
RIMS Kôkyûroku Bessatsu
B23 (2010), 81–105

Query Lower Bounds for Matroid Intersection

By

Nicholas J. A. Harvey ∗

Abstract

We consider the number of queries needed to solve the matroid intersection problem, a

question raised by Welsh (1976). Given two matroids of rank r on n elements, it is known that

O(nr1.5) independence queries suffice. Unfortunately, very little is known about lower bounds

for this problem. This paper describes three lower bounds which, to our knowledge, are the

best known: 2n− 2 queries are needed for rank 1 matroids, n queries are needed for rank n− 1

matroids, and (log2 3)n − o(n) queries are needed for matroids of rank n/2. The first two

results are elementary, and the last uses methods from communication complexity and group

representation theory.

§ 1. Introduction

Matroids are objects of fundamental importance in combinatorial optimization. We

assume some basic familiarity with matroids; a brief summary is given in Section 2. One

of the most important optimization problems relating to matroids is the matroid inter-

section problem. This paper considers the number of queries needed to solve matroid

intersection in the independence oracle model. To be more specific, we consider the

decision version of the problem: do two given matroids have a common base?

Let us review the known upper bounds. The best result is due to Cunningham

[3]. He gives a matroid intersection algorithm using only O(nr1.5) independence oracle

queries for matroids of rank r. It would be truly remarkable if one could show that

this is optimal. (For example, it might suggest that the Hopcroft-Karp algorithm [5]

for bipartite matching is “morally” optimal.) Unfortunately, we are very far from being

able to show anything like that: even a super-linear lower bound is not presently known.

How could one prove a super-linear lower bound on the number of queries needed

to solve matroid intersection? This would require that r = ω(1), since Cunningham’s

Received September 10, 2008. Revised July 27, 2010.
2000 Mathematics Subject Classification(s): 05B35, 68Q25

∗Department of Combinatorics and Optimization, University of Waterloo, Canada.

c⃝ 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

82 Nicholas Harvey

Rank r

1 n-1n/2

2n

0

n

(log23)n

queries

Figure 1. This chart reflects our knowledge concerning the number of independence ora-

cle queries needed to solve matroid intersection for matroids with ground set size n and

rank r. The purple, dashed lines (which are not to scale) correspond to Cunningham’s

upper bound of O(nr1.5) queries, and a “dual” algorithm which is more efficient for

matroids of large rank. The remaining lines correspond to lower bounds, proven in the

following sections: Section 3.1 (red, round dots), Section 3.2 (blue, square dots), and

Section 4 (green, solid). The best lower bound, corresponding to the upper envelope of

these lines, is indicated with thick lines.

algorithm implies a bound of O(n) for any constant r. One can use dual matroids to

show that n − r = ω(1) is also necessary to obtain a super-linear lower bound. So

the rank cannot be too large or too small. Since one can adjust the rank by padding

arguments (for example, see Section 3.3 below), it suffices to prove a super-linear lower

bound for r = n/2.

This paper describes three lower bounds on the number of queries needed, as il-

lustrated in Figure 1. Two of these are elementary: we show in Section 3 that 2n − 2

queries are needed for matroids of rank 1, and n queries are needed for matroids of rank

n − 1. In Section 4, we use more involved techniques to show that (log2 3) · n − o(n)

queries are necessary when r = n/2. The latter result is, to our knowledge, the only

non-trivial progress on Welsh’s question from 1976, which we paraphrase as: what is a

lower bound on the number of oracle queries needed to solve matroid intersection?

Query Lower Bounds for Matroid Intersection 83

§ 2. Preliminaries

We now give a brief introduction to matroids. For further discussion, we refer the

reader to standard references [11, 19].

Matroids. A pair M = (V, I) is called a matroid if V is a finite set and I ⊆ 2V is a

non-empty family such that

• if I ∈ I and J ⊆ I, then J ∈ I, and

• if I, J ∈ I and |J | < |I|, then there exists an i ∈ I \ J such that J + i ∈ I.

