
Computational Intelligence Chapter 6, Lecture 1, Page 1

Knowledge Engineering

Overview:

➤ How representation and reasoning systems interact with

humans.

➤ Roles of people involved in a RRS.

➤ Building RRSs using meta-interpreters.

➤ Knowledge-based interaction and debugging tools

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 2

Knowledge-based system architecture

Domain
Expert

Knowledge
Engineer

Knowledge
Base

Inference
Engine

User
 Interface User

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 3

Roles for people in a KBS

➤ Software engineersbuild the inference engine and user

interface.

➤ Knowledge engineersdesign, build, and debug the

knowledge base in consultation with domain experts.

➤ Domain expertsknow about the domain, but nothing

about particular cases or how the system works.

➤ Users have problems for the system, know about

particular cases, but not about how the system works or

the domain.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 4

Implementing Knowledge-based Systems

To build an interpreter for a language, we need to distinguish

➤ Base languagethe language of the RRS being

implemented.

➤ Metalanguagethe language used to implement the

system.

They could even be the same language!

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 5

Implementing the base language

Let’s use the definite clause language as the base language

and the metalanguage.

➤ We need to represent the base-level constructs in the

metalanguage.

➤ We represent base-level terms, atoms, and bodies as

meta-level terms.

➤ We represent base-level clauses as meta-level facts.

➤ In the non-ground representationbase-level variables

are represented as meta-level variables.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 6

Representing the base level constructs

➤ Base-level atomp(t1, . . . , tn) is represented as the

meta-level termp(t1, . . . , tn).

➤ Meta-level termoand(e1, e2) denotes the conjunction of

base-level bodiese1 ande2.

➤ Meta-level constanttrue denotes the object-level empty

body.

➤ The meta-level atomclause(h, b) is true if “h if b” is a

clause in the base-level knowledge base.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 7

Example representation

The base-level clauses

connected_to(l1, w0).

connected_to(w0, w1) ← up(s2).

lit (L) ← light(L) ∧ ok(L) ∧ live(L).

can be represented as the meta-level facts

clause(connected_to(l1, w0), true).

clause(connected_to(w0, w1), up(s2)).

clause(lit (L), oand(light(L), oand(ok(L), live(L)))).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 8

Making the representation pretty

➤ Use the infix function symbol “&” rather thanoand.

➣ instead of writingoand(e1, e2), you writee1 & e2.

➤ Instead of writingclause(h, b) you can writeh ⇐ b,

where⇐ is an infix meta-level predicate symbol.

➣ Thus the base-level clause “h ← a1 ∧ · · · ∧ an” is

represented as the meta-level atom

h ⇐ a1 & · · · & an.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 9

Example representation

The base-level clauses

connected_to(l1, w0).

connected_to(w0, w1) ← up(s2).

lit (L) ← light(L) ∧ ok(L) ∧ live(L).

can be represented as the meta-level facts

connected_to(l1, w0) ⇐ true.

connected_to(w0, w1) ⇐ up(s2).

lit (L) ⇐ light(L) & ok(L) & live(L).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

