To build an interpreter for a language, we need to distinguish

- **Base language** the language of the RRS being implemented.
- **Metalanguage** the language used to implement the system.

They could even be the same language!
Implementing the base language

Let’s use the definite clause language as the base language and the metalanguage.

- We need to represent the base-level constructs in the metalanguage.
- We represent base-level terms, atoms, and bodies as meta-level terms.
- We represent base-level clauses as meta-level facts.
- In the non-ground representation base-level variables are represented as meta-level variables.
Representing the base level constructs

- Base-level atom \(p(t_1, \ldots, t_n) \) is represented as the meta-level term \(p(t_1, \ldots, t_n) \).
- Meta-level term \(oand(e_1, e_2) \) denotes the conjunction of base-level bodies \(e_1 \) and \(e_2 \).
- Meta-level constant \(\text{true} \) denotes the object-level empty body.
- The meta-level atom \(\text{clause}(h, b) \) is true if “\(h \) if \(b \)” is a clause in the base-level knowledge base.
The base-level clauses

\[\text{connected}(l_1, w_0). \]
\[\text{connected}(w_0, w_1) \leftarrow \text{up}(s_2). \]
\[\text{lit}(L) \leftarrow \text{light}(L) \land \text{ok}(L) \land \text{live}(L). \]

can be represented as the meta-level facts

\[\text{clause}(\text{connected}(l_1, w_0), \text{true}). \]
\[\text{clause}(\text{connected}(w_0, w_1), \text{up}(s_2)). \]
\[\text{clause}(\text{lit}(L), \text{and}((\text{light}(L), \text{and}(\text{ok}(L), \text{live}(L))))). \]
Use the infix function symbol “&” rather than oand.
 ▶ instead of writing oand(e₁, e₂), you write e₁ & e₂.

Instead of writing clause(h, b) you can write h ⇐ b, where ⇐ is an infix meta-level predicate symbol.
 ▶ Thus the base-level clause “h ⇐ a₁ ∧ ⋅⋅⋅ ∧ aₙ” is represented as the meta-level atom h ⇐ a₁ & ⋅⋅⋅ & aₙ.
The base-level clauses

\[
\begin{align*}
\text{connected_to}(l_1, w_0). \\
\text{connected_to}(w_0, w_1) &\leftarrow \text{up}(s_2). \\
\text{lit}(L) &\leftarrow \text{light}(L) \land \text{ok}(L) \land \text{live}(L). \\
\end{align*}
\]

can be represented as the meta-level facts

\[
\begin{align*}
\text{connected_to}(l_1, w_0) &\leftarrow \text{true}. \\
\text{connected_to}(w_0, w_1) &\leftarrow \text{up}(s_2). \\
\text{lit}(L) &\leftarrow \text{light}(L) \land \text{ok}(L) \land \text{live}(L). \\
\end{align*}
\]
prove(G) is true when base-level body G is a logical consequence of the base-level KB.

prove(true).
prove((A & B)) ←
 prove(A) ∧
 prove(B).
prove(H) ←
 (H ⇔ B) ∧
 prove(B).
Example base-level KB

\[
\text{live}(W) \leftarrow \\
\quad \text{connected_to}(W, W_1) \& \\
\quad \text{live}(W_1).
\]

\[
\text{live(outside)} \leftarrow \text{true}.
\]

\[
\text{connected_to}(w_6, w_5) \leftarrow \text{ok}(cb_2).
\]

\[
\text{connected_to}(w_5, outside) \leftarrow \text{true}.
\]

\[
\text{ok}(cb_2) \leftarrow \text{true}.
\]

\[
?\text{prove}(\text{live}(w_6)).
\]
Expanding the base-level

Adding clauses increases what can be proved.

- **Disjunction** Let $a; b$ be the base-level representation for the disjunction of a and b. Body $a; b$ is true when a is true, or b is true, or both a and b are true.

- **Built-in predicates** You can add built-in predicates such as N is E that is true if expression E evaluates to number N.
prove(true).
prove((A & B)) ←
 prove(A) ∧ prove(B).
prove((A; B)) ← prove(A).
prove((A; B)) ← prove(B).
prove((N is E)) ←
 N is E.
prove(H) ←
 (H ⇐ B) ∧ prove(B).
Adding conditions reduces what can be proved.

\[\textit{bprove}(G, D) \] is true if \(G \) can be proved with a proof tree of depth less than or equal to number \(D \).

\[
\begin{align*}
\textit{bprove}(true, D). \\
\textit{bprove}((A \& B), D) & \leftarrow \\
& \quad \textit{bprove}(A, D) \land \textit{bprove}(B, D). \\
\textit{bprove}(H, D) & \leftarrow \\
& \quad D \geq 0 \land D_1 \text{ is } D - 1 \land \\
& \quad (H \iff B) \land \textit{bprove}(B, D_1).
\end{align*}
\]