The sets in I are called independent and those not in I are called dependent. A maximal

independent set is called a base of M. All bases have the same size, which is called the

rank of the matroid. The rank function of the matroid is the function r : 2V → N+

defined by

r(S) := max { |I| : I ⊆ S, I ∈ I } .

It is well-known that r satisfies the following properties.

• Normalization: r(∅) = 0.

• Non-negativity: r(S) ≥ 0 for all S ⊆ V .

• Monotonicity: r(S) ≤ r(T) whenever S ⊆ T ⊆ V .

• Submodularity: r(A) + r(B) ≥ r(A ∪B) + r(A ∩B) for all A,B ⊆ V .

We adopt the following notational shorthand. For any set S and element x, we let

S + x denote S ∪ {x} and S − x denote S \ {x}. It is known that the submodularity

property is equivalent to

r(A+ i)− r(A) ≥ r(B + i)− r(B) ∀A ⊆ B ⊆ V and i ̸∈ B.

Associated with any matroid M = (V, I) is a unique dual matroid. It is defined as

follows. Let B be the base family of M, i.e., B consists of the maximal sets in I. Define

B∗ = { V \B : B ∈ B }
I∗ = { I : ∃B ∈ B∗ with B ⊇ I } .

Then the dual matroid is M∗ = (V, I∗) and its base family is B∗.

84 Nicholas Harvey

Optimization. Matroids are very useful objects in combinatorial optimization, and

there are algorithms for efficiently solving several optimization problems relating to

matroids. However, to make this precise, one must be careful to define the computational

model for such algorithms. The main issue is that, on a ground set V with |V | = n,

the number of matroids is doubly-exponential in n, and so the number of bits needed

to represent a typical matroid is exponential in n. It is undesirable to use such a

huge representation of matroids, so it is more common to assume an oracle model. An

algorithm in the independence oracle model is given access to an oracle which, given

S ⊆ V , can determine whether S ∈ I. An algorithm in the rank oracle model is given

access to an oracle which, given S ⊆ V , can compute the rank r(S).

One of the most important optimization problems relating to matroids is the ma-

troid intersection problem. Given two matroids M1 = (V, I1) and M2 = (V, I2), the
problem is

max { |I| : I ∈ I1 ∩ I2 } .

In computational complexity, it is often more convenient to consider decision problems,

rather than optimization problems. We will consider the following decision form of

matroid intersection. We are given two matroids M1 = (V, I1) and M2 = (V, I2), whose
respective base families are B1 and B2. The problem is to decide whether B1 ∩ B2 = ∅.

§ 3. Elementary lower bounds

§ 3.1. Adversary argument for rank-1 matroids

We begin with some easy observations using matroids of rank one. Let S be a finite

ground set with |S| = n. Let ∅ ̸= X ⊆ S be arbitrary, and let B(X) = { {x} : x ∈ X }.
It is easy to verify that B(X) is the family of bases of a rank one matroid, which we

denote M(X). Let M = { M(X) : ∅ ≠ X ⊆ S }. Given two sets S0, S1 ⊆ S, the two

matroids M(S0) and M(S1) have a common base iff S0 ∩ S1 ̸= ∅.
We show the following simple theorem.

Theorem 3.1. Any deterministic algorithm that performs fewer than 2n − 2

queries cannot solve the matroid intersection problem when given two matroids in M.

We will prove this theorem in a rather pedantic manner, since the following section

requires a similar proof for a slightly less obvious result. Let us first introduce some

terminology. Let Yi ⊆ S be the set of “yes” elements y for which we have decided

{y} ∈ B(Si). Similarly, let Ni ⊆ S be the set of “no” elements y for which we have

decided {y} ̸∈ B(Si). Let us define the following predicates concerning the adversary’s

responses to the queries.

