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Depth-first Search

➤ Depth-first search treats the frontier as a stack

➤ It always selects one of the last elements added to the

frontier.

➤ If the frontier is [p1, p2, . . .]
➣ p1 is selected. Paths that extend p1 are added to the

front of the stack (in front of p2.

➣ p2 is only selected when all paths from p1 have been

explored.
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Illustrative Graph — Depth-first Search
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Complexity of Depth-first Search

➤ Depth-first search isn’t guaranteed to halt on infinite

graphs or on graphs with cycles.

➤ The space complexity is linear in the size of the path

being explored.

➤ Search is unconstrained by the goal until it happens to

stumble on the goal.
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Breadth-first Search

➤ Breadth-first search treats the frontier as a queue.

➤ It always selects one of the earliest elements added to the

frontier.

➤ If the frontier is [p1, p2, . . . , pr]:
➣ p1 is selected. Its neighbors are added to the end of

the queue, after pr .

➣ p2 is selected next.
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Illustrative Graph — Breadth-first Search
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Complexity of Breadth-first Search

➤ The branching factor of a node is the number of its

neighbors.

➤ If the branching factor for all nodes is finite, breadth-first

search is guaranteed to find a solution if one exists.

It is guaranteed to find the path with fewest arcs.

➤ Time complexity is exponential in the path length:

bn, where b is branching factor, n is path length.

➤ The space complexity is exponential in path length: bn.

➤ Search is unconstrained by the goal.
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Lowest-cost-first Search
➤ Sometimes there are costs associated with arcs. The

cost of a path is the sum of the costs of its arcs.

cost(〈n0, . . . , nk〉) =
k∑

i=1

|〈ni−1, ni〉|

➤ At each stage, lowest-cost-first search selects a path on

the frontier with lowest cost.

➤ The frontier is a priority queue ordered by path cost.

➤ It finds a least-cost path to a goal node.

➤ When arc costs are equal �⇒ breadth-first search.
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