Computational Intelligence Chapter 8, Lecture 3, Page 1

Situation Calculu

e State-based representation where the states are denoged
by terms.

e A situation is a term that dentotes a state.
e There are two ways to refer to states:

Init denotes the initial state

do(A, S) denotes the state resulting from doing
actionAin stateS, if it is possible to dAA In S.

e A situation also encodes how to get to the state it denogs.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 3, Page 2

Example State

INit
do(moverob, 0109, 0103, init)

do(moverob, 0103 mail),
do(moverob, 0109, 0103,
Init)).

do(pickup(rob, k1),
do(moverob, 0103 mail),
do(moverob, 0109, 0103,

init))).

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 3, Page 3

Using the Situation Ter

e Add an extra term to each dynamic predicate indicatin
the situation.

e Example Atoms:
at(rob, 0109, init)
at(rob, 0103 do(moverob, 0109 0103, init))

at(kl, mail, do(move&rob, 0109, 0103), init))

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 3, Page 4

Axiomatizing using the Situation Calcul

e You specify what is true in th initial state using axioms
with init as the situation parameter.

e Primitive relationsare axiomatized by specifying what
IS true in situatiordo(A, S) in terms of what holds in
situationS.

e Derived relationsare defined using clauses with a free
variable in the situation argument.

e Static relationsare defined without reference to the
situation.

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 3, Page 5

Initial Situation

sitting_at(rob, 0109, init).

sitting_at(parcel, storage init).

sitting at(k1, mail, init).
Derived Relation

adjacentPq, P2, S) <«
betweeDoor, P, P2) A
unlockedDoor, S).

adjacentlab2, 0109, 5).

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 3, Page 6

When are actions possibl

POSSA, S) Is true If actionA is possible in stat&.

possputdowrfAg, Ob)), S) «
carrying(Ag, Obj, S).

possmove&Ag, Pos, P0s), S) <«
autonomou@Ag) A
adjacentPos, Po, S) A
sitting at(Ag, Pos, S).

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 3, Page 7

Axiomatizing Primitive Relation

Example: Unlocking the door makes the door unlocked:

unlockedDoor, do(unlock(Ag, Door), S)) «
possunlock(Ag, Door), S).
Frame Axiom: No actions lock the door:
unlockedDoor, do(A, S)) <«

unlockedDoor, S) A
POSSKA, S).

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 3, Page 8

Example: axiomatizingarried

Picking up an object causes it to be carried:

carrying(Ag, Obj, do(pickup(Ag, Obj), S)) <«
posspickupAg, Ob)), S).

Frame Axiom: The object is being carried if it was being

carried before unless the action was to put down the objec

carrying(Ag, Obj, do(A, S)) <«
carrying(Ag, Obj, S A
POSSA, S A
A #£ putdowr{Ag, Obj).

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Chapter 8, Lecture 3, Page 9

Computational Intelligence

More General Frame AxIo

The only actions that undsitting_at for objectObj is when
Obj moves somewhere or when someone is pickingpbp

sitting at(Obj, Pos do(A, S)) <«
POSSA, S A
sitting at(Obj, Pos S) A
VPos A # moveéQObi, Pos Posg) A
VAg A# pickupAg, Obj).

The last line is equivalent to:

~3Ag A= pickup(Ag, Obj)

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence

which can be implemented as

sitting_at(Obj, Pos do(A, S)) «
N ANEERIAN

~Is_pickup action(A, Ob)).
with the clause:

IS_pickup action(A, Obj) <«
A = pickup(Ag, Obj).

which is equivalent to:

is_pickup action(pickup(Ag, Obj), Obj).

Chapter 8, Lecture 3, Page 10

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 3, Page 11

STRIPS and the Situation Calcu

e Anything that can be stated in STRIPS can be stated |
the situation calculus.

e The situation calculus is more powerful. For example,
the “drop everything” action.

e To axiomatize STRIPS in the situation calculus, we ca
use hold9C, S) to mean thaC is true in situatiorts.

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 3, Page 12

holdgC, do(A, W)) «

preconditiongA, P) A The preconditions of

holdsall(P, W) A of Aall hold inW.
add list(A, AL) A C is on the
membe(C, AL). addlist ofA.

hold9C, do(A, W)) «
preconditiongA, P) A The preconditions of
holdsall(P, W) A of Aall hold inW.
deletelist(A,DL) A Cisn’t on the
notin(C, DL) A deletelist ofA.
hold9C, W). C held beforeA.

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"


http://www.cs.ubc.ca/spider/poole/ci.html

