
Computational Intelligence Chapter 4, Lecture 2, Page 1

Depth-first Search

➤ Depth-first search treats the frontier as a stack

➤ It always selects one of the last elements added to the

frontier.

➤ If the frontier is [p1, p2, . . .]
➣ p1 is selected. Paths that extend p1 are added to the

front of the stack (in front of p2.

➣ p2 is only selected when all paths from p1 have been

explored.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 2, Page 2

Illustrative Graph — Depth-first Search

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 2, Page 3

Complexity of Depth-first Search

➤ Depth-first search isn’t guaranteed to halt on infinite

graphs or on graphs with cycles.

➤ The space complexity is linear in the size of the path

being explored.

➤ Search is unconstrained by the goal until it happens to

stumble on the goal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 2, Page 4

Breadth-first Search

➤ Breadth-first search treats the frontier as a queue.

➤ It always selects one of the earliest elements added to the

frontier.

➤ If the frontier is [p1, p2, . . . , pr]:
➣ p1 is selected. Its neighbors are added to the end of

the queue, after pr .

➣ p2 is selected next.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 2, Page 5

Illustrative Graph — Breadth-first Search

1

2 3

4 5 6 7

8 9 10 11 12 13 14

15 16

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 2, Page 6

Complexity of Breadth-first Search

➤ The branching factor of a node is the number of its

neighbors.

➤ If the branching factor for all nodes is finite, breadth-first

search is guaranteed to find a solution if one exists.

It is guaranteed to find the path with fewest arcs.

➤ Time complexity is exponential in the path length:

bn, where b is branching factor, n is path length.

➤ The space complexity is exponential in path length: bn.

➤ Search is unconstrained by the goal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 2, Page 7

Lowest-cost-first Search
➤ Sometimes there are costs associated with arcs. The

cost of a path is the sum of the costs of its arcs.

cost(〈n0, . . . , nk〉) =
k∑

i=1

|〈ni−1, ni〉|

➤ At each stage, lowest-cost-first search selects a path on

the frontier with lowest cost.

➤ The frontier is a priority queue ordered by path cost.

➤ It finds a least-cost path to a goal node.

➤ When arc costs are equal �⇒ breadth-first search.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

