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Abstract

We consider the number of queries needed to solve
the matroid intersection problem, a question raised
by Welsh (1976). Given two matroids of rank r on
n elements, it is known that O(nr1.5) independence
queries suffice. However, no non-trivial lower bounds
are known for this problem.

We make the first progress on this question. We
describe a family of instances of rank r = n/2 based on a
pointer chasing problem, and prove that (log2 3)n−o(n)
queries are necessary to solve these instances. This gives
a constant factor improvement over the trivial lower
bound of n for matroids of this rank.

Our proof uses methods from communication com-
plexity and group representation theory. We analyze
the communication matrix by viewing it as an opera-
tor in the group algebra of the symmetric group and
explicitly computing its spectrum.

1 Introduction

The matroid intersection problem — finding a maxi-
mum cardinality independent set in two given matroids
— is a fundamental problem in combinatorial optimiza-
tion. Research on this topic led to significant develop-
ments on integral polyhedra [5], submodular functions
[6], and other areas. The combinatorial structure of ma-
troids can be exploited algorithmically, leading to appli-
cations of matroids in many areas. This paper exam-
ines the computational efficiency of matroids, focusing
on the query complexity of matroid intersection.

To give context for our work, some formal defini-
tions are required (see also Cook et al. [2]). Let S be
a ground set of size n, and let I ⊆ 2S be a non-empty
family of sets satisfying
• A ⊆ B and B ∈ I =⇒ A ∈ I;
• A ∈ I and B ∈ I and |A| < |B| =⇒ ∃b ∈ B \ A

such that A + b ∈ I.
The pair (S, I) is called a matroid and the sets in I are
called independent sets. As a motivating example, one
may think of elements of S as vectors in a vector space,

∗Supported by a Natural Sciences and Engineering Research
Council of Canada PGS Scholarship, by NSF contract CCF-
0515221 and by ONR grant N00014-05-1-0148.

and the family I as all sets of linearly independent
vectors. A base is a maximum cardinality independent
set, and the rank of a matroid is the size of any
base. The rank function ρ : 2S → N satisfies ρ(A) =
maxA⊇I∈I |I|. Given two matroids M1 = (S, I1) and
M2 = (S, I2), the matroid intersection problem is to
find a maximum cardinality set I ∈ I1 ∩ I2. A related
(and equivalent) problem is to find a common base of
the two matroids, if any.

Most of the algorithms developed for matroid inter-
section work in an oracle model. That is, the algorithms
only access each matroid by performing a simple query:
given A ⊆ S, is A in I1 (or in I2)? The procedure which
answers the queries is called an independence oracle.
Cunningham [3] developed a matroid intersection algo-
rithm using only O(nr1.5) independence oracle queries
for matroids of rank r.

How many queries are necessary to solve the ma-
troid intersection problem? To our knowledge, this
question was first asked by Welsh1 [21, p368] in 1976.
As Cunningham’s bound shows, the number of queries
needed is linear in n whenever r is a constant. Thus
Welsh’s question is only interesting for matroids of large
rank; the precise value of “large” is not so important
since one can adjust the rank by padding arguments.
Thus, to be definitive, we assume that r ≈ n/2 through-
out this paper.

We describe a new family of matroids based on
a pointer chasing problem. Roughly speaking, M1

corresponds to a permutation π in the symmetric group
Sn and M2 corresponds to a permutation σ ∈ Sn.
Both matroids have rank n/2 + 1. The two matroids
have a common base iff the cycle structure of the
composition σ−1 ◦ π satisfies a certain property. We
prove that (log2 3)n−o(n) queries are necessary to solve
the matroid intersection problem for these instances.
This result improves on the trivial lower bound of n
that one can obtain for matroids of this rank by an
easy adversary argument. We conjecture that actually
ω(n) queries are necessary for our family of instances,
although proving this seems to be difficult.

1To be precise, Welsh asked about the number of queries
needed to solve the matroid partition problem, which is equivalent
to matroid intersection, but was discovered earlier.



Our arguments are based on the communication
complexity framework: the two given matroids are an-
thropomorphized into two computationally unbounded
players, Alice and Bob, and one analyzes the number of
bits that must be communicated between them to solve
the matroid intersection problem. This yields a lower
bound on the number of independence queries required
by any algorithm.