Query Lower Bounds for Matroid Intersection 85

Consistent ∀ i ∈ {0, 1} , Yi ∩Ni = ∅

No-Extensible Y0 ∩ Y1 = ∅

Yes-Extensible N0 ∪N1 ̸= S

Intuitively, the responses are Consistent if they are valid responses corresponding to

some matroid. They are No-Extensible if there exist matroids M(S0) and M(S1) that

do not have a common base and are consistent with the query responses given so far.

Yes-Extensible is analogous.

Proof. If n = 1 there is nothing to prove, so assume n ≥ 2. To prove the theorem,

we will describe an adversary which replies to the queries of the algorithm and ensures

that the responses are Consistent, No-Extensible and Yes-Extensible. The adversary

initially adds distinct elements to Y0 and Y1, thereby ensuring that |Y0| = |Y1| = 1

and hence the two matroids do not have rank 0. Let q denote the number of queries

performed so far. The adversary maintains two additional properties:

Property 1 |Y0 ∪ Y1|+ |N0 ∪N1| ≤ q + 2

Property 2 Ni ⊆ Y1−i

The adversary behaves roughly as follows. The first time a singleton set {a} is

queried, it returns Yes. Whenever {a} is subsequently queried in the other matroid, it

returns No. A more formal description is given in the following pseudocode.

Algorithm 1 Adversarial responses to the independence oracle queries. The adversary

decides whether A ∈ Ii.
Query(i, A)

If |A| = 0, return Yes

If |A| > 1, return No

Let a be the unique element in A

If a ∈ Y1−i, add a to Ni and return No

Add a to Yi and return Yes

Let us check the correctness of this adversary. First of all, the empty set is indepen-

dent in every matroid so if |A| = 0 then the adversary must return Yes. The adversary

is behaving as a rank one matroid, so every independent set has size at most one. So if

|A| > 1 then the adversary must return No.

So let us suppose that A = {a} and a ∈ Y1−i. The No-Extensible property implies

a ̸∈ Yi. So adding a to Ni does not violate the Consistent property. Both Y0 and Y1 are

unchanged so the No-Extensible property is preserved. The algorithm adds a only to Ni

so property 1 is preserved. Since a ∈ Y1−i, property 2 is preserved. We now claim that

86 Nicholas Harvey

the Yes-Extensible property is maintained, so long as q < 2n− 2. Combining property

1 and 2, we get

2 · |N0 ∪N1| ≤ |Y0 ∪ Y1|+ |N0 ∪N1| ≤ q + 2

and hence

|N0 ∪N1| ≤ (q + 2)/2 < n.

Thus N0 ∪N1 ̸= S, so the responses are Yes-Extensible.

Similar arguments establish correctness for the case a ̸∈ Y1−i. Since the adversary’s

responses are both No-Extensible and Yes-Extensible, the algorithm cannot have decided

whether the two matroids have a common base.

The lower bound presented above is essentially tight.

Proposition 3.2. There exists a deterministic algorithm using only 2n queries

that decides the matroid intersection problem for matroids in M.

Proof. For every s ∈ S, decide whether {s} ∈ B(S1) and {s} ∈ B(S2). This takes

2n queries, and the algorithm completely learns the set S1 and S2. Deciding whether

they are disjoint is now trivial.

§ 3.2. Adversary argument for large-rank matroids

For any ∅ ≠ X ⊆ S, let B∗(X) = { S − x : x ∈ X }, let M∗(X) = (S,B∗(X)), and

let M∗ = { M∗(X) : ∅ ≠ X ⊆ S }. (Here M∗(X) is the dual matroid for M(X).) The

matroids in M∗ all have rank n − 1. As above, M∗(S0) and M∗(S1) have a common

base iff S0 ∩ S1 ̸= ∅. These matroids satisfy the following useful property.

Proposition 3.3. Let Z ⊆ S. Then S \ Z is an independent set in M∗(X) iff

X ∩ Z ̸= ∅.

