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Knowledge Engineering

Overview:

➤ How representation and reasoning systems interact with

humans.

➤ Roles of people involved in a RRS.

➤ Building RRSs using meta-interpreters.

➤ Knowledge-based interaction and debugging tools
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Knowledge-based system architecture
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Roles for people in a KBS

➤ Software engineersbuild the inference engine and user

interface.

➤ Knowledge engineersdesign, build, and debug the

knowledge base in consultation with domain experts.

➤ Domain expertsknow about the domain, but nothing

about particular cases or how the system works.

➤ Users have problems for the system, know about

particular cases, but not about how the system works or

the domain.
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Implementing Knowledge-based Systems

To build an interpreter for a language, we need to distinguish

➤ Base languagethe language of the RRS being

implemented.

➤ Metalanguagethe language used to implement the

system.

They could even be the same language!
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Implementing the base language

Let’s use the definite clause language as the base language

and the metalanguage.

➤ We need to represent the base-level constructs in the

metalanguage.

➤ We represent base-level terms, atoms, and bodies as

meta-level terms.

➤ We represent base-level clauses as meta-level facts.

➤ In the non-ground representationbase-level variables

are represented as meta-level variables.
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Representing the base level constructs

➤ Base-level atomp(t1, . . . , tn) is represented as the

meta-level termp(t1, . . . , tn).

➤ Meta-level termoand(e1, e2) denotes the conjunction of

base-level bodiese1 ande2.

➤ Meta-level constanttrue denotes the object-level empty

body.

➤ The meta-level atomclause(h, b) is true if “h if b” is a

clause in the base-level knowledge base.
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Example representation

The base-level clauses

connected_to(l1, w0).

connected_to(w0, w1) ← up(s2).

lit (L) ← light(L) ∧ ok(L) ∧ live(L).

can be represented as the meta-level facts

clause(connected_to(l1, w0), true).

clause(connected_to(w0, w1), up(s2)).

clause(lit (L), oand(light(L), oand(ok(L), live(L)))).
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Making the representation pretty

➤ Use the infix function symbol “&” rather thanoand.

➣ instead of writingoand(e1, e2), you writee1 & e2.

➤ Instead of writingclause(h, b) you can writeh ⇐ b,

where⇐ is an infix meta-level predicate symbol.

➣ Thus the base-level clause “h ← a1 ∧ · · · ∧ an” is

represented as the meta-level atom

h ⇐ a1 & · · · & an.
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Example representation

The base-level clauses

connected_to(l1, w0).

connected_to(w0, w1) ← up(s2).

lit (L) ← light(L) ∧ ok(L) ∧ live(L).

can be represented as the meta-level facts

connected_to(l1, w0) ⇐ true.

connected_to(w0, w1) ⇐ up(s2).

lit (L) ⇐ light(L) & ok(L) & live(L).
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