Thus the first step is to JB. From JB, you need to compare going via KB (distance
8), via KD (distance 15) and UBC (distance 14) and choose KB. From KB, you choose DT and
then SP.

Computational Intelligence - Problems for Chapter 4 6

s

a

g

b

c

d

e

fh

i

j

k

l

1

1

1

1

1

2

2

3

2

2

2

1 5

1

Figure 1: Search Graph

The final route is:

UBC → JB → KB → DT → SP

Solution to part (c)

You could have suggested dynamic programming, in that once the distance tables have been com-
puted they can be accessed quickly. The problem is that you need a distance function to every
possible destination.

You could have suggestedA∗ that will find shortest routes. The problems is that the time and
space is exponential in the path length.

The best solution is probably some hierarchical route finder, finding distances between major
intersections and then locally searching from a particular location to these intersections.

3 Comparting Different Search Strategies

Consider the graph shown in Figure 1. Suppose the neighbours are given by the following relations:

neighbours(s,[a,c,k]).
neighbours(a,[b]).
neighbours(b,[h,g]).
neighbours(c,[d]).
neighbours(d,[e]).
neighbours(e,[f]).
neighbours(f,[g]).
neighbours(g,[]).
neighbours(h,[i]).
neighbours(i,[j]).

Computational Intelligence - Problems for Chapter 4 7

neighbours(j,[]).
neighbours(k,[l]).
neighbours(l,[]).

Suppose the heuristic estimate of the distance tog is:

h(a,2). h(b,3).
h(c,4). h(d,3).
h(e,2). h(f,1).
h(g,0). h(h,4).
h(i,5). h(j,6).
h(k,5). h(l,6).
h(s,4).

For each of the following search strategies to find a path froms to g:

(a) Depth-first search

(b) Breadth-first search

(c) Least-cost first search

(d) Best-first search

(e) A∗ search

Specify:

i) What is the final path found?

ii) How many nodes were expanded?

iii) Explain why it selected nodes during the search that were not on the shortest path froms to
g.

iv) Explain why it may have been led astray in the final solution. (Either state that it found the
shortest part, or explain why the shortest path was not found).

Note there are 20 parts to this question. By brief and concise. You can use the search applet available
on the web page and at˜cs322/tools/search/search .

Solution to part (a): Depth-first search

i) What is the final path found?
s → a → b → h → i → g.

ii) How many nodes were expanded?
7.

iii) Explain why it selected nodes during the search that were not on the shortest path froms to
g.

It selects nodes in order irrespective of where the goal is.

iv) Explain why it may have been led astray in the final solution.
It reports whatever path it finds first; this could be any path depending on the order of the

neighbours.

Computational Intelligence - Problems for Chapter 4 8

Solution to part (b): Breadth-first search

i) What is the final path found?
s → a → b → g.

ii) How many nodes were expanded?
9.

iii) Explain why it selected nodes during the search that were not on the shortest path froms to
g.

It selects all nodes that are two steps from the start node, irrespective of where the goal
is, before it expands nodes that are three steps away and finds the goal.

iv) Explain why it may have been led astray in the final solution.
It finds the path with the fewest arcs, not the shortest path.

Solution to part (c): Least-cost-first search

i) What is the final path found?
s → c → d → e → f → g.

ii) How many nodes were expanded?
10

iii) Explain why it selected nodes during the search that were not on the shortest path froms to
g.

It explores the paths in order of length, irrespective of where the goal is.

iv) Explain why it may have been led astray in the final solution.
It wasn’t; least cost first always finds the shortest path to the goal.

Solution to part (d): Best-first search

i) What is the final path found?
s → a → b → g.

ii) How many nodes were expanded?
4

iii) Explain why it selected nodes during the search that were not on the shortest path froms to
g.

It chooses the node closest to the goal, and doesn’t take into account the path length from
the start node.

iv) Explain why it may have been led astray in the final solution.
Nodea was closer to the goal than nodec, once it had nodes on the frontier that were

close to goal, it never consideredc.

Computational Intelligence - Problems for Chapter 4 9

Solution to part (e): A∗ search

i) What is the final path found?s → c → d → e → f → g.

ii) How many nodes were expanded?
7.

iii) Explain why it selected nodes during the search that were not on the shortest path froms to
g.