Proof. Suppose that z ∈ X ∩ Z, so S − z ∈ B∗(X). Then S \ Z is independent,

since S − Z ⊆ S − z. Conversely, suppose that S \ Z is independent. Then there exists

some set S − z ∈ B∗(X) with S \ Z ⊆ S − z. Thus z ∈ X and z ∈ Z, as required.

Theorem 3.4. Let n = |S| ≥ 2. Any deterministic algorithm that performs

fewer than n queries cannot solve the matroid intersection problem when given two

matroids in M∗.

As above, let Yi ⊆ S be the set of elements y for which we have decided that

S − y ∈ B∗(Si). And let Ni ⊆ S be the set of elements y for which we have decided

that S − y ̸∈ B∗(Si). The predicates are again:

Query Lower Bounds for Matroid Intersection 87

Consistent ∀ i ∈ {0, 1} , Yi ∩Ni = ∅

No-Extensible Y0 ∩ Y1 = ∅

Yes-Extensible N0 ∪N1 ̸= S

Proof. Let q < n be the number of queries performed so far. The adversary also

maintains two properties:

Property 1 |Y0 ∪ Y1| ≤ q

Property 2 Ni ⊆ Y1−i

The adversary’s behavior is described in the following pseudocode.

Algorithm 2 Adversarial responses to the independence oracle queries.

Query(i, A): Decide if S \A ∈ Ii
If A ∩ Yi ̸= ∅, return Yes

If A ̸⊆ Y1−i

Pick a ∈ A \ Y1−i, and add a to Yi

Return Yes

Set Ni ← Ni ∪A

Return No

Let us check that the stated properties are maintained by this algorithm.

Case 1: A ∩ Yi ̸= ∅. Then, by Proposition 3.3, S \A ∈ Ii as required. The sets Yj and

Nj are not affected, so all properties are maintained.

Case 2: A ∩ Yi = ∅ and A ̸⊆ Y1−i. In this case, we add a to Yi. We have a ̸∈ Y1−i

so the responses are No-Extensible. Furthermore, a ̸∈ Ni by property 2, and thus

the responses are Consistent. |Y0 ∪ Yi| increases by at most 1 so Property 1 holds.

Property 2 and the Yes-Extendibility are trivial.

Case 3: A ∩ Yi = ∅ and A ⊆ Y1−i. In this case, we add A to Ni. It is easy to verify

that Consistency, No-Extendibility, Property 1 and Property 2 are all maintained.

Let us consider Yes-Extendibility. By Properties 1 and 2,

|N0 ∪N1| ≤ |Y0 ∪ Y1| ≤ q.

So if q < n then the responses are Yes-Extensible.

Since the responses are both No-Extensible and Yes-Extensible, the algorithm can-

not have decided whether the two matroids have a common base.

The lower bound presented above is essentially tight.

88 Nicholas Harvey

Proposition 3.5. There exists a deterministic algorithm using only n+1 queries

that decides the matroid intersection problem for matroids in M∗.

Proof. For every s ∈ S, decide whether S−s ∈ B∗(S1). In this way, the algorithm

completely learns the set S1. It must decide whether S0 ∩ S1 = ∅. By Proposition 3.3,

this can be decided by testing whether S \ S1 ∈ I(S0).

§ 3.3. A padding argument

We now build on the previous two sections and give a lower bound for matroids of

any rank via a padding argument.

First we start by padding the matroids from Section 3.1. For any r ≥ 1, let P be an

arbitrary set such that |P | = r−1 and S∩P = ∅. Letm = |S| and n = |S∪P | = m+r−1.

For any ∅ ̸= X ⊆ S, we define the matroidMr(X) as follows: it has ground set S∪P and

base family Br(X) = { P + x : x ∈ X }. (In matroid terminology, Mr(X) is obtained

from M(X) by adding the elements in P as coloops.) This family of matroids is denoted

Mr = { Mr(X) : ∅ ̸= X ⊆ S }. Clearly Mr(X) and Mr(Y) have a common base if

and only if M(X) and M(Y) do. Thus, the number of queries needed to solve matroid

intersection for matroids in Mr is at least 2m− 2 = 2(n− r), by Theorem 3.1.