A standard technique for proving lower bounds in
this framework is based on the communication matrix
C, which is the truth table of the function that Alice
and Bob must compute. It is known that log2 rankC
gives a lower bound on the number of bits which must
be communicated between Alice and Bob. Since our
instances are derived from the symmetric group, it is
natural to use representation theory to analyze the ma-
trix’s rank. Section 4 does this by viewing the com-
munication matrix as an operator in the group algebra.
Surprisingly, we show that the matrix is diagonalizable
(in Young’s seminormal basis), its eigenvalues are all
integers, and their precise values can be computed by
considering properties of Young tableaux.

2 Communication Complexity

Our lower bound uses methods from the field of com-
munication complexity [9, 10]. This section briefly de-
scribes the concepts that we will need.

2.1 Communication Problems A communica-
tion problem is specified by a function f(X,Y ), where
X is Alice’s input, Y is Bob’s input, and the range is
{0, 1}. A communication problem is solved by a commu-
nication protocol, in which Alice and Bob send messages
to each other until one of them can decide the solution
f(X,Y ). The player who has found the solution de-
clares that the protocol has halted, and announces the
solution.

The deterministic communication complexity of f is
defined to be the minimum number of bits required by
any deterministic communication protocol for f . This
quantity is denoted D(f).

Nondeterminism also plays an important role in
communication complexity. This model involves a third
party — a prover who knows both X and Y . In a
nondeterministic protocol for f , the prover produces
a certificate Z which is delivered to both Alice and
Bob (Z is a function of both X and Y ). Alice and
Bob cannot communicate, other than receiving Z from
the prover. If f(X, Y ) = 1, then the certificate must
suffice to convince Alice and Bob of this fact (Alice sees
only X and Z, Bob sees only Y and Z). Otherwise, if
f(X,Y ) = 0, no certificate should be able to fool both
Alice and Bob. The nondeterministic communication

complexity is defined to be the minimum length of the
certificate (in bits) in any nondeterministic protocol.
We denote this quantity by N1(f).

A co-nondeterministic protocol is defined analo-
gously, reversing the roles of True and False. The
co-nondeterministic complexity is also defined analo-
gously, and is denoted by N0(f). One can easily see
that N0(f) ≤ D(f) and N1(f) ≤ D(f).

For any communication problem f , the communi-
cation matrix is a {0, 1} matrix C(f) whose rows are
indexed by Alice’s inputs X and whose columns are in-
dexed by Bob’s inputs Y . The entries of C are simply
C(f)X,Y = f(X,Y ). There is a connection between
algebraic properties of the matrix C(f) and the com-
munication complexity of f , as shown in the following
lemma.

Fact 1. (Mehlhorn and Schmidt [12]) Over the
complex numbers C, we have D(f) ≥ log2 rank C(f).

2.2 Communication Complexity of
Matroid Intersection
Let us now consider the matroid intersection problem
in the communication complexity framework.

Definition. The communication problem Mat-∩:

• Alice’s Input: A matroid M1 = (S, I1).
• Bob’s Input: A matroid M2 = (S, I2).
• Output: If M1 and M2 have a common base then

f(M1,M2) = True. Otherwise, it is False.

By standard arguments, any matroid intersection
algorithm which uses independence oracle queries can be
transformed into a communication protocol for Mat-∩.
The point is that both Alice and Bob can independently
simulate the given algorithm, and they only need to
communicate whenever an oracle query is made. Thus
D(Mat-∩) gives a lower bound on the number of oracle
queries made by any matroid intersection algorithm.
The remainder of this paper focuses on analyzing the
communication complexities of Mat-∩.

We begin with some easy observations using ma-
troids of rank one. Let X ⊆ S be arbitrary, and let
B(X) = { {x} : x ∈ X }. It is easy to verify that B(X)
is the family of bases of a rank one matroid, denoted
M(X). Given two sets X, Y ⊆ S, the two matroids
M(X) and M(Y ) have a common base iff X ∩ Y 6= ∅.
Thus, for this family of matroids, the Mat-∩ prob-
lem is simply the complement of the well-known Dis-
jointness problem. Thus, by classical results, we have
D(Mat-∩) ≥ n and N0(Mat-∩) ≥ n− o(n). The ran-
domized communication complexity of Mat-∩, which
we will not define, is also Ω(n).

