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Abstract

This paper shows how to combine decision theory and logical representa-

tions of actions in a manner that seems natural for both. In particular, we

assume an axiomatization of the domain in the situation calculus, using what

is essentially Reiter’s solution to the frame problem, in terms of the comple-

tion of the axioms defining the state change. Uncertainty is handled using the

independent choice logic, which allows for independent choices and a logic

program that gives the consequences of the choices. The same framework

handles both frame and ramification axioms. As part of the consequences

are a specification of the utility of (final) states, and how sensors depend

on the state. The logic is used to reason about agents; agents themselves

evaluate conditional plans, similar to the GOLOG programming language.

Within the logic, we can define the expected utility of a conditional plan,

based on the axiomatization of the actions, the sensors and the utility. Sen-

sors can be noisy and actions can be stochastic. The planning problem is to

find the plan with the highest expected utility. This representation is related

to recent structured representations for partially observable Markov deci-

sion processes (POMDPs); here we use stochastic situation calculus rules

to specify the state transition function and the reward/value function.
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1 Introduction

This paper presents a way to combine decision theory, the situation calculus,
and conditional plans. It ignores many issues such as concurrent actions,
time, multiple agents, and the derivation of causal rules from domain con-
straints. We want to separately study the orthogonal issues, and try to devise
solutions to individual subproblems that are not incompatible with the so-
lutions to other subproblems. The goal is simplicity; the resulting system is
simple, as one would hope when trying to combine fundamental concepts.

It is important to make it clear that we are using decision theory and
the sitution calculus to reason about agents such as robots. The agents
themselves follow conditional plans.

The rest of this introduction gives philosophical starting points for this
paper. Some of these arguments are standard and are given here to make
them open to scrutiny.

1.1 Reasoning about actions

In this paper, we consider reasoning about actions to be about one simple
problem: given a model of itself and the world, and some goals (or prefer-
ences), what should an agent do?

Solving this problem is complicated because:

• What an agent should do now depends on what it will do in the future.
The only reason I am typing these words is because I plan to submit
this to a journal in the future. The only reason a robot may be going
in a particular direction is because it is going to get a key to open a
door.

• What an agent will do in the future depends on what it will observe
in the future. Only a stupid agent, or one in a very uninteresting
environment, would look at the world, decide what to do, and then act
without consulting its sensors (this is called “dead reckoning”). If I
observe someone has written a related paper to this one, I will change
what I write to reflect this. If my robot notices that the door it is
getting the key for is already open, or notices that its path is blocked,
it should change what it does to reflect this new information.

• What an agent will observe in the future depends on what it does now.
The classic example of this is in medical tests; it’s not uncommon
for doctors to inflict pain and incur risk of injury (ir even death)
on a patient for the sole purpose of finding information on which
they may base future actions. Even more mundanely an agent will
observe different things depending on whether it turns right or left at
an intersection.

Work on reactive robots (Brooks 1986, Brooks 1991) had proposed ignoring
the first point; the agent reacts to the environment without considering what
it will do in the future. There are many domains for which simple reaction
to the environment, without thinking, will not lead the agent to a desirable
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state. What we should learn from the work on reactive robots is that agents
must be able to react (quickly) to the environment. The representation in
this paper is not at odds with reactive agents but rather emphasises how to
reason about current actions based on thinking about the future.

Classic planning work in AI (Fikes & Nilsson 1971, Yang 1997) has
ignored the second point. The idea behind classical planning is to make
a linear plan based on assuming what the world is like, and to patch this
plan or replan if execution monitoring says that the plan has not worked.
However, for virtually every interesting domain there are no actions whose
consequences can be predicted based on information known at planning
time.

When the information needed to predict the consequences of actions
will become known at execution time, you can use conditional planning
(Manna & Waldinger 1980, Peot & Smith 1992). as set out above; an agent
can consider adopting a conditional plan that lets it condition its actions on
what it observes. The traditional view of conditional planning (Manna &
Waldinger 1980, Peot & Smith 1992) assumes that the agent can achieve
the goal no matter which path through the conditional plan is taken. This
assumes perfect sensors and a deterministic model of the world so that you
can prove that your conditional plan will reach the goal. This means that you
need to approximate the problem; in most problems, the effects of actions are
not completely predictable in the real world. Unexpected things do happen,
and you can’t always observe all of the conditions that affect the outcome
of an action. Approximating the problem of finding the best plan to that of
finding a good-enough plan is the idea ofsatisficing(Simon 1996).

However both sequential (unconditional) and traditional conditional
planning are problematic for a number of reasons:

• Not all failures are born equal. A robot failing to pick up a key is very
different from it falling down the stairs. In the first case it can just try
again; in the second case you may need to repair or replace the robot
(and anything else it fell on). Sometimes it may be worth the risk of
falling down the stairs if the robot has to get past the stairs. At other
times it may not be worth the risk. It is important to consider not only
the most likely state of affairs, but also deviations from it.

• Ignoring the possible effects that are not the most likely can lead to bad
plans. For example, it is usually a good idea to wear a seat belt when
driving in a car. However, when we only consider solving a goal, we
nevercome up with a plan to wear a seat belt. This is because we
don’t want it to be a goal state to have an accident while wearing a seat
belt (it is usually very easy to achieve having an accident). In fact, we
want to avoid having an accident! However, if we assume we won’t
have an accident, there is no reason to put up with the inconvenience
of wearing a seat belt. By approximating the problem by assuming
determinism, we preclude good solutions to the actual problem that
isn’t determistic. This becomes even more ridiculous when we worry
about finding exact solutions to these approximate problems.
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• There may not be any normal state of affairs. There are many actions
where the outcomes are not completely predictable. For example, the
effect of picking up a cup often is that everything in the cup remains
in it, and that nothing else gets disturbed, but anyone with kids knows
that this isn’t thenormal outcome (and robots are not, and won’t be
for a long time, as adept as kids in picking up cups).

The problem is that any model of a domain is an approximation of the do-
main. The idea of satisficing is good; to simplify the problem to make it
computationally easy to solve. It isn’t of much use when the simplified prob-
lem isn’t easy to solve or when the simplified problem does not lend itself
to approximate solutions. It is dangerous when we forget the formalization
is only an approximation, and treat it as the real thing.

There is an alternative. To quote Rich Sutton:1

Approximate the solution, not the problem.

It may be better to more accurately model the problem as well as our knowl-
edge and ignorance of the problem (including modelling the approximation
caused by the modelling activity itself). This doesn’t mean we have to
model at the lowest level of detail or that there cannot be a more accurate
model of the world, but rather that the model contains a true reflection of
the knowledge and ignorance contained in the model. We would also like a
model that allows for the existence of good-enough plans (or approximately
optimal plans). The specification of a “good enough” plan shouldn’t be
embedded in the model, but should be usable during inference. Providing
a modelling language that lets us model our knowledge of a domain and
lets us find approximately optimal plans is the promise of decision-theoretic
planning.

1.2 Decision Theory

Bayesian decision theory is one of the simplest, most universally applica-
ble, yet most misunderstood theory about reasoning and acting. Bayesian
decision theory specifies what an agent should (decide to) do, given its
preferences and partial information about its environment.

The appeal of Bayesian decision theory is based on theorems (Von Neu-
mann & Morgenstern 1953, Savage 1972) that say that under certain rea-
sonable assumptions about preferences, an agent will choose an action that
maximises its expected utility (see Myerson (1991) and Ordeshook (1986)
for good introductions). It is normative in the sense that if an agent isn’t act-
ing according to the tenets of decision theory, it must be violating one of the
assumptions. This result does not mean that an agent has to explicitly manip-
ulate probabilities and utilities (the basic ingredients of decision-theoretic
methods), but that its decisions can be rationalised in these terms. For AI

1From Reinforcement Learning: Lessons for Artificial Intelligence,
A talk presented by Rich Sutton at the 1997 International Joint Con-
ference on Artificial Intelligence Nagoya, Japan, August 28, 1997.
http://www-anw.cs.umass.edu/ rich/IJCAI97/IJCAI97.html
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researchers building intelligent systems, we can argue that if we want to
build a rational agent that acts according to the tenants of decision theory,
we should reason directly in terms of probabilities and utilities: if the agent
is going to act according to some probabilities and utilities, we should let it
act according to the most reasonable set of probabilities and utilities.

Bayesian decision theory is radical in that it suggests thatall uncertainty
be summarised in terms of probabilities. This includes genuinely stochastic
phenomenon, ignorance, partial observability, and simplifications due to
modelling assumptions. In all of these cases, probability is a measure of
the agent’s beliefs. Bayesian decision theory goes against the permissive
trend that suggests that we try to integrate many different ways to handle
uncertainty.2

It is important to note that decision theory has nothing to say about repre-
sentations. Adopting decision theory doesn’t mean adopting any particular
representation. While there are some representations that can be directly
extracted from the theory, such as the explicit reasoning over the state space
or the use of decision trees, these become intractable as the problem domains
become large; it is like theorem proving by enumerating the interpretations.
Adopting logic doesn’t mean you have to enumerate interpretations or gen-
erate the semantic tree (Chang & Lee 1973), nor does adopting decision
theory mean you have to use analogous representations.

Finally it should be noticed that decision-theoretic planning is very
different from probabilistic planning (Kushmerick, Hanks & Weld 1995),
where the aim is to find a plan that reaches the goal with probability greater
than some threshold. Rather than having a goal, we specify the value of
each outcome. It is quite possible that the optimal planneverachieves the
best-possible goal; the risk in trying to get to that goal may not be worth-
while when compared to another plan that gets to a less-valuable state (e.g.,
it may not be worth trying to achieve world peace if that entails a risk of
killing everyone on Earth).

1.3 Logic and Uncertainty

There are many normative arguments for the use of logic in AI (Nilsson
1991, Poole, Mackworth & Goebel 1998). These arguments are usually
based on reasoning with symbols with an explicit denotation, allowing re-
lations amongst individuals, and permitting quantification over individuals.
This is often translated as needing (at least) the first-order predicate cal-

2One such theory that has been advocated is Dempster-Shafer theory (Shafer 1976)
which could be described as allowing disjunctive assertions about probabilities. This may
be useful for theoretical (as opposed to practical) reasoning about other agents, where you
can be uncertain about their probability. It doesn’t make sense to be uncertain about your own
beliefs when your beliefs are exactly a measure of your uncertainty. In practical reasoning
where you have to act, you will act according to some probabilities, and these are your
beliefs. For an alternative to the view expressed here, the transferable belief model (Smets
& Kennes 1994) suggests using belief functions to represent beliefs and then converting
them to probabilities for decision making. This is more an argument about representing all
updating in terms of Bayesian conditioning, but see Snow (1998) for problems with this
approach. Smets (1991) gives a nice overview of different models of update.
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culus. Unfortunately, the first-order predicate calculus has very primitive
mechanisms for handling uncertainty, namely, the use of disjunction and
existential quantification.

If we accept the normative arguments of Bayesian decision theory and
those for logic (and they don’t seem to be contradictory), then we have to
consider how to handle uncertainty. Bayesian decision theory specifies that
all uncertainty be handled by probability.