Nodea looked as thought it was on a direct route to the goal. But, the deviation to go to
b was greater than the cost of going viac.

iv) Explain why it may have been led astray in the final solution. .
It wasn’t; A∗ always finds the shortest path to the goal.

4 Generating Graphs Good for Different Search Strategies

For each of the following, give a graph that is a tree (there is at most one arc into any node), contains
at most 15 nodes, and has at most two arcs out of any node.

(a) Give a graph where depth-first search is much more efficient (expands fewer nodes) than
breadth-first search.

(b) Give a graph where breadth-first search is much better than depth-first search.

(c) Give a graph where A∗ search is more efficient than either depth-first search or breadth-first
search.

(d) Give a graph where depth-first search and breadth-first search are both more efficient than A∗
search.

You must draw the graph and show the order of the neighbours (this is needed for the depth-first
search). Either give the arc costs and heuristic function or state explicitly that you are drawing the
graph to scale and are using Euclidean distance for the arc costs and the heuristic function.

Solution to generating graphs

In all of these graphs, we assume that we are on a plane, with Euclidean distance (straight-line
distance) as the arc cost and as the heuristic function. We also assume that the neighbours are
ordered from left to right. The start node iss and the goal node isg.

(a) Give a graph where depth-first search is much more efficient (expands fewer nodes) than
breadth-first search.

Here depth-first search expands five nodes, whereas breadth-first search expands every
node:

Computational Intelligence - Problems for Chapter 4 10

s

a b

c d

h i j k

g

e f

l m n

(b) Give a graph where breadth-first search is much better than depth-first search.
Here depth-first search expands every node, whereas breadth-first search expands three

nodes:

s

a g

b c

d e f h

i j

(c) Give a graph where A∗ search is more efficient than either depth-first search or breadth-first
search.

Here depth-first search and breadth-first search expand every node, whereas A∗ search
expands 4 nodes.

s

a b

c d

h i j k g

e f

l m n

(d) Give a graph where depth-first search and breadth-first search are both more efficient than A∗
search.

Here depth-first search expands three nodes, breadth-first search expands 4, yet A∗ search
expands every nodes.

Computational Intelligence - Problems for Chapter 4 11

s

a

b

c

d

e

f

h

i

j

g

k

5 Arc Consistency

(a) Consider the following constraint network. Note that(X + Y) mod 2= 1 means thatX + Y
is odd.

{1,2} {3,4}

{3,4}

X Y

Z

(X+Y) mod 2 = 1

Y ≠ ZX+2 ≠ Z

Is this constraint network arc consistent? If it is, explain why. If it isn’t, explain which arc is
not arc consistent and why it isn’t arc consistent.

(b) Consider the following constraint network:

Computational Intelligence - Problems for Chapter 4 12

{1,2} {2,4}

{3,4}

X Y

Z

(X+Y) mod 2 = 1

Y ≠ ZX+2 ≠ Z

Is this constraint network arc consistent? If it is, explain why. If it isn’t, explain which arc is
not arc consistent and why it isn’t arc consistent.

Solution to part (a)

Yes, this is arc consistent.
The relation,(X + Y) mod 2= 1 is true ofX = 1, Y = 4 andX = 2, Y = 3. For eachX-value

there is aY-value and for eachY-value there is anX-value.
The relationX + 2 6= Z is true ofX = 1, Z = 4 andX = 2, Z = 3. For eachX-value there is a

Z-value and for eachZ-value there is anX-value.
The relationY 6= Z is true ofY = 3, Z = 4 andY = 4, Z = 3. For eachY-value there is a

Z-value and for eachZ-value there is anY-value.
Thus it is arc consistent, but there are no solutions!

Solution to part (b)

No, this constraint network is not arc consistent.
The arc〈X, Y〉 is not arc consistent. ForX = 2 there is noY such that(X + Y) mod 2= 1 is

true.

6 Arc Consistency

Suppose you have a relationr(X, Y) that is true of there is a word in the word list below with first
letterX and second letterY.

The word list is:
add arc bad bud
cup dip fad odd

Suppose the domain ofX is {a, b, c, d} and that ofY is {a, d, i, r}.
(a) Is the arc〈X, Y〉 arc consistent? If so, explain why. If not, show what element(s) can be

removed from a domain to make it arc consistent.

Computational Intelligence - Problems for Chapter 4 13

(b) Is the arc〈Y, X〉 arc consistent? If so, explain why. If not, show what element(s) can be
removed from a domain to make it arc consistent.