As it turns out, this argument gives a tight lower



bound on N0(Mat-∩). To show this, we will use the
following min-max relation of Edmonds [5].

Fact 2. (Matroid Intersection Theorem) Let
M1 = (S, I1) and M2 = (S, I2) be given. Let ρ1 and
ρ2 denote their rank functions, respectively. Then
maxI∈I1∩I2 |I| = minA⊆S

(
ρ1(A) + ρ2(S \A)

)
.

Lemma 3. N1(Mat-∩) ≤ n and N0(Mat-∩) ≤ n +
2(blog nc+ 1).

Proof. To convince Alice and Bob that their two
matroids have a common base, it suffices to present
them with that base B. Alice and Bob independently
check that B is a base for their respective matroids. The
set B can be represented using n bits, hence N1 ≤ n.

To convince Alice and Bob that their two matroids
do not have a common base, we invoke the matroid
intersection theorem. The prover computes a set A ⊆
S which is a minimizing set in Fact 2. The co-
nondeterministic certificate Z consists of the set A, and
two integers z1 and z2. Alice and Bob both check that
z1 + z2 < r, and individually check that z1 = ρ1(A)
and z2 = ρ2(S \ A). If this holds then the two
matroids cannot have a common base. The length of
this certificate is at most n + 2(blog nc+ 1). ¤

We remark that N1(Mat-∩) = Ω(n) can be proven.
In fact, it can even be proven for the restricted class
of matroid intersection instances that we define in the
following section.

3 Pointer Chasing Instances

One interesting category of communication problems is
pointer chasing problems [1, 4, 15, 16, 17]. We now show
that matroid intersection leads to an interesting pointer
chasing problem.

The motivating example to keep in mind is the
class of almost 2-regular bipartite graphs. Let G be
a graph with a bipartition of the vertices into U and
V . Each vertex in U (resp., in V ) has degree 2,
except for two distinguished vertices u1, u2 ∈ U (resp.,
v1, v2 ∈ V ), which have degree 1. (So |U | = |V |.)
The connected components of G are two paths with
endpoints in {u1, u2, v1, v2}, and possibly some cycles.
It is easy to see that G has a perfect matching iff G does
not contain a path from u1 to u2 (equiv., from v1 to v2).

Let us now reformulate this example slightly. Let
S = U ∪ V where |U | = |V | = N := n/2. Let P be
a partition of S into pairs, where each pair contains
exactly one element of U and one element of V . We
can write P as

{ {
ui, vπ(i)

}
: i = 1, . . . , N

}
, where π :

U → V is a bijection. Now P can be used to define a
matroid. Fix arbitrarily 1 ≤ k ≤ N , and let Bπ

k be the

family of all B such that

|B ∩ {
ui, vπ(i)

}| =

{
2 (if i = k)
1 (otherwise).

One may verify that Bπ
k is the family of bases of a

matroid Mπ
k (a partition matroid). LetMk be the set of

all such matroids (keeping k fixed, and letting π vary).

Lemma 4. Let Mπ
1 ∈ M1 and Mσ

2 ∈ M2. Note that
σ−1 ◦ π is a permutation on U . We claim that Mπ

1 and
Mσ

2 have a common base iff elements u1 and u2 are in
the same cycle of σ−1 ◦ π.

The proof of this lemma mirrors the argument
characterizing when almost 2-regular bipartite graphs
have a perfect matching. Let us now interpret Lemma 4
in the communication complexity framework.

Definition. The In-Same-Cycle problem:
• Alice’s input: A permutation π ∈ SN .
• Bob’s input: A permutation σ ∈ SN .
• Output: If elements 1 and 2 are in the same cycle

of σ−1 ◦ π, then output True. Otherwise False.

Thus Lemma 4 has shown that In-Same-Cycle
reduces to Mat-∩. Intuitively, Alice and Bob cannot
decide the In-Same-Cycle problem unless one of them
has learned the entire cycle containing 1 and 2, which
might have length Ω(N), so it is reasonable to believe
that Ω(N log N) bits of communication are required.

The remainder of this paper proves the following
theorem.

Theorem 5. Let C denote the communication matrix
for In-Same-Cycle. Then rankC equals

1 +
∑

1≤i≤N−1

∑

1≤j≤min{i,N−i}
(

N

i, j, N − i− j

)2

· j2 (i− j + 1)2

N (N − 1) (N − i) (N − j + 1)
.