The independent choice logic (ICL) (Poole 1997a, Poole 1998) recon-
ciles Bayesian decision theory with logic. It is designed to include the
advantages of logic, but to handleall uncertainty using Bayesian decision
theory (or game theory when there is more than one agent).

The idea is, rather than using disjunction to handle uncertainty, to allow
agents, including nature, to make choices from a choice space, and use a
restricted underlying logic to specify the consequences of the choices. We
can adopt acyclic logic programs (Apt & Bezem 1991) under the stable
model semantics (Gelfond & Lifschitz 1988) as the underlying logical for-
malism. This logic includes no uncertainty in the sense that every acyclic
logic program has a unique stable model.3 All uncertainty is handled by
independent stochastic mechanisms. A deterministic logic program gives
the consequences of the agent’s choices and the random outcomes.

What is interesting is that simple logic programming solutions to the
frame problem (see Shanahan 1997, Chapter 12) seem to be directly trans-
ferable to the ICL which has more sophisticated mechanisms for handling
uncertainty than the predicate calculus. I would even dare to venture that the
main problems with formalizing action within the predicate calculus arise
because disjunction is inadequate to represent the sort of uncertainty we
need.

When mixing logic and probability, one can extend a rich logic with
probability, and have two kinds of uncertainty: that uncertainty from the
probabilities and that from disjunction in the logic (Bacchus 1990, Halpern
& Tuttle 1993). An alternative that is pursued in the independent choice
logic is to have all of the uncertainty in terms of probabilities.

1.4 Representations of Actions and Uncertainty

The combination of decision theory and planning (Feldman & Sproull 1975)
is very appealing. The general idea of planning is to construct a sequence of
steps, perhaps conditional on observations that solves a goal. In decision-
theoretic planning, this is generalised to the case where there is uncertainty
about the environment and we are interested in, not only solving a goal, but
what happens under any of the contingencies. Goal solving is extended to
the problem of maximizing the agent’s expected utility, where the utility
is an arbitrary function of the final state (or the accumulation of rewards
received earlier).

3We can conclude eithera or ∼a for every closed formulaa. This cannot use disjunction
to encode uncertainty becausea∨ b is only a consequence if one ofa or b is. Note that this
is a property of the underlying logic, not a property of the ICL.
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Recently there have been claims made that Markov decision processes
(MDPs) (Bellman 1957, Puterman 1994) and partially observable Markov
decision problems (POMDPs) (Monahan 1982, Lovejoy 1991, Zhang &
Liu 1997, Kaelbling, Littman & Cassandra 1998) are the appropriate frame-
work for developing decision theoretic planners (e.g., Boutilier, Dearden &
Goldszmidt 1995, Geffner & Bonet 1998). MDPs, POMDPs and dynamical
system in general (Luenberger 1979), are based on the notion of astate. The
state is the information about what is true at a time such that if we knew the
state at some time, knowing the past at that time won’t help predict the future
from that time. In terms of probability, the future is independent of the past
given the state. This is called theMarkov property . In the discrete-time
Markovian view, the notion of an action is straightforward: anaction is a
stochastic function from states into states. That is, an action and a state
leads to a probability distribution over resulting states. Again, this is the
semantics of actions; it doesn’t lead to efficient representations.

The naive expicit representation of stochastic actions involves providing,
for each action and state, the probability distribution over resulting states.
An action can then be represented as as× s matrix, wheres is the number
of states (Luenberger 1979). As you can imagine, this soon explodes for all
but the smallest state-spaces.

Artificial intelligence researchers are very interested in finding good
representations. We usually think of the world, not in terms of states, but in
terms of propositions (or random variables). We would then like to specify
actions in terms of how the values propositions at one time affect the values
of propositions at the next time. This is the idea behindtwo-slice temporal
Bayesian networks(Dean & Kanazawa 1989): we divide the state into
random variables and, for each action, write how the random variables at
one time affect the random variables at the next time. When the value of a
random variable is only affected by a few (a bounded number of) random
variables at the previous stage for each action, the complexity of the action
representation is the number of variables times the number of actions. This
is a significant improvement over the explicit state-space representation as
the state space is exponentially larger than the number of variables (e.g., if
there aren binary variables, there ares = 2n states).

This problem is similar to the frame problem (McCarthy & Hayes 1969,
Shanahan 1997), which is the problem of how to concisely specify the con-
sequences of an action (and how to effectively use that concise specification
computationally). In the classic conceptualisation of the frame problem, the
assumption is that an action only affects a few propositions. There have been
many suggestions as to how to get compact representations of actions under
these assumptions (Shanahan 1997). This paper shows how one such repre-
sentation, the situation calculus (McCarthy & Hayes 1969) can be combined
with decision theory.

1.5 Modelling Agents

Another dimension for considering actions is in the capabilities of agents;
what sensing they can do, and how they choose which actions to do next.
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Essentially an agent should be seen as a function of its history at each time
(what it has done and what it has observed at that time and in the past)
into its action at that time. This is known as anagent function (Russell
& Subramanian 1995, Rosenschein & Kaelbling 1995) or atransduction
(Zhang & Mackworth 1995, Poole et al. 1998). A transduction is a specifica-
tion of what an agent does. An agent cannot directly execute a transduction
as it doesn’t have access to its history; it only has access to what it can
sense and what it has remembered. Two prominent traditions on how to
implement transductions in agents are:

• In the first tradition, agents have their own internal states (called belief
states). We build agents by constructing astate transition function
that specifies how the agent’s belief state is updated from its previous
belief state and its observations, and acommand function (policy)
that specifies what the agent should do based on its observations and
belief state (Poole et al. 1998, Chapter 12). In fully observable MDPs,
the agent can observe the actual state and so doesn’t need anything
more in its belief states. In partially observable MDP (POMDP)
models (Section 3.1), we assume (noisy) sensors, where the sensor
output is a stochastic function of the action and the state. In these
models, there is an optimal agent that represents the belief state as
a probability distribution over the actual states of the system. The
state transition function is given by the model of the action and the
observation (the value received by the sensor) and Bayes’ rule. In
between the agents that have perfect sensors but remember nothing
and the agents that maintain a perfect model (relative to their limited
sensors) are agents that have limited memory or limited reasoning
capabilities.

• In the second tradition, we can think of agents implementingrobot
programs or plans as in GOLOG (Levesque, Reiter, Lespérance,
Lin & Scherl 1997). These plans consider sequences of steps, with
conditions, loops, assignments of values to local variables, and other
features we expect to find in programming languages. In order to react
to the world, we would expect the conditions in the branching to be
observations about the world (the values received by potentially noisy
sensors) as well as the values of internal variables (Levesque 1996).
Lin & Levesque (1998) showed that any recursive transduction can
be represented in a reasonably simple robot programming language.

Policies (functions from belief state and observations) and plans (composed
of primitive actions and built from sequential composition, conditionals and
iteration) are different although each can be simulated by the other. A policy
can be simulated by an iterative structure over a conditional.4 A plan can be
simulated by a policy by having a program counter as part of the state (this
is how computers work).

4In the traditional view of policies, the conditional would be a case statement over all
possible states. A while loop over an arbitrary condition would be like the tree-structured
policies of Boutilier et al. (1995); these trees are representations of conditional statements.
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If we are doing exact computation (finding the optimal agent) policies
and plans should be essentially the same, as they would implement the same
transduction. When we are finding approximately optimal agents, they may
be very different as a simple plan may not correspond to a simple policy and
vice versa.

In this paper we consider a simple language for plans made up of sequen-
tial composition and conditionals (conditioning on the output of potentially
noisy sensors). Iteration and local variables are explored briefly in Section
2.11. In other work, we have considered policies within the ICL including
multiple agents and noisy sensors (Poole 1997a). We have also investigated
continuous time in the same framework (Poole 1995).

1.6 Action Preconditions

It may seem as though the definition of an action is uncontroversial. This is
perhaps because most formal theories treat actions as primitive, and assume
that the available actions are given. However, when we try to build a robot,
we soon find out that there isn’t a neat set of actions given to us. To build a
satisfactory theory of actions, we need to be very explicit as to exactly what
we mean by an action.

By an action, I mean a particular motor control that is sent by an agent’s
controller (see Figure 1). Everything else, for example, the agent’s behaviour
(what the agent actually does or achieves) is part of the effects that we
axiomatise. Thus an action is something that is chosen by the controller.

This is sensible as a basis for a theory of action for a number of reasons:

• It is the only thing that a controller can control. For practical rea-
soning, this is exactly what we want the controller to reason about;
namely what it can control. Even if we were not to call these actions,
we still want to reason about these commands and their effects. It
also seems that if we know the effects of these motor controls under
various contingencies, there is nothing else about actions that we need
to model for the agent to decide what to do.

• It is something that the agent knows that occurred: that it sent this
control command. (The only other thing it really knows is the output
messages it receives from its sensors—the percepts of Figure 1.) An
agent doesn’t know its actual behaviour; only what its motor control
was and what its sensors tell it.

• The output of the controller is the one place where the actions can be
symbolic. The behaviour of a robot is not symbolic. If we are to give
some ontological importance to symbolic actions, then it would seem
that the output of a controller is where this can be done.

• Given a controller, this is a well-defined interface. Often the interface
between an agent and the environment is arbitrary. Is the hammer
held by the robot part of the body? What about the gripper? What if
the gripper is detachable, and can be replaced by other components?
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stimuli

percepts
motor

controls

controller
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agent

The agent’sbodyconsists of the sensors and actuators. The
controller is the part of the agent we are building. The body cor-
responds to thevehicleof Sandewall (1994) and the controller
corresponds to theegoof Sandewall (1994).

Shouldactionsbe motor controls (the messages sent from
the controller to the actuators), the behaviour (what the agent
actually does in the environment), or something else?

Figure 1: A Robotic System
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• It allows for actions at multiple levels of abstraction.5 For example, if
we have a layered controller (Brooks 1986) (Poole et al. 1998, Section
12.6), we can choose a level of the controller and make the actions at
this level.

This view of an action has implications as to what we may mean by the
precondition of an action. There are three things that could be meant by a
precondition of an action:

• A condition under which the action can be done. For example, Bac-
chus, Halpern & Levesque (1998) define preconditions as “necessary
and sufficient conditions that characterise when the action is physi-
cally possible” (section 2.1).

• A condition under which some effect follows from the action. These
are often calledconditional effects, or fluent preconditions(Reiter
1991).

• A condition under which the action should be done. For example,
Shanahan (1997) defines a precondition as “the fluents that have to
hold when the action is performed for it to be successful” (p. 3).
This definition would seem to imply that a precondition is not only
a property of the action, but what it means to be successful (i.e., in
what the agent is trying to do).

The first notion of precondition seems at odds with treating actions as the
motor controls of agents. What happens when the robot sends a motor
control when the action isn’t physically possible? Presumably whether the
action is physically possible is a property of the world (the robot body and
the environment), and not a property of the internal state of the agent. But
the robot typically doesn’t have direct access to the state of the world; it
only knows its internal state and the values it receives from its sensors, and
these are only linked to the world through noisy sensors and actuators. Thus
the agent will have to decide whether to do the action even if it isn’t sure
whether the action is physically possible. In order to determine if doing the
action is the right thing to do, it needs to be able to reason about the effects
of the action even when the preconditions don’t hold.