Now we consider the matroids from Section 3.2. Let r satisfy 0 < r < n. Let P

and S be disjoint sets with |P | = n − r − 1 and |S| = r + 1, so |S ∪ P | = n. For any

∅ ̸= X ⊆ S, we define the matroid M∗
r(X) as follows: it has ground set S ∪ P and base

family B∗
r (X) = { S − x : x ∈ X }. (In matroid terminology, the matroid M∗

r(X) is

obtained from M∗(X) by adding the elements in P as loops.) This family of matroids is

denoted M∗
r = { M∗

r(X) : ∅ ̸= X ⊆ S }. Clearly M∗
r(X) and M∗

r(Y) have a common

base if and only if M∗(X) and M∗(Y) do. Thus, the number of queries needed to solve

matroid intersection for matroids in Mr is at least r + 1, by Theorem 3.4.

We summarize this discussion with the following theorem.

Theorem 3.6. The number of independence oracle queries needed by any de-

terministic algorithm that solves matroid intersection for matroids with ground set size

n ≥ 2 and rank 0 < r < n is at least max {2(n− r), r + 1} .

§ 4. An algebraic lower bound

This section improves on Theorem 3.6 by showing an improved lower bound for

matroids of rank close to n/2. Formally, we show the following theorem.

Theorem 4.1. The number of independence oracle queries needed by any deter-

ministic algorithm that solves matroid intersection for matroids with even ground set

size n and rank n/2 + 1 is at least (log2 3)n− o(n).

Query Lower Bounds for Matroid Intersection 89

Thus by combining Theorem 3.6 and Theorem 4.1 and using padding arguments,

we obtain the following result, which justifies Figure 1.

Corollary 4.2. The number of independence oracle queries needed by any deter-

ministic algorithm that solves matroid intersection is lower bounded as follows. Suppose

the algorithm is given two matroids with ground set size n ≥ 2 and rank 0 < r < n, with

r̃ = min {r, n− r}. Then the lower bound is max { 2(n− r), r + 1, (log2 9)r̃ − o(r̃) } .

Proof. We consider the third term. Let M be the family of matroids for which the

lower bound of Theorem 4.1 is proven, where we choose their ground set to be S, with

|S| = 2r − 2. Add n− 2r + 2 loops to the matroids in M; the resulting matroids have

ground set size n and rank |S|/2+1 = r. Then we have r̃ ≥ r− 2 and, by Theorem 4.1,

the lower bound on the required number of queries is

(log2 3)(2r − 2)− o(r) = (log2 9)r̃ − o(r̃).

If we had added n− 2r + 2 coloops instead of loops, the resulting matroids would

have ground set size n and rank
(
|S|/2 + 1

)
+
(
n− 2r + 2

)
= n− r + 2. Then we have

r̃ = r − 2 and the lower bound is again

(log2 3)(2r − 2)− o(r) = (log2 9)r̃ − o(r̃).

This completes the proof.

The remainder of this section describes the proof of Theorem 4.1. A high-level

overview is as follows. We describe a family of matroids that correspond to a “pointer

chasing” problem. Roughly speaking, M1 corresponds to a permutation π in the sym-

metric group Sn and M2 corresponds to a permutation σ ∈ Sn. Both matroids have

rank n/2 + 1. The two matroids have a common base iff the cycle structure of the

composition σ−1 ◦π satisfies a certain property. The difficulty of deciding this property

is analyzed using the communication complexity framework, which we introduce next.

Roughly speaking, the two given matroids are anthropomorphized into two computa-

tionally unbounded players, Alice and Bob, and one analyzes the number of bits that

must be communicated between them to solve the matroid intersection problem. This

yields a lower bound on the number of independence queries required by any algorithm.