Corollary 6. D(In-Same-Cycle) ≥ (log2 9)N −
o(N). Consequently, the matroid intersection problem
for matroids with rank n/2 + 1 and ground set size n
requires at least (log2 3)n− o(n).

Proof. Note that
(

N
N/3, N/3, N/3

)
= 3N−o(N), and there-

fore rankC = 9N−o(N). Fact 1 therefore implies the
lower bound on D(In-Same-Cycle). The lower bound
for matroid intersection follows since the matroids in
Mk have rank n/2 + 1 and ground set size n. ¤



4 Representation Theory and In-Same-Cycle

4.1 Preliminaries This section relies on the rep-
resentation theory of the symmetric group. We give a
brief introductory discussion here. More detailed expo-
sitions can be found in James-Kerber [8], Năımark [13],
Sagan [19], and Vershik-Okounkov [20]. The exposition
of Sagan is particularly lucid.

A representation h of SN is a function h : SN →
GLm(C), where GLm(C) is the group of non-singular
m×m matrices over the complex numbers. The function
h need not be one-to-one, but must be a homomorphism:
h(σ)h(τ) = h(σ ◦ τ) for all σ, τ ∈ SN . The value m is
called the dimension of the representation h.

The regular representation R is of particular im-
portance. In the standard basis, R may be defined as
follows. R(τ) is a matrix whose rows and columns are
indexed by SN , and whose entries are given by

R(τ)π,σ =

{
1 if π = σ ◦ τ

0 otherwise.

Another way of describing the regular representa-
tion is as follows. Consider the set of all formal linear
combinations over C of elements of SN ; a typical ele-
ment is

∑
π∈SN

αππ. This set is called the group algebra
of SN : it is a vector space over C, with multiplication
defined by
( ∑

π∈SN

αππ
)
·
( ∑

π∈SN

βππ
)

=
∑

π∈SN

(∑
σ∈SN

ασβσ−1◦π
)
π.

The matrix R(τ) can be viewed as the permutation
matrix expressing how multiplication on the right by
τ permutes the standard basis of the group algebra.

Let λ be a partition of N , i.e., λ is a non-increasing
sequence (λ1, λ2, . . . , λk) of positive integers whose sum
is N . This is denoted λ ` N . A Ferrers diagram of shape
λ is a two-dimensional array of boxes such that the rows
are left-aligned, and the ith row contains λi boxes. For
example, Figure 1 (a) shows the Ferrers diagram of the
partition (5, 4, 4, 2, 1, 1) ` 17. We will use the terms
“partition” and “shape” interchangeably.

Let λ ` N . A Young tableau of shape λ is a bijective
assignment of the integers in {1, . . . , N} to the boxes of
the Ferrers diagram for λ. A standard Young tableau,
or SYT, is one such that the values in each row increase
from left to right, and the values in each column increase
from top to bottom. Figure 1 (b) shows an example.

Let λ ` N . Let v be a box in the Ferrers diagram
of λ. The hook of box v, denoted hv, is the set of boxes
in the same row as v but to its right or in the same
column as v but beneath it (including v itself). This is
illustrated in Figure 1 (c).

(a)

1 2 4 6 8

3 11 12 13

5

7

9

10

14 15 17

16

(b)

v

(c)

0 1 2 3 4

-1 0 1 2

-2

-3

-4

-5

-1 0 1

-2

(d)

Figure 1: (a) A Ferrers diagram. (b) A standard
Young tableau. (c) A box v and its hook hv. (d) The
“content” of all boxes in this Ferrers diagram.

Fact 7. (Hook Length Formula) The number of
SYT of shape λ is denoted fλ, and has value fλ =

N !∏
v|hv| , where the product is over all boxes v in the Fer-

rers diagram for λ.

There are several canonical representations of SN

known as irreducible representations. (Henceforth, we
use the shorthand irrep.) The irreps are indexed (in a
canonical way) by the partitions of N . Let Yλ denote
the irrep corresponding to partition λ. For any π ∈ SN ,
the notation Yλ(π) denotes the matrix associated with
π by this irrep. For any set S ⊆ SN , let Yλ(S) =∑

π∈S Yλ(π).
Two representations h and h′ are said to be equiv-

alent if one can be obtained from the other simply
by changing the basis, i.e., if ∃B such that for all π,
h(π) = B h′(π)B−1. When discussing irreps, we will
also need to specify the particular basis that is used.
Throughout this paper, the basis of interest will be
Young’s seminormal basis. The definition of this basis
is not crucial for us, but we will need some of its prop-
erties. One important property is: in the vector space
operated upon by the irrep Yλ, the basis elements cor-
respond bijectively (in a canonical way) to the various
SYT of shape λ. Thus the dimension of Yλ is fλ.