It is only the second notion of precondition which we model. This
shouldn’t really be seen as a feature, but as a necessary evil. It means that
we have to axiomatise the effect of an action under all conditions. I do
this because, in general, an agent may want to carry out an action even if it
doesn’t know that the action is “possible” (i.e., even if it isn’t sure that the
precondition, in the first sense, holds).

The third point, where the action is what should be done, is obtained
because we want to build agents that maximise utility (i.e., an agent tries to
do as well as it can based on its uncertainty). To do that, we want to be able

5This point may seem at odds with the previous point: the level of where we decide what
the action is is arbitrary. But rather than assuming there is a privileged, objective level of
abstraction, we assume there are actions that we can model (and prove relations between) at
every level of abstraction.
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to evaluate how good arbitrary agents are, not just good ones. In order for an
agent to be able to use the third sort of precondition, the preconditions must
be knowledge preconditions (i.e., refer to the state of the agent or the outputs
of the sensors) and not statements about the world. These are exactly the
sorts of policies that are the output of POMDP algorithms, namely what an
agent should do depending on what the agent believes.

It would seem as though we need to model the output of the controller
(those actions that aredirectly executable(Bacchus et al. 1998) without any
preconditions). Parsimony would suggest that if we can do without the
other sorts of lower-level deterministic actions (what Bacchus et al. (1998)
and (Reiter 1991) seem to call actions), we should. In this paper, we take
exactly this approach; we only have directly executable actions, and these
have conditional effects. See Section 3.4 for a more detailed comparison
with Bacchus et al. (1998).

Thus we equate actions with motor control commands. So what do
we do with actions that traditionally have preconditions? For example, in
the blocks world,put_on(a, b), the action of putting blocka on blockb,
classically has preconditions that the robot is holding blocka and blockb
has a clear top. We can see the actionput_on(a, b) as the attempt to puta on
b, which has the expected (possibly stochastic) effect of havinga onb when
a is being held andb has a clear top, but has other effects (such as knocking
down the tower containingb) when these preconditions don’t hold. In this
sense, we can see this as an action attempt; that motor control that would
result in the intended effect if the preconditions were to hold. As far as the
modeller of the domain is concerned, the preconditions are just one context
out of many needed for the conditional effects rules.

1.7 The Situation Calculus and the ICL

The independent choice logic (Poole 1997a) (an extension of probabilistic
Horn abduction (Poole 1993) to include multiple agents and negation as
failure; see Section 2) is a simple framework consisting of independent
choices made by nature (and potentially other agents) and an acyclic logic
program to give the consequences of choices.

In this section we sketch how the situation calculus can be embedded in
the ICL. We only need to axiomatise the deterministic aspects in the logic
programs; the uncertainty is handled separately. What gives us confidence
that we can use simple solutions to the frame problem, for example, is that
every statement that is a consequence of the facts that doesn’t depend on
the choices is true in every possible world. Thus, if we have a property that
depends only on the facts and is robust to the addition of atomic choices,
then it will follow in the ICL. One such property is Clark’s completion
(Clark 1978), which is true for every predicate defined by the logic program
and isn’t part of a choice (Poole 1998).

Before we show how to add the situation calculus to the ICL, there are
some design choices that need to be made.

• In the deterministic case, the trajectory of actions by the agent up
to some time point determines what is true at that point. Thus, the
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trajectory of actions, as encapsulated by the situation term of the
situation calculus (McCarthy & Hayes 1969, Reiter 1991) can be
used to denote the state, as is done in the traditional situation calculus.
However, when dealing with uncertainty, the trajectory of an agent’s
actions up to a point, does not uniquely determine what is true at
that point. The outcomes of random occurrences or exogenous events
also determines what is true. We have a choice: we can keep the
semantic conception of a situation (as a state) and make the syntactic
characterization more complicated by perhaps interleaving exogenous
actions, or we can keep the simple syntactic form of the situation
calculus, and use a different notion that prescribes truth values. We
have chosen the latter, and distinguish thesituationdenoted by the
trajectory of actions, from thestatethat specifies what is true in the
situation. In general there will be a probability distribution over states
resulting from a set of actions by the agent. It is this distribution over
states, and their corresponding utility, that we seek to model.

This division means that agent’s actions are treated very differently
from exogenous actions. The situation terms define only the agent’s
actions in reaching that point in time. The situation calculus terms
indicate only the trajectory, in terms of steps, of the agent and essen-
tially just serve to delimit time points at which we want to be able to
say what holds. This is discussed further in Section 3.5.

• None of our representations assume that actions have preconditions;
all actions can be attempted at any time. The effect of the actions can
depend on what else is true in the world. This is important because
the agent may not know whether the preconditions of an action hold,
but, for example, may be sure enough to want to try the action. See
Section 1.6.

• When building conditional plans, we have to consider what we can
condition these plans on. We assume that the agent has passive sen-
sors, and that it can condition its actions on the output of these sensors.
We only have one sort of action, the motor control, and these actions
only affect the world (the robot body and the environment). We need
to specify how the agent’s sensors depend on the world, and how the
actions affect the world. This does not mean that we cannot model
information-producing or sensing actions (e.g., looking in a particu-
lar place)—these information producing actions produce effects that
make the sensor values correlate with what is true in the world. The
sensors can be noisy; the value they return does not necessarily cor-
respond with what is true in the world (of course if there was no
correlation with what is true in the world, they would not be very
useful sensors).
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2 The Independent Choice Logic

In this section we present the independent choice logic (ICL). The semantic
base is the same as that in (Poole 1997a, Poole 1998), but the agents are
modelled differently. In particular, all of the choices here are controlled by
nature.

2.1 Background: Acyclic Logic Programs

We use the Prolog conventions withvariables starting an upper case letter
and constants, function symbols, and predicate symbolsstarting with
lower case letters. Aterm is either a variable, a constant, or is of the
form f (t1, . . . , tm) wheref is a function symbol andt1, . . . , tm are terms.
An atomic formula (atom) is either a predicate symbol or is of the form
p(t1, . . . , tm) wherep is a predicate symbol andt1, . . . , tm are terms. A
formula is either an atom or is of the form∼f , f ∧ g, or f ∨ g wheref and
g are formulae. Aclauseis either an atom or is arule of the forma ← f
wherea is an atom andf is a formula (thebodyof the clause). Free variables
are assumed to be universally quantified at the level of a clause. Alogic
program is a set of clauses.

A ground term/atom/clause is one that does not contain any variables.
A ground instance of a term/atom/clausec is a term/atom/clause obtained
by uniformly replacing ground terms for the variables inc. TheHerbrand
baseis the set of ground instances of the atoms in the language (inventing a
new constant if the language does not contain any constants). AHerbrand
interpretation is an assignment oftrue or false to each element of the
Herbrand base. IfP is a program, letgr(P) be the set of ground instances
of elements ofP.

Definition 2.1 (Gelfond & Lifschitz 1988) InterpretationM is a stable
model6 of logic programF if for every ground atomh, h is true inM if
and only if eitherh ∈ gr(F) or there is a ruleh ← b in gr(F) such that
b is true inM . Conjunctionf ∧ g is true inM if both f andg are true in
M . Disjunctionf ∨ g is true inM if either f or g (or both) are true inM .
Negation∼f is true inM if and only if f is not true inM .

Definition 2.2 (Apt & Bezem 1991) A logic programF is acyclic if there
is an assignment of a natural number to each element of the Herbrand base
of F such that, for every rule ingr(F) the number assigned to the atom in
the head of the rule is greater than the number assigned to each atom that
appears in the body.

Acyclic programs are surprisingly general. Note that acyclicity does not
preclude recursive definitions. It just means that all such definitions have
to be well founded. They have very nice semantic properties, including the
following:

6This is a slight generalization of the normal definition of a stable model to include more
general bodies in clauses. This is done here because it is easier to describe the abductive
operations in terms of the standard logical operators (Poole 1998). Note that under this
definitionb ← ∼∼a is the same asb ← a.
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Theorem 2.3 (Apt & Bezem 1991) Acyclic logic programs have the fol-
lowing properties:

• There is a unique stable model.

• Clark’s completion (Clark 1978) characterises what is true in this
model.

Apt & Bezem (1991) give many examples to show that acyclic logic
programs are a good representation for models of deterministic state change
under complete knowledge.

2.2 Choice Space, Facts and the Semantics

An independent choice space theory is made of two principal components:

Choice space C:a set of sets of ground atomic formulae, such that ifχ1,
andχ2 are in the choice spaceC, andχ1 6= χ2 thenχ1 ∩ χ2 = {}.
An element of the choice space is called achoice alternative (or
sometimes just an alternative). An element of a choice alternative is
called anatomic choice.

Facts F: an acyclic logic program such that no atomic choice unifies with
the head of a clause.

Definition 2.4 Given choice spaceC, a selector function is a mapping
τ : C → ∪C such thatτ(χ) ∈ χ for all χ ∈ C. The range of selector
functionτ , writtenR(τ ) is the set{τ(χ) : χ ∈ C}. The range of a selector
function is called atotal choice. In other words, a total choice is a selection
of one member from each alternative.

The semantics of an ICL is defined in terms of possible worlds. There
is a possible world for each selection of one element from each choice
alternative (i.e., for each total choice). The atoms which follow from these
atoms together withF are true in this possible world.

Definition 2.5 Suppose we are given an ICL theory〈C, F〉. For each se-
lector functionτ there is apossible worldwτ . We writewτ |=〈C,F〉 f , read
“ f is true in worldwτ based on〈C, F〉”, iff f is true in the (unique) stable
model ofF ∪ R(τ ). When understood from context, the〈C, F〉 is omitted
as a subscript of|=.

The fact that every proposition is either true or false in a possible world
follows from the fact that acyclic logic programs have exactly one stable
model.

Note that, for each alternativeχ ∈ C and for each worldwτ , there is
exactly one element ofχ that’s true inwτ . In particular,wτ |= τ(χ), and
wτ 6|= α for all α ∈ χ − {τ(χ)}.
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2.3 Probabilities

The next part of the formalism is a probability distribution over the alterna-
tives.7 That is, we assume we are given a function

P0 : ∪C → [0, 1]
such that

∀χ ∈ C,
∑

α∈χ

P0(α) = 1.

Theprobability of a proposition is defined in the standard way. For a finite
choice space, the probability of any proposition is the sum of the probabil-
ities of the worlds in which it is true. The probability of a possible world
is the product of the probabilities of the atomic choices that are true in the
world. That is, the atomic choices are (unconditionally) probabilistically
independent. Poole (1993) proves that such independent choices together
with an acyclic logic program can represent any finite probability distri-
bution. Moreover, the structure of the rule-base mirrors the structure of
Bayesian networks (Pearl 1988).8 Similarly we can define theexpectation
of a function that has a value in each world, as the value averaged over all
possible worlds, weighted by their probability.

When the choice space isn’t finite, we can define probabilities over
measurable sets of worlds. In particular, it suffices to give a measure over
sets of possible worlds defined by finite sets of atomic choices (Poole 1993,
Poole 1998).