A standard technique for proving lower bounds in this framework is based on the

communication matrix C, which is the truth table of the function that Alice and Bob

must compute. It is known that log2 rankC gives a lower bound on the number of

bits which must be communicated between Alice and Bob. Since our instances are

derived from the symmetric group, it is natural to use representation theory to analyze

the matrix’s rank. Section 4.5 does this by viewing the communication matrix as an

90 Nicholas Harvey

operator in the group algebra. Surprisingly, we show that the matrix is diagonalizable

(in Young’s seminormal basis), its eigenvalues are all integers, and their precise values

can be computed by considering properties of Young tableaux.

§ 4.1. Communication complexity

Our lower bound uses methods from the field of communication complexity. The

basics of this field are covered in the survey of Lovász [9], and further details can

be found in the book of Kushilevitz and Nisan [8]. This section briefly describes the

concepts that we will need.

A communication problem is specified by a function f(X,Y), where X is Alice’s

input, Y is Bob’s input, and the range is {0, 1}. A communication problem is solved

by a communication protocol, in which Alice and Bob send messages to each other until

one of them can decide the solution f(X,Y). The player who has found the solution

declares that the protocol has halted, and announces the solution.

The deterministic communication complexity of f is defined to be the minimum

total bit-length of the messages sent by any deterministic communication protocol for

f . This quantity is denoted D(f).

Nondeterminism also plays an important role in communication complexity. This

model involves a third party — a prover who knows both X and Y . In a nondetermin-

istic protocol for f , the prover produces a single certificate Z which is delivered to both

Alice and Bob. (Z is a function of both X and Y). Alice and Bob cannot communicate,

other than receiving Z from the prover. If f(X,Y) = 1, then the certificate must suffice

to convince Alice and Bob of this fact (Alice sees only X and Z, Bob sees only Y and

Z). Otherwise, if f(X,Y) = 0, no certificate should be able to fool both Alice and Bob.

The nondeterministic communication complexity is defined to be the minimum length

of the certificate (in bits) in any nondeterministic protocol. We denote this quantity by

N1(f).

A co-nondeterministic protocol is defined analogously, reversing the roles of 1 and

0. The co-nondeterministic complexity is also defined analogously, and is denoted by

N0(f).

Fact 4.3. N0(f) ≤ D(f) and N1(f) ≤ D(f).

Proof. See [8, §2.1]. Consider any deterministic communication protocol for f .

Since the prover has both Alice’s and Bob’s inputs, it can produce a certificate containing

the sequence of messages that would have been exchanged by this protocol on the given

inputs. Alice and Bob can therefore use this certificate to simulate execution of the

protocol, without exchanging any messages. Therefore this certificate acts both as a

nondeterministic and co-nondeterministic proof.

Query Lower Bounds for Matroid Intersection 91

Fact 4.4. For any communication problem f , we haveD(f) = O(N0(f)·N1(f)).

Proof. See [8, p20] or [9, p244].

For any communication problem f , the communication matrix is a matrix C(f),

or simply C, whose entries are in {0, 1}, whose rows are indexed by Alice’s inputs X

and whose columns are indexed by Bob’s inputs Y . The entries of C are C(f)X,Y =

f(X,Y). There is a connection between algebraic properties of the matrix C(f) and

the communication complexity of f , as shown in the following lemma.

Fact 4.5 (Mehlhorn and Schmidt [10]). Over any field (including the complex

numbers), we have D(f) ≥ log2 rankC(f).

Proof. See [8, p13].

§ 4.2. Communication complexity of matroid intersection

Let us now consider the matroid intersection problem in the communication complexity

framework.

Definition 4.6. The communication problem MatInt:

• Alice’s Input: A matroid M1 = (S, I1).

• Bob’s Input: A matroid M2 = (S, I2).

• Output: If M1 and M2 have a common base then MatInt(M1,M2) = 1. Other-

wise, it is 0.