Solution to part (a)

Is the arc〈X, Y〉 arc consistent?
no.
Arc 〈X, Y〉 is arc consistent means that for everyX there exists aY such thatr(X, Y) is true.
The following table shows for each value ofX a value ofY such thatR(X, Y) is true:

X Y
a d
b a
c ***
d i

There is no elementY in {a, d, i, r} such thatr(c, Y) is true. That is there is no word starting withca,
cd, ci, orcr in the word list.c can be removed from the domain ofX to make〈X, Y〉 arc consistent.

Solution to part (b)

Is the arc〈Y, X〉 arc consistent?
yes.
Arc 〈Y, X〉 is arc consistent means that for everyY there exists anX such thatr(X, Y) is true.
The following table shows for each value ofY a value ofX such thatR(X, Y) is true:

Y X
a b
d a
i d
r a

Thus the arc〈Y, X〉 is arc consistent.
The most common mistake: The relationr(X, Y) corresponds to two arcs,〈X, Y〉 and〈Y, X〉.

You do not swap the arguments tor(X, Y).

7 Solving a CSP via backtracking, arc consistency, hillclimbing

In this question you will look at backtracking, arc consistency, and hill climbing for solving the
same CSP problem.

Consider a scheduling problem, where there are five variablesA, B, C, D, andE, each with
domain{1, 2, 3, 4}. Suppose the constraints are:E − A is even,C 6= D, C > E, C 6= A, B > D,
D > E,B > C.

(a) Show how backtracking can be used to solve this problem, using the variable ordering
A, B, C, D, E. To do this you should draw the search tree generated to find all answers.
Indicate clearly the satisfying assignments.

Computational Intelligence - Problems for Chapter 4 14

To indicate the search tree, write it in text form with each branch on one line. For example,
suppose we had variablesX, Y andZ with domainst, f , and constraintsX 6= Y, Y 6= Z. The
corresponding search tree can be written as:

X=t Y=t failure
Y=f Z=t solution

Z=f failure
X=f Y=t Z=t failure

Z=f solution
Y=f failure

Hint: the easiest way to solve this problem is to write a program to generate the tree (using
whatever programming language you like).

(b) Is there a different variable ordering that results in a smaller tree? Give the variable ordering
that results in the smallest tree (or a small tree). Explain how you determined this was the
optimal ordering. (E.g., what was the search strategy through the space of orderings that you
used to solve this. A good explanation as to why your ordering is good is more important
than the right answer.)

(c) Show how arc consistency can be used to solve this problem. To do this you need to

i) Draw the constraint graph,

ii) Show which elements of a domain are deleted at each step, and which arc is responsible
for removing the element.

iii) Show explicitly the constraint graph after arc consistency has stopped.

iv) Show how splitting domains can be used to solve this problem. Include all arc consis-
tency steps.

(d) Show how hill climbing can be used for the problem. Suppose a neighbor is obtained by
increasing or decreasing the value of one of the variables by 1, the heuristic function to be
maximized is the number of satisfied constraints, and you always choose a neighbor with the
maximal heuristic value.

i) Show what happens when we start with the assignmentA = 1, B = 1, C = 1, D =
1, E = 1.

ii) Show what happens when we start withA = 3, B = 3, C = 2, D = 1, E = 4.

iii) Can you think of a better heuristic function? Explain why or why not.

Solution to part (a)

See the web page for the solution and for a java program and a Prolog program that can generate
the solution.

Solution to part (b)

The optimal orderings are

Computational Intelligence - Problems for Chapter 4 15

[B, C, E, D, A]
[B, D, E, C, A]
[C, B, E, D, A]
[C, E, B, D, A]
[D, B, E, C, A]
[D, E, B, C, A]
[E, C, B, D, A]
[E, D, B, C, A]

There each have 49 failing branches.
Some close orderings are:

[B, C, D, E, A]
[B, D, C, E, A]
[C, B, D, E, A]
[C, E, D, B, A]
[D, B, C, E, A]
[D, E, C, B, A]
[E, C, D, B, A]
[E, D, C, B, A]

There each have 61 failing branches.