2.4 TheICL SC

Within the ICL we can use the situation calculus as a representation for
change. Within the logic, there is only one agent, nature, who controls
all of the alternatives. These alternatives thus have associated probability
distributions. The probabilities are used to represent our ignorance of the
initial state and the outcomes of actions. We can then use the situations to
reflect the “time” at which some fluents are true or not.

The following defines what needs to be specified as part of an indepen-
dent choice logic (for the situation calculus) theory. Note that a possible
world defines a complete history. It will specify the truth value for every
fluent in every situation. Situations do not appear in this definition. This is
analogous to defining the first-order predicate calculus without any need to
define situations. Situations will provide a standard interpretation for some
of the terms.

Definition 2.6 An ICL SC theory is a tuple〈C0, A, O, P0, F〉 where

C0 callednature’s choice space, is a choice space.

7In terms of (Poole 1997a), all of the alternatives are controlled by nature.
8This mapping also lets us see the relationship between the causation that is inherent in

Bayesian networks (Pearl 1995) and that of the logical formalisms. See Poole (1993) for a
discussion on the relationship, including the Bayesian network solution to the Yale shooting
problem and stochastic variants. See also Section 3.1.2.
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A called theaction space, is a set of primitive actions that the agent can
perform.

O theobservables, is a set of terms.

P0 is a function∪C0 → [0, 1] such that∀χ ∈ C0,
∑

α∈χ P0(α) = 1. I.e.,
P0 is a probability measure over the alternatives controlled by nature.

F called thefacts, is an acyclic logic program such that no atomic choice
(in an element ofC0) unifies with the head of any clause.

We model all randomness as independent stochastic mechanisms, such
that an external viewer that knew the initial state (i.e., what is true in the
situations0), and knew how the stochastic mechanisms resolved themselves
would be able to predict what was true in any situation. This external viewer,
would thus know which possible world was the actual one, and would thus
know what is true in every situation. As we don’t know the actual world,
we have a probability distribution over the possible worlds. The ICL lets
us model this in terms of independent stochastic mechanisms (these are the
alternatives with associated probability distributions) and a logic program
to give the consequences.

Before we introduce the probabilistic framework we present the situation
calculus (McCarthy & Hayes 1969). The general idea is that robot actions
take the world from one situation to another situation. We assume there is
a situations0 that is the initial situation, and a functiondo(A, S) that given
action A and a situationS returns the resulting situation. An agent that
knows what it has done, knows what situation it is in. It however does not
necessarily know what is true in that situation. The robot may be uncertain
about what is true in the initial situation, what the effects of its actions are
and what exogenous events occurred.

We use logic (i.e., the factsF) to specify the transitions specified by
actions and thus what is true in a situation. What is true in a situation
depends on the action attempted, what was true before and the outcomes
of the stochastic mechanisms (i.e., what actually happened). A fluent is a
predicate (or function) whose value in a world depends on the situation; we
use the situation as the last argument to the predicate (function). We assume
that for each fluent we can axiomatise in what situations it is true based on
the action that was performed, what was true in the previous state and the
outcome of the stochastic mechanisms.

Note that a possible world in this framework corresponds to a complete
history. A possible world specifies what is true in each situation. In other
words, given a possible world and a situation, we can determine what is true
in that situation.

2.5 Representational Methodology

In this section we give a representational methodology: how to go about
thinking about a domain in order to represent it in theICLSC. In the extended
example that follows, we will follow this methodology. Hopefully, it will
not be too difficult to transfer the technology to a new example.
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When we describe the methodology, we treat frame axioms and ramifi-
cations in the same way. We don’t need to distinguish them; in fact many
of the axioms that we need will be mixes of frame and ramification axioms,
referring to both the current situation and to the previous situation. When
there are correlated action effects, the distinction between direct effects and
ramifications doesn’t make much sense. We don’t make such a distinction.

The following description is a paraphrase of how we teach students to
think about representing knowledge in Bayesian networks. We can see the
ICL as a first-order rule-based representation of Bayesian networks (Poole
1993). See Section 3.1 for a more detailed discussion about the relationship
to Bayesian networks.

First let’s do the propositional (ground) case. We totally order the propo-
sitions. The idea is that we will define each proposition in terms of its
predecessors in the total ordering. For each propositione, a parent context
(Poole 1997b) is a conjunction of literals made up of the predecessors of
e, such that the other predecessors are contextually independent (Boutilier,
Friedman, Goldszmidt & Koller 1996) ofegiven the context. We find a set
of mutually exclusive and covering setcontext1, ..., contextk of parent con-
texts. (The atoms appearing in one of the parent contexts are the parents of
e in the corresponding Bayesian network). Ife is always true whencontexti
is true, we write the rule:

e ← contexti

If P(e|contexti) isn’t 0 or 1, we create a rule:

e ← contexti ∧ aci

and create an alternative{aci, naci} (whereaci andnaci are atoms that don’t
appear anywhere else), with the probability:

P0(aci) = P(e|contexti)

P0(naci) = 1 − P(e|contexti)

If the context is empty (e doesn’t depend on any of its predecessors) we
don’t need to create a rule; we can just makeean atomic choice. When the
probability given the context is 0, we don’t write any rules.

The case for the ICL with the situation calculus is similar. Intuitively, we
make the total ordering of the propositions respect the temporal ordering of
situations. We write how a fluent at one situation depends on fluents (lower
in the ordering) at that situation and on fluents at previous situations. Note
that this rule automatically handles ramifications as well as frame axioms.
The total ordering of the fluents guarantees the acyclicity of the rule base
and that we don’t have circular definitions. The initial situation is handled
as any other, but the predecessors in the total ordering are only initial values
of fluents (and perhaps atoms that don’t depend on the situation).

The only thing peculiar about this is that we often have fluents that
depend on values at the current as well as the previous situation. This is
important when there are correlated effects of an action; we can’t just define
each fluent in terms of fluents at the previous situation. But this also means
that we treat frame axioms and ramification axioms in exactly the same way.
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Figure 2: The example robot environment

2.6 An Example Domain

The following ongoing example is used to show the power of the formalism.
It is not intended to be realistic.

Example 2.7 Suppose we have a robot that can travel around an office
building, pick up keys, unlock doors, and sense whether a key is at the
location it is currently at. In the domain depicted in Figure 2, we assume we
want to enter the lab in the centre, and there is uncertainty about whether the
door is locked or not, and uncertainty about where the key is (and moreover
the probabilities are not independent). There are also stairs that the robot
can fall down, but it can choose to avoid the stairs (which often entails go
around the long way between two locations). The utility of a plan depends on
whether it gets into the lab, whether it falls down the stairs and the resources
used. The robot starts atr111.

Example 2.8 Let’s consider when the agent would be carrying something
in a situation. Suppose we have a fluentcarrying so thatcarrying(O, S)

is true if the robot is carryingO in situationS (for simplicity, we assume
the only objects the robot can carry are keys). Suppose carrying doesn’t
depend on anything at the same time, so we can ask what are the contexts
on which carrying(O, do(A, S)) depends. It would seem there are three
separate contexts where the robot could be carryingO in situationdo(A, S):

• A = pickup(O), and the robot andO are at the same position.

• The action isn’tpickup(O), the robot was carryingO in situationS,
and the action wasn’t to put downO.

• The robot was carryingO in situationS, and the action was to put down
O. (This is the case where the robot fails to put down the object.)

In no other cases would the robot be carryingO. The following three ex-
amples will give rules for each of these three contexts.
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Example 2.9 We can write standard situation calculus rules; the only dif-
ference is that some of the elements of the body of a rule may be atomic
choices. The following rule says that the robot is carrying a key after it has
(successfully) picked it up:

carrying(O, do(pickup(O), S)) ←
at(robot, Pos, S) ∧
at(O, Pos, S) ∧
key(O) ∧
pickup_succeeds(O, S).

Herepickup_succeeds(O, S) is true if the agent would carry the keyO after
it picks up the key when the robot and the key are in the same position and
is false if the agent would fail to pick up the key in this context. The agent
typically does not know the value ofpickup_succeeds(O, S) in situation
S, or even the position of the key. We can make each ground instance of
pickup_succeeds(O, S) an atomic choice. That is9:

∀S∀O {pickup_succeeds(O, S), pickup_fails(O, S)} ∈ C0

P0(pickup_succeeds(O, S)) reflects how likely it is that the agent succeeds
in carrying thekey given that it was at the same position as the key and
attempted to pick it up. For the example below, we assume that for all terms
O andS, P0(pickup_succeeds(O, S)) = 0.88.

This rule and corresponding alternatives say that the probability that
picking up something (in this case a key) actually achieves the agent carrying
the object doesn’t depend on what is being picked up (nor does it depend on
the position, as long as the robot and key are at the same position). Whether
the action succeeds (in this case whether the action achieves making the
robot carryO) depends on the action, the fluent that the action is to achieve,
and the context of the rule. Thus,pickup_succeeds(O, S) should probably
be read “pickup succeeds in the robot carrying the keyO when the robot
and the key are at same position in stateS”.

The general form of a frame axiom specifies that a fluent is true after a
situation if it were true before, and the action were not one that undid the
fluent, and there was no mechanism that undid the fluent.10

Example 2.10 In our ongoing example, the robot is carrying an object as
long as the action was not to put down the object or pick up the object,11

9This is a meta-level statement that says thatC0 consists of infinitely many two element
sets. The quantification is over terms of the language, not individuals. In our implementation
this is written as:

random([pickup_succeeds(O, S) : 0.88, pickup_fails(O, S) : 0.12]).
10This is now a reasonably standard logic programming solution to the frame problem

(Shanahan 1997, Chapter 12), (Apt & Bezem 1991). It is essentially the same as Reiter’s
(1991) solution to the frame problem. It is closely related to Kowalski’s (1979) axiomatiza-
tion of action, but for each proposition, we specify which actions are exceptional, whereas
Kowalski specifies for every action which propositions are exceptional. Kowalski’s repre-
sentation could also be used here.

11We want the conditionA 6= pickup(O) because we have another rule (Example 2.9) to
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and the agent did not accidentally drop the object while carrying out another
action:

carrying(O, do(A, S)) ←
carrying(O, S) ∧
A 6= putdown(O) ∧
A 6= pickup(O) ∧
keeps_carrying(O, S).

keeps_carrying(O, S)may be something that the agent does not know whether
it is true — there may be a probability that the agent will dropO. If dropping
O is independent at each situation and independent for each object being
carried, we can model this as:

∀O ∀S {keeps_carrying(O, S), drops(O, S)} ∈ C0

The above clause thus forms a stochastic frame axiom. For the example
below, we assume

P0(keeps_carrying(O, S)) = 0.95

Note that this representation assumes that the probability that the agent
keeps carrying an object doesn’t depend on the time between actions (i.e.,
the duration of the situation). This paper does not consider how to combine
the situation calculus and time (Reiter 1996) with probabilities.

Example 2.11 The final context in which the robot may be carrying the key
is when the action was to put down the key, and the action failed. We can
write this as:

carrying(O, do(putdown(O), S)) ←
carrying(O, S) ∧
putdown_fails(O, S).

whereputdown_fails(O, S) is an atomic choice, withP0(putdown_fails(O, S))

the conditional probability that the robot is still carryingOafter it has carried
out theputdown(O) action.