Fact 8. The regular representation R can be expressed
as a direct sum of irreps. Specifically, there exists a
change of basis matrix B such that, for each τ ∈ SN ,
BR(τ)B−1 is a block-diagonal matrix where each block
is a copy of an irrep Yλ(τ); additionally, each irrep
Yλ(τ) occurs exactly fλ times in this direct sum.



For 1 ≤ j ≤ N , the jth Jucys-Murphy element
is the member of the group algebra defined by Jj =∑

1≤i<j (i, j). Here, (i, j) denotes a transposition in SN .
For convenience, we may also view Jj as a subset of SN :
the set of j − 1 transpositions which appear with non-
zero coefficient in Jj .

For a Ferrers diagram of shape λ, the content of the
box (a, b) (i.e., in row a and column b) is the integer b−a.
This is illustrated in Figure 1 (d); note that the content
values are constant on each negative-sloping diagonal.
For any standard Young tableau t and 1 ≤ j ≤ N ,
define cont(t, j) to be the content of the box occupied
by element j in tableau t.

Fact 9. Yλ(Jj) is a diagonal matrix and the diagonal
entries are Yλ(Jj)t,t = cont(t, j), where t is a tableau of
shape λ.

4.2 The In-Same-Cycle Problem In this sec-
tion, we compute the rank of the communication matrix
for the In-Same-Cycle problem, and thereby prove
Theorem 5. Surprisingly, we will show that this matrix
is diagonalizable, and that the values of those diago-
nal entries (i.e., the spectrum) are integers that can be
precisely computed.

Overview. Our argument proceeds as follows.
• The matrix C can be written as a sum of matrices

in the regular representation.
• There exists a change-of-basis matrix which block-

diagonalizes the matrices of the regular represen-
tation (i.e., decomposes them into irreps). Thus
C can also be block-diagonalized.

• The blocks of C can be expressed as a polyno-
mial in the matrices corresponding to the Jucys-
Murphy elements. Thus each block is actually a
diagonal matrix (if the change-of-basis matrix is
chosen properly).

• The diagonal entries of each block (i.e., eigenval-
ues of C) are given by a polynomial in the content
values, so they can be explicitly computed. The
rank of C is simply the number of non-zero eigen-
values, so a closed form for the rank can be given.

Let π ∈ SN be the permutation corresponding to
Alice’s input and let σ ∈ SN correspond to Bob’s input.
Define KN , or simply K, to be

KN = { τ ∈ SN : 1 and 2 are in the same cycle of τ } .

Recall the definition of the communication matrix C:
the entry Cπ,σ is 1 if σ−1 ◦π ∈ K, and 0 otherwise. This
leads to the following easy lemma.

Lemma 10. C =
∑

τ∈KR(τ), where R(τ) denotes a
matrix of the regular representation.

Now let B be the change-of-basis matrix which
decomposes the regular representation into irreps, as
mentioned in Fact 8. We will analyze the rank of C by
considering the contribution from each irrep. We have

rankC = rank B C B−1

= rank
( ∑

τ∈K
B R(τ)B−1

)

=
∑

λ`N

fλ · rankYλ(K),

(4.1)

where the third equality follows from Fact 8.
The following lemma gives the reason that the com-

munication matrix for In-Same-Cycle can be analyzed
so precisely. It gives a direct connection between the In-
Same-Cycle problem and the Jucys-Murphy elements.

Lemma 11. (“Insertion Sort Lemma”)∑
π∈K π = J2 ·

∏N
j=3(1 + Jj).

Proof sketch. First, we show
∑

π∈SN
π =

∏N
j=2(1+Jj).

The argument is inductive: any permutation π ∈ SN

can be expressed as the product of a permutation
π′ ∈ SN−1 and some transposition (i,N) which places
element N next to its neighbours in π. This argument
is analogous to the behaviour of the Insertion Sort
algorithm.

