A **semantics** specifies the meaning of sentences in the language. An **interpretation** specifies:

- what objects (individuals) are in the world
- the correspondence between symbols in the computer and objects & relations in world
 - constants denote individuals
 - predicate symbols denote relations
An **interpretation** is a triple $I = \langle D, \phi, \pi \rangle$, where

- D, the **domain**, is a nonempty set. Elements of D are **individuals**.
- ϕ is a mapping that assigns to each constant an element of D. Constant c **denotes** individual $\phi(c)$.
- π is a mapping that assigns to each n-ary predicate symbol a relation: a function from D^n into $\{\text{TRUE, FALSE}\}$.
Example Interpretation

Constants: *phone*, *pencil*, *telephone*.

Predicate Symbol: *noisy* (unary), *left_of* (binary).

\[D = \{ \text{\ding{101}}, \text{\ding{102}}, \text{\ding{103}} \}. \]

\[\phi(p\text{hone}) = \text{\ding{102}}, \phi(p\text{encil}) = \text{\ding{103}}, \phi(t\text{elephone}) = \text{\ding{102}}. \]

\[\pi(\text{noisy}): \begin{array}{c|c|c}
\langle \text{<} \rangle & \text{FALSE} & \langle \text{\textcircled{\textbardbl}} \rangle & \text{TRUE} \\
\end{array} \]

\[\pi(\text{left_of}): \]

\[\begin{array}{c|c|c|c}
\langle \text{<} \rangle & \text{FALSE} & \langle \text{<}, \text{\textcircled{\textbardbl}} \rangle & \text{TRUE} \\
\langle \text{\textcircled{\textbardbl}}, \text{<} \rangle & \text{FALSE} & \langle \text{\textcircled{\textbardbl}}, \text{\textcircled{\textbardbl}} \rangle & \text{FALSE} \\
\langle \text{\textcircled{\textbardbl}}, \text{\textcircled{\textbardbl}} \rangle & \text{FALSE} & \langle \text{\textcircled{\textbardbl}}, \text{\textcircled{\textbardbl}} \rangle & \text{TRUE} \end{array} \]
Important points to note

• The domain D can contain real objects. (e.g., a person, a room, a course). D can’t necessarily be stored in a computer.

• $\pi(p)$ specifies whether the relation denoted by the n-ary predicate symbol p is true or false for each n-tuple of individuals.

• If predicate symbol p has no arguments, then $\pi(p)$ is either $TRUE$ or $FALSE$.
A constant c **denotes in I** the individual $\phi(c)$.

Ground (variable-free) atom $p(t_1, \ldots, t_n)$ is

- **true in interpretation I** if $\pi(p)(\langle \phi(t_1), \ldots, \phi(t_n) \rangle) = TRUE$ in interpretation I and
- **false** otherwise.

Ground clause $h \leftarrow b_1 \land \ldots \land b_m$ is **false in interpretation I** if h is false in I and each b_i is true in I, and is **true in interpretation I** otherwise.
Example Truths

In the interpretation given before, which of the following are true?

\[\text{noisy(phone)}\]
\[\text{noisy(telephone)}\]
\[\text{noisy(pencil)}\]
\[\text{left_of(phone, pencil)}\]
\[\text{left_of(phone, telephone)}\]
\[\text{noisy(phone)} \leftarrow \text{left_of(phone, telephone)}\]
\[\text{noisy(pencil)} \leftarrow \text{left_of(phone, telephone)}\]
\[\text{noisy(pencil)} \leftarrow \text{left_of(phone, pencil)}\]
\[\text{noisy(phone)} \leftarrow \text{noisy(telephone)} \land \text{noisy(pencil)}\]
In the interpretation given before, which of following are true?

\[
\begin{align*}
&\text{noisy} (\text{phone}) & \text{true} \\
&\text{noisy} (\text{telephone}) & \text{true} \\
&\text{noisy} (\text{pencil}) & \text{false} \\
&\text{left}_\text{of} (\text{phone}, \text{pencil}) & \text{true} \\
&\text{left}_\text{of} (\text{phone}, \text{telephone}) & \text{false} \\
&\text{noisy} (\text{phone}) \leftarrow \text{left}_\text{of} (\text{phone}, \text{telephone}) & \text{true} \\
&\text{noisy} (\text{pencil}) \leftarrow \text{left}_\text{of} (\text{phone}, \text{telephone}) & \text{true} \\
&\text{noisy} (\text{pencil}) \leftarrow \text{left}_\text{of} (\text{phone}, \text{pencil}) & \text{false} \\
&\text{noisy} (\text{phone}) \leftarrow \text{noisy} (\text{telephone}) \land \text{noisy} (\text{pencil}) & \text{true}
\end{align*}
\]
A knowledge base, KB, is true in interpretation I if and only if every clause in KB is true in I.

A **model** of a set of clauses is an interpretation in which all the clauses are true.

If KB is a set of clauses and g is a conjunction of atoms, g is a **logical consequence** of KB, written $KB \models g$, if g is true in every model of KB.

That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.
User’s view of Semantics

1. Choose a task domain: **intended interpretation.**
2. Associate constants with individuals you want to name.
3. For each relation you want to represent, associate a predicate symbol in the language.
4. Tell the system clauses that are true in the intended interpretation: **axiomatizing the domain.**
5. Ask questions about the intended interpretation.
6. If $KB \models g$, then g must be true in the intended interpretation.
The computer doesn’t have access to the intended interpretation.

All it knows is the knowledge base.

The computer can determine if a formula is a logical consequence of KB.

If $KB \models g$ then g must be true in the intended interpretation.

If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.
in(kim,r123).
part_of(r123,cs_building).
in(X,Y) ←
 part_of(Z,Y) \land
 in(X,Z).

\(\text{in}(\text{kim}, \text{cs_building})\)