Note that putdown may succeed in doing other things, it just fails in
stopping the robot from carryingO. Soputdown_fails(O, S) should read
“putdown fails to stop the robot from carryingO in situationS”.

If there were no other clauses forcarrying, we mean the completion
(Clark 1978) of these three rules. Thus the agent is carrying the key if and
only if one of the bodies is true.

2.7 Axiomatising Utility

Given the notion of anICLSC theory, we can write rules for utility. Assume
the utility depends on the situation that the robot ends up in and the possible
world. In particular we allow for rules that implyutility(U, S), which is

cover the case where the action is to pick up the key, whether or not it was carrying the key
at the time. We want that rule to be used rather than this one in the case when it tries to pick
up the key and it is carrying the key.
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true in a possible world if the utility isU for situationS in that world. That
is, utility(U, S) means that if the robot stops in situationS it will get utility
U. The utility depends on what is true in the state defined by the situation
and the world — thus we write rules that implyutility. In order to make
sure that we can interpret these rules as utilities we need to have utility
being functional: for each situationS, and for each possible worldwτ , there
exists a uniqueU such thatutility(U, S) true in wτ . If this is the case we
say the theory isutility complete. Ensuring utility completeness can be
done locally; we have to make sure that the rules for utility cover all of the
cases and there aren’t two rules that imply different utilities whose bodies
are compatible.

Example 2.12 Suppose the utility is the sum of a prize plus the remaining
resources:

utility(R+ P, S) ←
prize(P, S) ∧
resources(R, S).

The prize depends on whether the robot reached its destination or it crashed.
No matter what the definition of any other predicates is, the following defini-
tion of prizewill ensure there is a unique prize for each world and situation:

prize(−1000, S) ← crashed(S).

prize(1000, S) ← in_lab(S) ∧ ∼crashed(S).

prize(0, S) ← ∼in_lab(S) ∧ ∼crashed(S).

The resources used depends not only on the final state but on the route
taken. To model this we makeresourcesa fluent, and like any other fluent
we axiomatise it:

resources(200, s0).

resources(R− Cost, do(goto(To, Route), S)) ←
at(robot, From, S) ∧
path(From, To, Route, Risky, Cost) ∧
resources(R, S).

resources(R, do(A, S)) ←
crashed(S) ∧
resources(R, S).

resources(R− 10, do(A, S)) ←
∼gotoaction(A) ∧
∼crashed(S) ∧
resources(R, S).

gotoaction(goto(To, Route)).

Here we have assumed that non-goto actions cost 10, and that paths have
costs. If the robot has crashed, it isn’t at any location. Once it has crashed,
attempting to do an action doesn’t incur any cost (but doesn’t achieve any-
thing either).
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Paths and their risks and costs are axiomatised using

path(From, To, Route, Risky, Cost)

that is true if the path fromFrom to To via Routehas risk given byRisky
(eitheryesor no) and costsCost. Riskyspecifies whether the path takes the
robot past the stairs. An example of this relation for our domain is:

path(r101, r111, direct, yes, 10).

path(r101, r111, long, no, 100).

path(r101, r123, direct, yes, 50).

path(r101, r123, long, no, 90).

path(r101, door, direct, yes, 50).

path(r101, door, long, no, 70).

2.8 Axiomatising Sensors

We also need to axiomatise how sensors work. We assume that sensors
are passive; this means that they receive information from the environment,
rather thandoinganything; there are no sensing actions. This seems to be a
better model of actual sensors, such as eyes, ears, cameras or sonar and makes
modelling simpler than when sensing is an action. So called “information
producing actions” (such as opening the eyes, moving a camera, performing
a biopsy on a patient, or exploding a parcel to see if it is (was) a bomb)
are normal actions that are designed to change the world so that the sensors
correlate with the value of interest. Note that under this view, there are
no information producing actions, or even informational effects of actions;
rather various conditions in the world, some of which are under the robot’s
control and some of which are not, work together to give varying values for
the output of sensors.

A robot cannot condition its action choice on what is true in the world;
it can only condition its action choices on what it senses (theperceptsof
Figure 1) and what it remembers (which we don’t consider till Section 2.11).
The only use for sensors is that the output of a sensor depends, perhaps
stochastically, on what is true in the world, and thus can be used as evidence
for what is true in the world.

Within our situation calculus framework, we write axioms to specify
how sensed values depend on what is true in the world. What is sensed
depends on the situation and the possible world. We assume that there is a
predicatesense(C, S) that is true ifC is sensed in situationS. HereC is a
term in our language, that represents one value for the output of a sensor.C
is observable(that is,C ∈ O in Definition 2.6).

Example 2.13 A sensor may be able to detect whether the robot is at the
same position as the key. It is not reliable; sometimes it says the robot is at
the same position as the key when it is not (a false positive), and sometimes
it says that the robot is not at the same position when it is (a false negative).
Suppose that noisy sensorat_keydetects whether the agent is at the same
position as the key. Fluentsense(at_key, S) is true (in a world) if the robot
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senses that it is at the key in situationS. It can be axiomatised as:

sense(at_key, S) ←
at(robot, P, S) ∧
at(key, P, S) ∧
sensor_true_pos(S).

sense(at_key, S) ←
at(robot, P1, S) ∧
at(key, P2, S) ∧
P1 6= P2 ∧
sensor_false_pos(S).

The fluentsensor_false_pos(S) is true if theat_keysensor is giving a false-
positive value in situationS, andsensor_true_pos(S) is true if the sensor is
not giving a false negative in situationS. Each of these could be part of an
atomic choice, which would let us model sensors whose errors at different
times are independent.

∀S {sensor_true_pos(S), sensor_false_neg(S)} ∈ C0

∀S {sensor_false_pos(S), sensor_true_neg(S)} ∈ C0

Suppose the sensor has a 3% false positive rate and an 8% false negative
rate. In the syntax of our implementation, this can be written as

random([sensor_true_pos(S) : 0.92, sensor_false_neg(S) : 0.08]).
random([sensor_false_pos(S) : 0.03, sensor_true_neg(S) : 0.97]).

whereP0(sensor_true_pos(S)) = 0.92, andP0(sensor_false_pos(S)) =
0.03.

Alternatively, if we had a theory about how sensors break, we could
write rules that imply these fluents.

2.9 Conditional Plans

The idea behind theICLSC is that agents get to choose situations (they get
to choose what they do, and when they stop), and nature gets to choose
worlds (there is a probability distribution over the worlds that specifies the
distribution of effects of the actions).

Agents get to choose situations, but they do not have to choose situations
blindly. We assume that agents can sense the world, and choose their actions
conditional on what they observe. Agents can have a sequence of acting and
observing.

Agents do not directly adopt situations, they adoptplansorprograms. In
general these programs can involve atomic actions, conditioning on observa-
tions, loops, nondeterministic choice and procedural abstraction (Levesque
et al. 1997). In this paper we only consider simple conditional plans which
are programs consisting only of sequential composition and conditioning on
observations (Levesque 1996, Poole 1996)).

Example 2.14 An example of a conditional plan is:

a; if c thenb elsed; eendIf; g
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An agent executing this plan will start in situations0, then do actiona,
then it will sense whetherc is true in the resulting situation. Ifc is true,
it will do b then g, and if c is false it will do d then e then g. Thus
this plan either selects the situationdo(g, do(b, do(a, s0))) or the situa-
tion do(g, do(e, do(d, do(a, s0)))). It selects the former in all worlds where
sense(c, do(a, s0)) is true, and selects the latter in all worlds wheresense(c, do(a, s0))

is false. Note that each world is definitive on each fluent for each situation.
The expected utility of this plan is the weighted average of the utility for each
of the worlds and the situation chosen for that world. The only property we
need ofc is that its value in situationdo(a, s0) will be able to be observed.12

The agent does not need to be able to determine its value beforehand.

Definition 2.15 A conditional plan, or just aplan, is of the form

skip
A whereA is a primitive action
P; Q whereP andQ are plans
if C thenP elseQ endIf

whereC is observable;P andQ are plans

Note that “skip” is not an action; theskipplan means that the agent does not
do anything — time does not pass. This is introduced so that the agent can
stop without doing anything (this may be a reasonable plan), and so we do
not need an “ifC thenP endIf” form as well; this would be an abbreviation
for “if C thenP elseskipendIf”.

Plans select situations in worlds. We can define a relation:

trans(P, W, S1, S2)

that is true if doing planP in world W from situationS1 results in situation
S2. This is similar to theDO macro of Levesque et al. (1997) and theRdoof
Levesque (1996), but here what the agent does depends on what it observes,
and what the agent observes depends on which world it happens to be in.

We can define thetransrelation in pseudo Prolog as:

trans(skip, W, S, S).

trans(A, W, S, do(A, S)) ←
primitive(A).

trans((P; Q), W, S1, S3) ←
trans(P, W, S1, S2) ∧
trans(Q, W, S2, S3).

trans((if C thenP elseQ endIf), W, S1, S2) ←
W |= sense(C, S1) ∧
trans(P, W, S1, S2).

trans((if C thenP elseQ endIf), W, S1, S2) ←
W 6|= sense(C, S1) ∧

12Recall thatc is the output of the sensor, it is the message the agent receives from the
sensor. This doesn’t imply that the sensor is perfect, just that the agent knows what the
sensor output is.
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trans(Q, W, S1, S2).

Now we are at the stage where we can define the expected utility of a
plan. The expected utility of a plan is the weighted average, over the set of
possible worlds, of the utility the agent receives in the situation it ends up
in for that possible world:

Definition 2.16 If our theory is utility complete, theexpected utility of
planP is:13

ε(P) =
∑

τ

p(wτ ) × u(wτ , P)

(summing over all selector functionsτ onC0) where

u(W, P) = U if W |= utility(U, S)

wheretrans(P, W, s0, S)

(this is well defined as the theory is utility complete), and

p(wτ ) =
∏

χ0∈R(τ )

P0(χ0)

u(W, P) is the utility of plan P in worldW. p(wτ ) is the probability of world
wτ . The probability is the product of the independent choices of nature.

2.10 Details of our Example

We can model dependent uncertainties. Suppose we are uncertain about
whether the door is locked, and where the key is (it could be in roomr101 or
roomr123), and suppose that these are not independent, with the following
probabilities:

P(locked(door, s0)) = 0.9

P(at(key, r101, s0)|locked(door, s0)) = 0.7

P(at(key, r101, s0)|unlocked(door, s0)) = 0.2

(from which we concludeP(at(key, r101, s0)) = 0.65.)
Following the methodology outlined in (Poole 1993) this can be mod-

elled as:

random([locked(door, s0) : 0.9,

unlocked(door, s0) : 0.1]).
random([at_key_lo(r101, s0) : 0.7,

at_key_lo(r123, s0) : 0.3]).
random([at_key_unlo(r101, s0) : 0.2,

at_key_unlo(r123, s0) : 0.8]).
at(key, R, s0) ←

at_key_lo(R, s0) ∧
locked(door, s0).