A similar argument proves the lemma. The differ-
ence lies in the factor of J2 rather than 1 + J2. This
ensures that element 2 will always be in the same cycle
as element 1. ¤

We remark that Lemma 11 also shows that |K| =
|SN |/2. In other words, for any π,

Prσ [ In-Same-Cycle(π, σ) = 1 ] = 1/2,

which is an easy but interesting fact.
Lemma 11 shows that the sum

∑
π∈K π can be

expressed as a polynomial in the Jucys-Murphy ele-
ments. In other words, for every λ ` N , the matrix
Yλ(K) can be expressed as a polynomial in the matrices
{ Yλ(Jj) : 2 ≤ j ≤ N }. It follows directly from Fact 9
that Yλ(K) is diagonal. Moreover, for every SYT t of
shape λ, the corresponding diagonal entry of Yλ(K) sat-
isfies the expression

(4.2) Yλ(K)t,t = Yλ(J2)t,t ·
N∏

j=3

(
1 + Yλ(Jj)t,t

)
.

As mentioned above, the blocks of B C B−1 are all
of the form Yλ(K). Thus B C B−1 is actually diagonal,
and (4.2) completely determines the spectrum of C,
using Fact 9.



In the remainder of this section, we will analyze
(4.2) more closely. Our main goal is to determine when
its value is non-zero. This holds whenever Yλ(J2)t,t 6= 0
and Yλ(Jj)t,t 6= −1 for all j ≥ 3. By Fact 9, Yλ(J2)t,t =
0 only when 2 lies on the main diagonal of t, which is
impossible in any SYT. Similarly, Yλ(Jj)t,t = −1 only
when j lies on the first subdiagonal. So we have the
following fact, which is crucial to the analysis.

For an SYT t, Yλ(K)t,t 6= 0 ⇐⇒
in tableau t, all values j ≥ 3 avoid the first subdiagonal.

Let us now consider three cases.
Case 1: λ3 > 1. Fix an arbitrary SYT t of shape λ.

The box in position (3, 2) (row 3, column 2) of t
contains some value j ≥ 6. Since this box is on the
first subdiagonal, we have Yλ(K)t,t = 0.

Case 2: λ2 = 0, i.e., λ = (N). There is a unique SYT
of shape λ, in which every box (1, j) contains j.
Thus Yλ(Jj) = j − 1 for all j, so (4.2) shows that
the unique entry of Yλ(K) has value N !/2.

Case 3: λ2 ≥ 1 and λ3 ≤ 1. In the Ferrers diagram
of shape λ, only the box (2, 1) is on the first
subdiagonal. Consider now an SYT t of shape λ.
If the box (2, 1) contains j ≥ 3 then Yλ(K)t,t = 0.

On the other hand, if the box (2, 1) contains the
value 2 then all values j ≥ 3 avoid the first
subdiagonal, implying that Yλ(K)t,t 6= 0. In fact,
the precise value of Yλ(K)t,t can be determined.
Since the value 2 is in box (2, 1) we have Yλ(J2)t,t =
−1. The multiset { Yλ(Jj)t,t : j ≥ 3 } is simply the
multiset of all content values in boxes excluding
(1, 1) and (2, 1). Let B denote this set of N − 2
boxes. Then

Yλ(K)t,t

= Yλ(J2)t,t ·
N∏

j=3

(
1 + Yλ(Jj)t,t

)

= −
∏

(a,b)∈B

(1 + b− a)

= λ1! · (λ2 − 1)! · (N − λ1 − λ2)! · (−1)N−λ1−λ2+1

We have now computed the entire spectrum of
C. The remaining task is to compute the rank (i.e.,
enumerate the number of non-zero eigenvalues). As
argued above, any shape λ with λ3 > 1 contributes zero
to the rank, and the shape λ = (N) contributes exactly
1. It remains to consider shapes with λ2 ≥ 1 and λ3 ≤ 1.
As argued above, the number of non-zero diagonal
entries in a block corresponding to shape λ equals the

number of SYT in which box (2, 1) contains the value
2; let us denote this quantity by gλ. Furthermore, there
are precisely fλ copies of the block corresponding to
shape λ (cf. Fact 8). Thus,

(4.3) rank C = 1 +
∑

λ s.t.
λ2≥1 and λ3≤1

fλ · gλ.