[B, C, E, A, D]
[C, B, E, A, D]
[C, E, B, A, D]
[E, C, B, A, D]

These each have 64 failing branches.
So how would one go about arguing for a good ordering? We can look at a strategy that tries

to cut out as big a proportion of the branches as possible at each stage. It doesn’t matter what we
choose first. The second choice should make the biggest pruning which can be done if we choose
a node that uses the> constraint. This has cut the possibilities to a few of the pairs. The third
constraint then has to prune as much as possible again. The ones that prune the most are those
that have constraints with both of the first two variables. The first three variables should either be
{B, C, D} or {C, D, E}. Note that if a branch gets pruned on the third step, it doesn’t matter what
the ordering of the variables is.

Solution to part (c)

The constraint network is

Computational Intelligence - Problems for Chapter 4 16

A

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

B

C

D

E

E-A is even

C≠D

C>E

C≠A

B>C

B>D

D>E

The following shows a trace of the arc consistency:

Arc: <B,C> removes 1 from the domain of B
Arc: <C,B> removes 4 from the domain of C
Arc: <C,E> removes 1 from the domain of C
Arc: <E,C> remove s 3 & 4 from the domain of E
Arc: <D,E> removes 1 from the domain of D
Arc: <B,D> removes 2 from the domain of B
Arc: <D,B> removes 4 from the domain of D

The constraint network is now arc consistent:

A

{1,2,3,4}

{3,4}

{2,3}

{2,3}

{1,2}

B

C

D

E

E-A is even

C≠D

C>E

C≠A

B>C

B>D

D>E

Computational Intelligence - Problems for Chapter 4 17

We now have to split a domain. Let’s split say the domain ofC. We first look at the case with
C = 2 then with theC = 3. That is, we find all of the answers withC = 2; then we’ll find all of
the answers withC = 3.

Case I:C = 2. We can carry out the following pruning:

Arc: <A,C> removes 2 from the domain of A
Arc: <D,C> removes 2 from the domain of D
Arc: <B,D> removes 3 from the domain of B
Arc: <E,C> removes 2 from the domain of E
Arc: <A,C> removes 4 from the domain of A

This results in another arc consistent network with

domain(A)={1,3}
domain(B)={4}
domain(C)={2}
domain(D)={3}
domain(E)={1}

We can splitA resulting in two solutions:

A=1, B=4, C=2, D=3, E=1
A=3, B=4, C=2, D=3, E=1

Case I:C = 3. We can carry out the following pruning:

Arc: <A,C> removes 3 from the domain of A
Arc: <D,C> removes 3 from the domain of D
Arc: <B,C> removes 3 from the domain of B
Arc: <E,D> removes 2 from the domain of E
Arc: <A,C> removes 2&4 from the domain of A

This results in the solution:

A=1, B=4, C=3, D=2, E=1

Solution to part (c)

Show how hill climbing can be used for the problem. Suppose a neighbor is obtained by increasing
or decreasing the value of one of the variables by 1, the heuristic function to be maximized is the
number of satisfied constraints, and you always choose a neighbor with the maximal heuristic value.

i) There are many variants. Here is one:

A B C D E h
1 1 1 1 1 1
1 1 2 1 1 4
1 2 2 1 1 5
1 3 2 1 1 6
1 3 2 2 1 6
1 3 2 3 1 6
1 4 2 3 1 7

Computational Intelligence - Problems for Chapter 4 18

Here is another:
A B C D E h
1 1 1 1 1 1
1 1 2 1 1 4
1 2 2 1 1 5
1 2 3 1 1 5
1 3 3 1 1 5
1 3 3 2 1 6
1 4 3 2 1 7

ii) Again there are many variants:

A B C D E h
3 3 2 1 4 4
4 3 2 1 4 5
4 4 2 1 4 5
4 3 2 1 4 5

This can meander for a long time, but it never gets out of the local minima.
Here is another run:

A B C D E h
3 3 2 1 4 4
3 3 2 1 3 5
3 4 2 1 3 5

Again we can’t go anywhere except alternate between the last two assignments. This is a
small plateau.

iii) A better heuristic would be to notice that if we have a constraintX > Y that increasingX,
even if it doesn’t make it greater thanY is a useful move. Hence one heuristic is to count a
the achievement ofX > Y by 1, but a violation ofX > Y by the valueX − Y (which could
be negative). This would allow us to avoid the second local minima we found.

Another may be to count the inequality and the even/odd constraints as less important
on the grounds that they it is often useful to violate them temporarily, and they are easy to
achieve (by moving a value by one).