13We need a slightly more complicated construction when we have infinitely many worlds.
We need to define probability over measurable subsets of the worlds (Poole 1993, Poole
1998), but that would only complicate this presentation.
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at(key, R, s0) ←
at_key_unlo(R, s0) ∧
unlocked(door, s0).

whererandom([a1 : p1, . . . , an : pn])means{a1, . . . , an} ∈ C0 andP0(ai) =
pi . This is the syntax used by our implementation.

We can model complex stochastic actions using the same mechanism.
The actiongoto is risky; whenever the robot goes past the stairs there is a
10% chance that it will fall down the stairs.

This is modelled with the choice alternatives:

random([would_fall_down_stairs(S) : 0.1,

would_not_fall_down_stairs(S) : 0.9]).
which means

∀S {would_fall_down_stairs(S),

would_not_fall_down_stairs(S)} ∈ C0

∀S P0(would_fall_down_stairs(S)) = 0.1

These atomic choices are used in the bodies of rules. We can define the
propositional fluentat:

at(robot, To, do(goto(To, Route), S)) ←
at(robot, From, S) ∧
path(From, To, Route, no, Cost) ∧
resources(R, S) ∧
R ≥ Cost.

at(robot, To, do(goto(To, Route), S)) ←
at(robot, From, S) ∧
path(From, To, Route, yes, Cost) ∧
would_not_fall_down_stairs(S) ∧
resources(R, S) ∧
R ≥ Cost.

at(robot, Pos, do(A, S)) ←
∼gotoaction(A) ∧
at(robot, Pos, S).

at(X, P, S) ←
X 6= robot ∧
carrying(robot, X, S) ∧
at(robot, P, S).

at(X, Pos, do(A, S)) ←
X 6= robot ∧
∼carrying(robot, X, S) ∧
at(X, Pos, S).
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In those worlds where the path is risky and the agent would fall down the
stairs, then it crashes:

crashed(do(A, S)) ←
crashed(S).

crashed(do(A, S)) ←
risky(A, S) ∧
would_fall_down_stairs(S).

risky(goto(To, Route), S) ←
path(From, To, Route, yes, _) ∧
at(robot, From, S).

An example plan is:14

goto(r101, direct);
if at_key

then
pickup(key);
goto(door, long)

else
goto(r123, direct);
pickup(key);
goto(door, direct)

endIf;
unlock_door;
enter_lab

Given the situation calculus axioms, and the choice space, this plan has an
expected utility. This is obtained by derivingutility(U, S) for each world
that is selected by the plan, and using a weighted average over the utili-
ties derived. The possible worlds correspond to choices of elements from
alternatives. We do not need to generate the possible worlds — only the
explanations (Poole 1998) of the utility and the conditions used in the plans.
For example, in all of the worlds where the following are true,

{locked(door, s0), at_key_lo(r101, s0),

would_not_fall_down_stairs(s0),

sensor_true_pos(do(goto(r101, direct), s0)),

pickup_succeeds(do(goto(r101, direct), s0))

keeps_carrying(key, do(pickup(key), do(goto(r101, direct), s0)))}
the sensing succeeds (and so the “then” part of the condition is chosen),
the prize is 1000, and the resources left are the initial 200, minus the 10
going fromr111 tor101, minus the 70 going to the door, minus the 30 for
the other three actions. Thus the resulting utility is 1090. The sum of the
probabilities for all of these worlds is the product of the probabilities of the
choices made, which is 0.9 × 0.7 × 0.9 × 0.92× 0.88× 0.95 ≈ 0.436.

14Note that the conditionat_keyis the output of the sensor, as described in Example 2.13.
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Similarly all of the the possible worlds withwould_fall_down_stairs(s0)

true have prize−1000, and resources 190, and thus have utility−810. The
probability of all of these worlds sums to 0.1.

The expected utility of this plan can be computed by enumerating the
other cases. We don’t have to enumerate the worlds, just the explanations
(Poole 1998) of the different values for the utility and the conditional. In
particular, we need to explain:

sense(at_key, do(goto(r101, direct), s0)) ∧
utility(V, do(enter_lab, do(unlock_door, do(goto(door, long),

do(pickup(key), do(goto(r101, direct), s0)))))).

∼sense(at_key, do(goto(r101, direct), s0)) ∧
utility(V, do(enter_lab, do(unlock_door, do(goto(door, direct),

do(pickup(key), do(goto(r123, direct),

do(goto(r101, direct), s0))))))).

2.11 Richer Plan Language

There are two notable deficiencies in our definition of a plan; these were
omitted in order to make the presentation simpler.

• Our programs do not contain loops.

• There are no local variables; all of the internal state of the robot is
encoded in the program counter.

One way to extend the language to include iteration in plans, is by adding a
construction such as

while C doP endWhile

as a plan (whereC is observable andP is a plan), with the corresponding
definition oftransbeing:15

trans((while C doP endWhile), W, S1, S1) ←
W 6|= sense(C, S1).

trans((while C doP endWhile), W, S1, S3) ←
W |= sense(C, S1) ∧
trans(P, W, S1, S2) ∧
trans((while C doP endWhile), W, S2, S3).

This would allow for interesting programs including loops such as

while everything_ok dowait endWhile

(wherewait has no effects) which is very silly for deterministic programs,
but is perfectly sensible in stochastic domains, where the agent loops until
an exogenous event occurs that stops everything being OK. This is not part

15Note that we really need a second-order definition, as in (Levesque 1996), to properly
define thetransrelation rather than the recursive definition here. This will let us characterise
loop termination.
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of the current theory as it violates utility completeness; however, for many
domains, the worlds where this program does not halt have measure zero;
as long as the probability of failure is greater than zero, given enough time,
something will always break.

Local variables can easily be added to the definition of a plan. For
example, we can add an assignment statement to assign values to local
variables, and allow for branching on the values of variables as well as
observations. This (and allowing for arithmetic values and operators) will
expand the usefulness of the language (Levesque 1996).

The addition of local variables means it is easy to implement belief states
explicitly. It will make some programs simpler, such as those programs
where the agent is to condition on previous values for a sensor. For example,
suppose the robot’s sensor can tell whether a door is unlocked a long time
before it is needed. With local variables, whether the door is unlocked can be
remembered. Without local variables, that information needs to be encoded
in the program counter; this can be done by branching on the sense value
when it is sensed, and having different branches depending on whether the
door was open or not.

3 Comparison with Other Representations

3.1 POMDPs and Bayesian nets

Here is a way to motivate this paper that is orthogonal to the presentation of
Section 1:

• We start with Partially observable Markov decision problems (POMDPs)
(Monahan 1982, Lovejoy 1991, Kaelbling et al. 1998) as the underling
model.

• We describe states in terms of propositions or random variables.

• We want to be able to express a locality that some variables only de-
pend on a few other variables; this gives us Bayesian networks (Pearl
1988) or dynamic Bayesian networks (Dean & Kanazawa 1989).

• We not only want to be able to express conditional independence, but
contextual independence (Boutilier et al. 1996, Poole 1997b); that
some variable is only relevant in certain contexts. Such contextual
independencies can be expressed in terms of trees or rules.16

• If we have rules, we can extend these to first-order rules (Poole 1993),
and even include negation as failure (Poole 1998). This is the basis
of the independent choice logic.

• We have a number of choices as to how to represent actions in this
framework:

16Once we have the rules, we don’t even need the network structure (Poole 1993). Often
the network structure makes the representation more opaque as it does not explicate in what
contexts the different parents are relevant.
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– An action being carried out at a time can be a proposition. We
can then axiomatise what follows from these events (as in the
event calculus (Kowalski & Sergot 1986)). An agent can be seen
as a function from sensor and action history into actions (or as
a set of rules that specify what the agent does under different
contingencies). This is the approach taken in (Poole 1997b).
It is essentially the approach of influence diagrams (Howard &
Matheson 1981).

– An action can be a term, and we have as propositions that some
fluent is true in some situation. This is the approach taken in the
current paper.

Note that in the translation of (finite stage) POMDPs into rule form, we
haven’t made any simplifying assumptions. We can represent any finite
stage POMDP. We have however gained the ability to state (and hopefully
exploit) conditional and contextual independencies, as well as use a first-
order language. It remains an open problem to build algorithms that can
exploit those features that we can now represent. Thus the goal is very
different to that of Geffner & Bonet (1998), who build a representation that
makes many simplifying assumptions in order to test a real algorithm for
solving POMDPs.

The following sections consider some of these steps in more detail.

3.1.1 Partially Observable Markov Decision Processes

A Markov decision process (Bellman 1957, Puterman 1994) is defined in
terms of

• time points17 (usually discrete; sometimes finite and sometimes infi-
nite),

• states,
• actions,
• a state transition function that, given a state and an action, returns a

probability distribution over resulting states, and
• a reward function that specifies the reward given a state, the action

taken, and the resulting state.
A Markov decision problem is a Markov decision process together with an
optimality criteria, such as maximizing the accumulated discounted reward
or the average reward per time period. A partially observable MDP, or a
POMDP (Monahan 1982, Lovejoy 1991, Kaelbling et al. 1998), is an MDP
together with a set of observables and an observation function (sensor model)
that specifies the probability distribution for the observables for each state
and action.

Note that having the agents maintain a belief state (a probability distri-
bution over states of the system) isnot part of the definition of a POMDP.
Rather it is a theorem that says that an optimal agent (ignoring computation

17The different time points are often calledstages. Thus we talk about infinite stage
problems and finite stage problems. We sometimes also talk about the horizon, which is the
number of stages, so we have infinite horizon problems and finite horizon problems.
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time and space) can be obtained by an agent that maintains such a belief state
(Astrom 1965). A POMDP model lets us determine the expected utility of
any agent (including purely reactive agents that ignore their past or agents
that ignore the observations). There is also a theorem that says that (at least
for finite horizon, problems) the optimal agent can be described in terms of
the conditional plan it adopts. This is the basis of Sondik’s (1971) exact
algorithm for solving POMDPs and those that have followed it (Kaelbling
et al. 1998, Zhang & Liu 1997, Cassandra, Littman & Zhang 1997). The
intuition is that an agent is completely determined by what it does, and the
only time an agent can change what it does is when it observes something
(see Lin & Levesque (1998) for a related discussion).

In the framework of this paper, the agent doesn’t (have to) do probabilis-
tic reasoning, it only has to do the right thing (to borrow the title from Russell
& Wefald (1991)). The role of the utility is to compare agents. This is im-
portant when we consider bounded rationality (Russell 1997, Horvitz 1989)
or type-2 rationality (Good 1983), where we must take into account the time
of the computation done by the agent in order to compute utility. I would
expect that optimal agents wouldn’t do (exact) probabilistic reasoning at all,
because it’s too hard! As an extreme example, consider an agent with only a
few bits of memory that it can maintain as it is acting. You wouldn’t expect
it to use these bits to approximate a number, but instead it would probably
be better for it to encode (remember) a few salient facts about its past. In
order to, in the future,18 let us model bounded rational agents, theICLSC

is designed to model the effects of the agents actions rather than model the
reasoning of the agent.

Even if an agent uses quite a different architecture than maintaining a
probability distribution over states, for finite horizon problems, it can be
described in terms of what it will do based on what information it receives;
that is, in terms of a conditional plan. If we have an infinite horizon problem,
we may need a more complicated plan representation to represent the optimal
policy (Kaelbling et al. 1998, Section 6.7).