Lemma 12. Let λ ` N satisfy λ2 ≥ 1 and λ3 ≤ 1. Then

fλ =
(

N

λ1, λ2, N − λ1 − λ2

)
· λ2 (λ1 − λ2 + 1)
(N − λ1) (N − λ2 + 1)

.

gλ =
(

N

λ1, λ2, N − λ1 − λ2

)
· λ2 (λ1 − λ2 + 1)

N(N − 1)
.

The proof of Lemma 12 is given in Appendix A.
Substituting into (4.3) yields

1 +
∑

1≤λ1≤N−1

∑

1≤λ2≤min{λ1,N−λ1}(
N

λ1, λ2, N−λ1−λ2

)2

· λ2
2 (λ1 − λ2 + 1)2

N(N−1)(N−λ1)(N−λ2+1)
.

This concludes the proof of Theorem 5.

5 Discussion

Adversary Arguments. The trivial way to prove
lower bounds on matroid intersection is using rank-
one matroids, as in Section 2.2. However, instead of
considering communication complexity, one can instead
use adversary (i.e., evasiveness) arguments to show that
the algorithm must make n queries to each matroid,
giving a lower bound of 2n. By padding the ground set
with coloops, one obtains a lower bound of 2(n− r + 1)
queries for matroids of any rank 0 < r < n.

In comparison, our result yields a lower bound of
3.16 ·min {r, n− r} for matroids of rank r, by padding
the ground set with either loops or coloops. Thus our
lower bound is stronger for sufficiently large r.

Queries vs Communication. This suggests that
one may obtain better lower bounds by directly con-
sidering query complexity rather than communication
complexity. Indeed, it is conceivable that matroid in-
tersection requires Ω(nr1.5) queries but D(Mat-∩) =
O(n). However, directly analyzing the query complexity
seems quite difficult as the independence oracle queries
are very powerful compared to, say, the simple edge
queries in the work of Rivest and Vuillemin [18].

One definitive statement concerning D(Mat-∩) is
an upper bound of O(n2). This follows from the general
result that D(f) ≤ (N0(f) + 1)(N1(f) + 1) (see [10]).
Thus communication complexity will not suffice to prove
a Ω(nr1.5) lower bound; at least, not in the present
formulation.



In-Same-Cycle. In this paper, we have analyzed
the In-Same-Cycle problem, using a rank argument
to lower bound D(In-Same-Cycle). We conjecture
that the rank lower bound is weak for this problem,
and that actually D(In-Same-Cycle) = ω(n) holds.
This seems difficult to prove, due to the paucity of
techniques for proving gaps between the deterministic
and non-deterministic complexities.

We were able to show an Ω(n log n) lower
bound on the one-round communication complex-
ity (where only Alice talks to Bob). This bound
holds even for randomized protocols. Also, one
can show that N0(In-Same-Cycle) = Ω(n) and
N1(In-Same-Cycle) = Ω(n).

Submodular Function Minimization. A prob-
lem that generalizes matroid intersection is that of min-
imizing a submodular function. The connection be-
tween these two problems stems from Fact 2, since
g(A) := ρ1(A)+ρ2(S\A) is a submodular function. It is
known that O(n5) queries suffice to minimize a submod-
ular function [14], and it has been an outstanding open
question to prove a lower bound better than n (see [7],
[11, p387]). One can show that D(Mat-∩)/ log r gives
a lower bound on the number of queries needed to mini-
mize a submodular function; this seems like a promising
direction for further progress.

Raz and Spieker. Our proof in Section 4 is in-
spired by the work of Raz and Spieker [17], who used
representation theory to analyze a similar pointer chas-
ing problem. Define L to be the set of all permuta-
tions in SN whose cycle structure consists of a single
(Hamiltonian) cycle. Raz and Spieker analyze the com-
munication complexity of deciding whether σ−1 ◦π ∈ L,
where Alice has π ∈ SN and Bob has σ ∈ SN . Their
analysis is somewhat easier than ours because L is a
conjugacy class of SN and the communication matrix is
in the center of the commutant algebra of SN . An im-
mediate consequence is that the communication matrix
is diagonalizable.

Interestingly, their result can easily be recovered
using our framework of Jucys-Murphy elements. We
observe that an analog of Lemma 11 holds for their
problem:

∏N
j=2 Jj =

∑
π∈L π. Thus, for any λ ` N ,

Yλ(L)t,t =
N∏

j=2

Yλ(Jj)t,t, for all SYT t of shape λ.