Fact 4.7. D(MatInt) gives a lower bound on the number of oracle queries made

by any deterministic matroid intersection algorithm.

Proof. See [8, Lemma 9.2]. The proof is a simulation argument: any determin-

istic matroid intersection algorithm which uses q independence oracle queries can be

transformed into a deterministic communication protocol for MatInt that uses q bits

of communication. Both Alice and Bob can independently simulate the given algorithm,

and they only need to communicate whenever an oracle query is made, so the number

of bits of communication is exactly q.

The remainder of this section focuses on analyzing the communication complexities

of MatInt. Some easy observations can be made using matroids of rank one, as defined

92 Nicholas Harvey

in Section 3.1. Recall that for two matroids M(X),M(Y) ∈ M, they have a common

base iff X ∩ Y ̸= ∅. Thus, for the family M, the MatInt problem is simply the

complement of the well-known disjointness problem (denoted Disj) [8]. It is known

that D(Disj) ≥ n and N1(Disj) ≥ n− o(n). Although we will not discuss randomized

complexity in any detail, it is also known [16] that the randomized communication

complexity of Disj is Ω(n), and consequently the same is true of MatInt.

Thus we have shown that D(MatInt) ≥ n and N0(MatInt) ≥ n − o(n). In

Section 5, we will also show that N1(MatInt) = Ω(n). As it turns out, these lower

bounds for N0 and N1 are essentially tight. To show this, we will use Edmonds’ matroid

intersection theorem.

Fact 4.8 (Matroid Intersection Theorem). LetM1 = (S, I1, r1) andM2 = (S, I2, r2)
be given. Then

max
I∈I1∩I2

|I| = min
A⊆S

(
r1(A) + r2(S \A)

)
.

Lemma 4.9. N1(MatInt) ≤ n and N0(MatInt) ≤ n+ ⌊log n⌋+ 1.

Proof. To convince Alice and Bob that their two matroids have a common base,

it suffices to present them with that base B. Alice and Bob independently check that

B is a base for their respective matroids. The set B can be represented using n bits,

hence N1(MatInt) ≤ n.

To convince Alice and Bob that their two matroids do not have a common base,

we invoke the matroid intersection theorem. The prover computes a set A ⊆ S which is

a minimizing set in Fact 4.8. The co-nondeterministic certificate Z consists of the set

A and an integer z. Alice checks that z = r1(A). Bob checks that z + r2(S \ A) < r.

If this holds then the two matroids cannot have a common base. The length of this

certificate is at most n+ ⌊log n⌋+ 1.

Lemma 4.9 is an unfortunate obstacle in our quest to prove a super-linear lower

bound onD(MatInt). The fact that both the nondeterministic and co-nondeterministic

communication complexities are O(n) makes our task more difficult, for two reasons.

First, we must use techniques that can separate the deterministic complexity from the

nondeterministic complexities: we need a super-linear lower bound for D(MatInt)

which does not imply that either N0(MatInt) or N1(MatInt) is super-linear (since

this is false!). Second, the nondeterministic and co-nondeterministic communication

complexities provably constrain the quality of any lower bound on the deterministic

complexity, as shown in Fact 4.4. Thus, the communication complexity technique cannot

prove a super-quadratic lower bound for the matroid intersection problem; at least, not

in the present formulation.

Query Lower Bounds for Matroid Intersection 93

§ 4.3. The In-Same-Cycle problem

One interesting category of communication problems is pointer chasing problems

[2, 4, 12, 13, 15]. We now show that matroid intersection leads to an interesting pointer

chasing problem.

The motivating example to keep in mind is the class of almost 2-regular bipartite

graphs. Let G be a graph with a bipartition of the vertices into U and V . Each vertex

in U (resp., in V) has degree 2, except for two distinguished vertices u1, u2 ∈ U (resp.,

v1, v2 ∈ V), which have degree 1. (So |U | = |V |.) The connected components of G are

two paths with endpoints in {u1, u2, v1, v2}, and possibly some cycles. One can argue

that G has a perfect matching iff G does not contain a path from u1 to u2 (equiv.,

from v1 to v2). The main idea of the argument is that odd-length paths have a perfect

matching whereas even-length paths do not.