Finding good algorithms for POMDPs is an active area of research, for
both exact algorithms (Kaelbling et al. 1998, Cassandra et al. 1997, Boutilier
& Poole 1996) and approximation algorithms (Zhang & Liu 1997, Geffner
& Bonet 1998).

3.1.2 Bayesian Networks

As discussed in Section 1.4, we can describe the states in terms of ran-
dom variables or propositions, and describe the state transition function, the
reward function and the observation function in terms of Bayesian networks.

Not only do we want the variable independence of a Bayesian network,
but we also want to exploit contextual independence (Boutilier et al. 1996,
Poole 1997b). A convenient way to express contextual independence is to

18This would involve adding explicit time to the model to take into account the computation
time of the agent (the thinking time as well as the acting time). This would make the
framework much more complicated. I wanted to get the foundations debugged first. There
isn’t much point in building a monolithic formalism on shaky foundations.
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carrying(O,do(A,S))

at(robot,Pos,S) at(O,Pos,S)

A

carrying(O,S)

key(O)

Figure 3: A Bayesian network fragment for thecarrying fluent

give a set of rules to specify a conditional probability table. Once we have
the rules, we can lift the representation to a first-order by the introduction
of logical variables. This is the basis for probabilistic Horn abduction19

(Poole 1993) and its successor, the independent choice logic (Poole 1997a).
Given this mapping, the rules of Examples 2.9, 2.10 and 2.11, can be

represented as the Bayesian network fragment of Figure 3. Note that this is
a parametrized Bayesian network fragment; we mean that each grounding
of this forms a different part a Bayesian network (Bayesian networks being
propositional representations).

Note that, in the grounding, theA variable, that can take the values of
all possible actions, will be deterministic; one value will have probability
one and the other values will have probability zero. Note that this isn’t
the probability that the agent doesA, but is the probability that the action
in its child node is that action; the action in the child node is completely
determined in the grounding. Note also that the nodes containingPosneed
to be combined as an “or” for the various values forPos.

This network forms a very different form of action than is normally
considered in Bayesian networks. There are two traditional ways to handle
actions in Bayesian networks:

• The first is in representing actions in terms of decision nodes as in in-
fluence diagrams (Howard & Matheson 1981). These decision nodes
represent the proposition that the agent did something at some time.
When we are designing agents (or their policies) we get to choose
values for these depending on the information when the decision is
make. If we were using this as a representation of another agent, we
could have a probability distribution over these actions. The parents
of these decision nodes are the information available when the action
was performed.

19Poole (1993) proved that the same framework could be reached from Bayesian networks
plus rule-based conditional probabilities, the possible-worlds definition of Section 2.2, and
from an abductive view where the atomic choices are assumable and the probability of any
proposition could be obtained from the explanations of the proposition. In the indepen-
dent choice logic (Poole 1997a) the language is extended to include arbitrary acyclic logic
programs, including negation as failure (Poole 1998) as well as choices by various agents.
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• The second tradition is to treat actions as interventions (Pearl 1995).
An action changes the value of a variable externally (effectively cut-
ting the parents from the variable, and giving it a new value).

The actions in the Bayesian network built from fragments like that of Fig-
ure 3 are more like hypotheticals. For example, the variablecarrying(key, S),
for some particular value ofS, represents the probability that the agent would
be carrying the key if it were to carry out the actions specified by the situa-
tion termS. What the agent does isn’t specified in the network; the network
represents all possible contingencies (in terms of what the agent does) at
once.

3.1.3 Abduction

The independent choice logic is essentially abductive: the probability of
any proposition (or expected value of any term) can be computed from the
explanations of that proposition (Poole 1993, Poole 1998). We can compute
the expected utility for a conditional plan by explaining the utility variable
and explaining the observations. We can thus think of reasoning in the ICL
similarly to Shanahan:

The key idea of this paper is to consider the process of assimilat-
ing a stream of sensor data as abduction. Given such a stream,
the abductive task is to hypothesise the existence, shapes, and
locations of objects which, given the output the robot has sup-
plied to its motors, would explain that sensor data (Charniak
& McDermott 1985, page 455). This is, in essence, the map
building task for a mobile robot.

(Shanahan 1998, p. 2)

This is exactly what happens in the framework of this paper. We find the
explanations for the observations, as well as the explanations of the final
utility. We happen to have probabilities on the assumables, but the whole
framework can be considered in terms of abduction. On our case, it is not
the explanations themselves that are of interest, but only what they tell us
about the expected outcomes.

3.2 Probabilistic STRIPS

One of the popular action representations for stochastic actions is probabilis-
tic STRIPS (Kushmerick et al. 1995, Draper, Hanks & Weld 1994, Haddawy,
Doan & Goodwin 1995). In this section we show that the proposed repre-
sentation is more concise in the sense that theICLSC representation will not
be (more than a constant factor) larger than the corresponding probabilistic
STRIPS representation plus a rule for each predicate, but that sometimes
probabilistic STRIPS representation will be exponentially larger than the
correspondingICLSC representation.20

20We are assuming that we keep the same actions, and don’t invent new actions. It is known
that if we can invent new micro-actions representing the individual independent aspects,
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It is easy to translate probabilistic STRIPS intoICLSC: using the notation
of (Kushmerick et al. 1995, p. 247), each actiona is represented as a set
{〈ti, pi, ei〉}, where eachti is an expression called the trigger, 0≤ pi ≤ 1,
andei is a set of literals called the effects. The intuition is that whenti is
true, with probabilitypi , ei specifies what primitive literals are changed.

Each tuple can be translated into the rule of form:

bi(a, S) ← ti[S] ∧ ri[S]
(f [S] means the state term is added to every atomic formula in formulaf ),
wherebi is a unique predicate symbol, the differentri for the same trigger
are collected into an alternative set, such thatP0(ri(S)) = pi for all S. For
those positive elementsp of ei , we have a rule:

p[do(a, S)] ← bi(a, S)

For those negative elementsp of ei we have the rule,

undoes(p, a, S) ← bi(a, S)

and the frame rule for each predicate:

p[do(A, S)] ← p[S] ∧ ∼undoes(p, A, S).

TheICLSC action representation is much more modular for some prob-
lems than probabilistic STRIPS, where, as in STRIPS, the actions have to
be represented in one step for each context. Probabilistic STRIPS is worse
than theICLSC representation when actions affect fluents independently.
At one extreme (where the effect does not depend on the action), consider
stochastic frame axioms such as the axiom forcarryingpresented in Exam-
ple 2.10. In probabilistic STRIPS, the conditional effects have to be added
to every tuple representing an action — in terms of (Kushmerick et al. 1995),
for every trigger that is compatible with carrying the key, we have to split
into the cases where the agent drops the key and where the agent doesn’t.
Thus the probabilistic STRIPS representation grows exponentially with the
number of independent stochastic frame axioms: considern fluents which
persist stochastically and independently and thewait action, with no ef-
fects. TheICLSC representation is linear in the number of fluents, whereas
the probabilistic STRIPS representation is exponential inn. Note that if the
persistence of the fluents are not independent, then theICLSC representa-
tion will also be the exponential inn — we cannot get better than this; the
number of probabilities that have to be specified is also exponential inn.
In some sense we are exploiting the conciseness of Bayesian networks —
together with structured probability tables (Poole 1993) — to specify the
dependencies amongst the outcomes.

3.3 MDP and POMDP Representations

TheICLSC representation is closely related to two slice temporal Bayesian
networks (Dean & Kanazawa 1989) or the action networks of (Boutilier
et al. 1995, Boutilier & Poole 1996) that are used for Markov decision

probabilistic STRIPS can be modelled with only a polynomial increase in representation
size (Littman 1997). This is similar to the way actions are represented in Example 3.2.
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processes (MDPs). The latter represent using trees what is represented here
using rules — see (Poole 1993) for a comparison between the rule language
presented here and Bayesian networks. The situation calculus rules can be
seen as structured representations of the state transition function, and the
rules for utility can be seen as a structured representation of the reward or
value function.21 One problem with the action networks is that the problem
representations grow with the product of the number of actions and the
number of state variables — this is exactly the frame problem (McCarthy
& Hayes 1969) that is solved here using Reiter’s solution (Reiter 1991);
if the number of actions that affect a fluent is bounded, the size of the
representation is proportional the number of fluents (state variables).

In partially observable Markov decision processes (POMDPs), the state
of the world isn’t observable by the agent. As in this paper, the agent can
only observe the values of its sensors. The representation in this paper can
be seen as a representation for POMDPs. POMDP researchers (Kaelbling,
Littman & Cassandra 1996) have proposedpolicy trees, which correspond
to the plans developed here. Boutilier & Poole (1996) exploit the action
network representation for finding optimal policies in partially observable
MDPs. The general idea behind their structured POMDP algorithm is to
use what is essentially regression (Waldinger 1977) on the situation calculus
rules to build plans of future actions contingent on observations — policy
trees. The difficult part for exact computation is to not build plans that are
stochastically dominated (Kaelbling et al. 1996).22

In contrast to (Haddawy & Hanks 1993), we allow a general language to
specify utility. The aim of this work is not to identify useful utility functions,
but rather to give a language to specify utilities.

3.4 Bacchus, Halpern and Levesque

The closest work to this paper is the combination of probability and the
situation calculus of Bacchus, Halpern and Levesque (1995, 1998),23 which
we will refer to as BHL. At the top level we can be seen as trying to do the
same thing. When we consider the detailed design choices, we find that we
have made the opposite choice in virtually every decision.

We can contrast this work with that of BHL by the design choices:

• In their introduction, they explicitly contrast their work with the work
starting from Bayesian networks. In particular, they claim "...they
[Bayesian networks] have difficulties in dealing with features like dis-
junction ..." (Bacchus, Halpern & Levesque 1995). I take a Bayesian

21At least for finite stage MDPs. Infinite stage MDPs usually use a reward for each time
step and the value of a policy is the cumulative reward. Often rewards at future times are
discounted compared to immediate rewards (Puterman 1994). This isn’t a big distinction
when comparing representations, although it is when comparing algorithms.

22Intuitively, conditional planπ can be stochastically dominated by a set of conditional
plans, if whatever the agent believes (i.e., whatever its probability distribution over states),
the expected utility of one of the plans in the set of plans will be greater than or equal to the
expected utility ofπ .

23Historical note: I have only seen the February 1998 draft of Bacchus et al. (1998).
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perspective that disjunction is not a feature we want. As outlined in
Section 1.2, what defines a Bayesian is that probability is a measure
of belief, that any proposition can have a probability (both of which
I would expect that BHL would agree with) and that all uncertainty
should be measured by probability (which they don’t agree with).

• We differ as to what are our primitive actions. In this paper, the primi-
tive actions are the motor control commands that are the output of the
controller. These have no preconditions. BHL have analogous actions
that are “directly executable by the agent”. These directly executable
actions in their framework are non-deterministic programs, built from
more primitive deterministic actions that do have preconditions. This
is discussed in more detail below.