Thus Yλ(L)t,t 6= 0 iff in tableau t, every value j ≥ 2
avoids the main diagonal. This clearly holds iff λ2 ≤
1. Furthermore, the precise value of Yλ(L)t,t can be
determined using content values, as we have done in
Section 4.

We remark that the work of Raz and Spieker has
different motivations than our work. They compute the
rank of the communication matrix in order to show that
the rank lower bound can be much smaller than the non-
deterministic complexity (by a log log factor). In our
case, the non-deterministic complexities are both known
to be n+o(n), but we show that the rank lower bound is
strictly larger than the non-deterministic complexities.
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[13] M. A. Năımark. Theory of Group Representations.
Springer-Verlag, 1982.

[14] J. B. Orlin. A faster strongly polynomial time algorithm for
submodular function minimization. In Proceedings of the
12th International Conference on Integer Programming and
Combinatorial Optimization (IPCO), pages 240–251, 2007.



[15] C. H. Papadimitriou and M. Sipser. Computational
complexity. Journal of Computer and System Sciences,
28(2):260–269, 1984.

[16] S. Ponzio, J. Radhakrishnan, and S. Venkatesh. The
communication complexity of pointer chasing. Journal of
Compter and System Sciences, 62(2):323–355, 2001.

[17] R. Raz and B. Spieker. On the “log rank”-conjecture in
communication complexity. Combinatorica, 15(4):567–588,
1995.

[18] R. L. Rivest and J. Vuillemin. On recognizing graph
properties from adjacency matrices. Theoretical Computer
Science, 3(3):371–384, 1976.

[19] B. E. Sagan. The Symmetric Group: Representa-
tions, Combinatorial Algorithms, and Symmetric Func-
tions. Springer, second edition, 2001.

[20] A. Vershik and A. Okounkov. A new approach to
the representation theory of the symmetric groups, 2.
Zapiski Seminarod POMI (In Russian) v.307, 2004.
arXiv:math.RT/0503040.

[21] D. J. A. Welsh. Matroid Theory, volume 8 of London
Mathematical Society Monographs. Academic Press, 1976.

A Proof of Lemma 12

Let λ ` n and µ ` n be such that µi ≤ λi for all
i. Consider the set of boxes that are contained in the
Ferrers diagram of λ but not of µ. This set is called a
skew shape, and is denoted λ \ µ. The definition of a
standard Young tableau generalizes to skew shapes in
the obvious way.

We seek to understand gλ, the number of SYT of
shape λ in which the value 2 is in box (2, 1). (Note
that the box (1, 1) contains the value 1 in any SYT.)
Equivalently, gλ equals the number of SYT of skew
shape λ \ µ where µ is the partition (1, 1). This is
illustrated in Figure 2.

1

2

(a) Shape λ (b) Shape λ \ µ

Figure 2: The SYT of shape λ in which box (2, 1)
contains element 2 correspond to SYT of shape λ \ µ.

The SYT of shape λ \ µ are easily enumerated.
First, one chooses the elements from {3, . . . , n} which
will occupy the first two rows. (The remaining elements
will occupy the vertical bar, i.e., the rows other than
the first two.) There are

(
n−2

λ1+λ2−2

)
ways to choose

these elements. If the final arrangement is to be an
SYT, then there is a single way to arrange the remaining
elements in the vertical bar, i.e., increasing downwards.

It remains to enumerate the number of SYT on the first
two rows. It follows from the Hook Length Formula
(Fact 7) that the number of SYT of shape (a, b) is(
a+b

a

)− (
a+b
a+1

)
.

Thus a simple manipulation shows that

gλ

=
(

n− 2
λ1 + λ2 − 2

)
·
((

λ1+λ2−2
λ1 − 1

)
−

(
λ1+λ2−2

λ1

))

=
(

n

λ1, λ2, n− λ1 − λ2

)
· λ2 (λ1 − λ2 + 1)

n(n− 1)
.

A similar application of the Hook Length Formula
shows that

fλ =
(

n

λ1, λ2, n− λ1 − λ2

)
· λ2 (λ1 − λ2 + 1)
(n− λ1) (n− λ2 + 1)

.