• In order to get the completion that is implicit in many of the solutions
to the frame problem to work, we need to be able to say that some
effect is true after an action if and only if some conditions are true
before the action. In order to be able to say this, we have to have
already resolved the nondeterminism. BHL do this completion in
terms of their primitive actions, which have already resolved all of
the nondeterminism. They then have a probability distribution over
the primitive actions, which lets them handle uncertainty. I do this
completion in each possible world, where a possible world has re-
solved all of nature’s choices. I then have a probability distribution
over possible worlds.

• We also make different design decisions with respect to whether the
situation should match the state (see Section 1.7). BHL keep the
semantic conceptualization of a situation as a state. In their framework
a situation specifies what is true, but an agent doesn’t know what
situation it is in. In my framework, an agent knows what situation it
is in, but the situation doesn’t fully specify what is true.

• We also differ as to whether the probabilistic reasoning is internal or
external to the agent. In BHL, the probabilistic reasoning is internal
to the agent. They axiomatise how the robots beliefs change as it
carries out actions and senses the world. The agents in the frame-
work presented here do not (have to) do probabilistic reasoning. As
in POMDPs, the probabilistic reasoning is about the agent and the
environment. An optimal agent (or an optimal program for an agent)
may maintain a belief state that is updated by Bayes’ rule or some
other mechanism, but it does not have to. It only has to do the right
thing. (See Section 3.1).

• BHL explicitly have sensing actions, where there is no such distinction
between sensing and other actions in this paper. (See Section 1.7.)

• Part of the motivation for the independent choice logic (and the Bayesian
network community) is to find useful independence assumptions that
are both natural and can be exploited for computational gain. The



37

ICL can represent the independence of Bayesian networks, as well
as contextual independence and noisy-ors.24 BHL use a general lan-
guage for which one can state whatever independence assumptions
one likes.

BHL need at least two different sorts of actions: the primitive actions and
the directly executable actions. They also distinguish action preconditions,
and the preconditions of the effect axioms (what Reiter (1991) calls fluent
preconditions). However these distinctions seem arbitrary, as the following
example shows:

Example 3.1 Suppose there are two people who want to axiomatise a do-
main using the framework of BHL. Suppose they make different modelling
decisions:

• The first person decides there is a primitive actiona, with precondition
p and conditional effects: whenc is true, the effect ise1, and when
¬c is true, the effect ise2.

• The second person decides to model the domain with two primitive
actionsa1 anda2. Actiona1 has preconditionp∧ c and the (uncondi-
tional) effect ise1. Action a1 has preconditionp ∧ ∼c and the effect
is e2.

Whenever the first person uses actiona, the second person uses the nonde-
terministic choice betweena1 anda2.

Which representation would be better? It turns out that it makes ab-
solutely no difference which way the domain is axiomatised. All of the
agents choices (as long asp 6≡ true, the agent cannot choose any of these
primitive actions as they are not direct executable) will result in exactly the
same effects. In some very strong sense these two representations should
be seen as equivalent.

I would argue that, (at least in the context of probabilistic actions), rather
than being a fundamental property of actions, the distinction between action
preconditions and fluent preconditions is largely illusory. Rather than trying
to maintain an arbitrary distinction between action preconditions and fluent
preconditions, I propose that we get rid of action preconditions, and only
have conditional effects (fluent preconditions).

We have a straightforward notion of what an action is, and one simple
mechanism for handling effects and ramifications. What is an action in BHL
isn’t so well defined; it seems a though they need to embed the effects as
part of the actions, as the following example shows.

24There is nothing in the ICL that forces the bodies of rules to be disjoint. The methodology
of Section 2.5 was presented with disjoint rule bodies just to keep the framework simple, and
because such rules are sufficient for many applications. When the bodies are not disjoint,
they are combined using an “or”, in exactly the same was as Clark’s (1978) completion. This
is also the basis for the noisy-or (Pearl 1988, p. 184) of Bayesian networks.
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Example 3.2 Consider an action that has a number of independent25stochas-
tic effects. For example, administering a drug may have independent effects
of curing the disease, causing an allergic reaction, and raising blood pressure.
Exploiting the independence is important to compactly represent the knowl-
edge. Because we have probabilities associated with effects, we can easily
represent the independent effects of the single actionadminister-the-drug,
with three alternatives: one whether the drug cures the disease, one whether
the drug causes an allergic reaction, and one whether the drug raises the
blood pressure. However, BHL associate probabilities with actions. While
BHL don’t have built-in independence assumptions, they do have the mech-
anisms to state them. To make explicit the probabilities that need to be stated
to be independent, BHL would model this as three concurrent actions: the
action of the drug curing the disease, the action of the drug causing the al-
lergic reaction, and the action of the drug raising the blood pressure. Rather
than this formalism having a clean notion of fluent preconditions, it would
seems that the notion of what is an action is intertwined with what are the
fluents.

Note that the modelling of actions of this example is similar to the construc-
tion of Littman (1997, Theorem 3), who shows how probabilistic STRIPS
can represent independently evolving actions by creating such micro-actions.

One major advantage of theICLSC is that exactly the same mechanism
can be used for direct effects and ramifications. The general case is some-
where between these two extremes; where the truth of a fluent depends on
some fluents at the current situation and some at the previous situation. This
occurs, for example, when there are correlated action affects. BHL needs
a different mechanism to handle ramifications than they have for action
effects.

3.5 Independent Choice Logic and Reactive Policies

There is a conceptually different way to use the ICL to model time and
action. Here we can only sketch the idea; see Poole (1997a) for details.
We only consider discrete time here. See Poole (1995) for a way to handle
continuous time (allowing for integration and differentiation with respect to
time) using a method similar to the event calculus.

The idea is to represent agents and nature in the same way. For the
situation calculus axiomatization above, the single agent was treated quite
differently to nature. Symmetry is important when we consider multiple
agents.

For the discrete time case, we represent time in terms of the integers.
The fact that the agent did an action is represented by a proposition indexed
by time. We use a predicatedo(A, T) that is true if the agent attempted
actionA at timeT. What is true at a time depends on what was true at
the previous times and what actions have occurred, and the outcome of

25If the effects aren’t independent, we can’t do better than considering the combinatorial
effects, as the number of independent numbers that needs to be specified is exponential in
the number of state variables.
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stochastic mechanisms. This places actions by the agent at the same level
as actions by nature (or actions by other agents). Note that many actions
can be done at any time step.

There are two parts to axiomatise. The first is to axiomatise the effect
of actions, and the second is to specify what an agent will do based on what
it observes (i.e., its policy).

To axiomatise the effect of actions, for the discrete time case we write
how what is true at one time depends on what was true at the previous time
(including what actions occurred). We would write similar axioms to the
situation calculus, but indexed by time, and usingdoas a predicate.

Example 3.3 The axiom for carrying of Example 2.9 can be stated as:

carrying(O, T + 1) ←
do(pickup(O), T) ∧
at(robot, Pos, T) ∧
at(O, Pos, T) ∧
pickup_succeeds(O, T).

The frame axiom forcarrying in Example 2.10 would look like:

carrying(O, T + 1) ←
carrying(O, T) ∧
∼do(putdown(O), T) ∧
∼do(pickup(O), T) ∧
keeps_carrying(O, S).

The rule covering the case where the putdown fails (Example 2.11) becomes:

carrying(O, T + 1) ←
do(putdown(O), T) ∧
carrying(O, S) ∧
putdown_fails(O, S).

These don’t look very different to the situation calculus axioms!

Similarly axioms for sensing that only refer to a single situation/state,
such as those of Example 2.13 would remain the same, but the variables are
quantified over times, not situations.

This slight change to the representation of the facts has profound effects
on the plans. There are no situations. What an agent does is a set of
propositions for different times. Within this framework, it is natural to think
in terms of agents adopting policies.

What an agent does depends on what it observes and what it remembers.
A policy is a logic program that specifies what an agent will do based on
what it senses and what it has remembered (Poole 1997a).

Example 3.4 The following rule could be one part of a policy for the robot:

do(pickup(key), T) ←
sense(at_key, T) ∧
recall(want_key, T).
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Hererecall could be a predicate that represents the internal state of the agent.
It can be axiomatised like any other relation.

This rule is very different to a situation calculus program, because it
says that whenever the robot senses it is at a key, and wants it, it should pick
it up (as well as doing any other actions that are implied by other rules).
In order to implement a situation-calculus type plan using such rules, the
robot needs to maintain something like a program counter or continuations.
In order for a situation calculus program to implement such rules, it has to
loop over a conditional statement that checks the conditions of the rules, and
does the appropriate concurrent actions.

With axioms about utility, a policy has a utility in a possible world, and
so, by averaging over possible worlds, it has an expected utility. The goal
is to choose the policy with the highest expected utility.

Within the policy-based framework, concurrent actions and multiple
agents are easy to represent. The proposed framework here is, like the event
calculus, narrative-based (Shanahan 1997) in that it is reasoning about a
particular course of events. This is true for each possible world, but we can
have a probability distribution over possible worlds. We have a mechanisms
to allow multiple agents to choose which of the actions that they can control
occur, and to allow a probability distribution over events that nature controls
(Poole 1997a).

Extending the situation calculus version presented here to multiple agents
isn’t as straightforward. The way we have treated the situation calculus
gives an agent-oriented view of time — the situations in some sense mark
particular time points that correspond to the agent attempting its actions.
Everything else (e.g., actions by nature or other agents) has to meld with
this division of time. This is even trickier when we realise that when agents
have sloppy actuators and noisy sensors, the actions defining the situations
correspond to action attempts. While the agent knows what it did (i.e., its
motor controls), and what its sensors tell it, other agents don’t know what
this agent has done; they only know what their sensors tell them. When
there are multiple agents, either there has to be a common clock, some mas-
ter agent with which the other agents define their state transition, complex
actions (Reiter 1996, Lin & Shoham 1995), or perhaps even a form of con-
current asynchronous situations (where each agent has its own division of
time defined by its situations). These seem to mean that the actions need
to be carried out lock-step, removing the intuitive appeal of the situation
calculus, and making it much closer to the event calculus. The work of
Reiter (1996) and Lin & Shoham (1995) assumes a deterministic world.
Not only must the world unfold deterministically, but you must know how
it unfolds. This is very different to the assumptions that hold here, where
an agent doesn’t even know its behaviour only its motor control.

4 Conclusion

This paper has presented a formalism that lets us combine situation calculus
axioms, conditional plans and Bayesian decision theory in a coherent frame-
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work. The paper is proposing a new model; not an alternative to POMDPs,
Bayesian networks, logic programs, and the standard situation calculus, but
a way to combine them. The representation is closely related to structured
representations of POMDP problems. The hope is that we can form a bridge
between work in AI planning and in POMDPs, and use the best features of
both. This is the basis for ongoing research.

We are also investigating alternate representations for actions that are
much closer to the event calculus (Poole 1995, Poole 1997a). Which will
turn out to be a more useful representation is a matter for debate, further
research and, eventually, history to determine.

We are betting that Bayesian decision theory will be eventually seen as
the appropriate formal basis for acting under uncertainty (as it is in many
disciplines). Workers in knowledge representation should take heart that the
need for knowledge representation won’t go away; we will still need good
representations and good algorithms to exploit the representations.
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