Let us now reformulate this example slightly. Let S = U ∪ V where |U | = |V | =
N := n/2. Let P be a partition of S into pairs, where each pair contains exactly one

element of U and one element of V . We can write P as
{ {

ui, vπ(i)
}

: i = 1, . . . , N
}
,

where π : U → V is a bijection. Now P can be used to define a matroid. Fix arbitrarily

1 ≤ k ≤ N , and let Bπ
k be the family of all B such that

|B ∩
{
ui, vπ(i)

}
| =

2 (if i = k)

1 (otherwise).

One may verify that Bπ
k is the family of bases of a partition matroid, which we denote

Mπ
k . Let Mk be the set of all such matroids (keeping k fixed, and letting π vary).

Lemma 4.10. Let Mπ
1 ∈ M1 and Mσ

2 ∈ M2. Note that σ
−1◦π is a permutation

on U . We claim that Mπ
1 and Mσ

2 have a common base iff elements u1 and u2 are in

the same cycle of σ−1 ◦ π.

The proof of this lemma mirrors the argument characterizing when almost 2-regular

bipartite graphs have a perfect matching; we omit a formal argument. Let us now

interpret Lemma 4.10 in the communication complexity framework.

Definition 4.11. The In-Same-Cycle, or ISC, problem:

• Alice’s input: A permutation π ∈ SN .

• Bob’s input: A permutation σ ∈ SN .

• Output: If elements 1 and 2 are in the same cycle of σ−1 ◦ π, then ISC(π, σ) = 1.

Otherwise it is 0.

94 Nicholas Harvey

We will show hardness for MatInt by analyzing ISC. First, Lemma 4.10 shows

that ISC reduces to MatInt. Next, we will argue that ISC is a “hard” problem.

Intuitively, it seems that Alice and Bob cannot decide the ISC problem unless one of

them has learned the entire cycle containing 1 and 2, which might have length Ω(N).

So it is reasonable to believe that Ω(N logN) bits of communication are required. The

remainder of this section proves the following theorem.

Theorem 4.12. Let C denote the communication matrix for ISC. Then rankC

equals

1 +
∑

1≤i≤N−1

∑
1≤j≤min{i,N−i}

(
N

i, j, N − i− j

)2

· j2 (i− j + 1)2

N (N − 1) (N − i) (N − j + 1)
.

Corollary 4.13. D(ISC) ≥ (log2 9)N − o(N). Consequently, any deterministic

algorithm solving the matroid intersection problem for matroids with rank n/2 + 1 and

ground set size n must use at least (log2 3)n− o(n) queries.

Proof. Stirling’s approximation shows that

e
(n
e

)n

< n! < en
(n
e

)n

.

Thus, (
N

N/3, N/3, N/3

)
=

N !(
(N/3)!

)3 ≥ e (N/e)N(
e (N/3) (N/3e)N/3

)3 = 3N−o(N).

In Theorem 4.12, considering just the term i = j = N/3 shows that rankC ≥ 9N−o(N).

Fact 4.5 therefore implies the lower bound on D(ISC). The lower bound for matroid

intersection follows since the matroids in Mk have rank n/2 + 1 = N + 1 and ground

set size n.

This corollary establishes Theorem 4.1.

§ 4.4. Group theory

The proof of Theorem 4.12 relies on several notions from the theory of the sym-

metric group. We review the necessary notions in this section. We recommend James-

Kerber [6] and Sagan [18] for a more detailed exposition of this material.

Let SN be the group of all permutations on [N], i.e., bijections from [N] to [N]

under the operation of function composition. Let π ∈ SN . The cycle type of π is

a sequence of integers in which the number of occurrences of k equals the number of

distinct cycles of length k in π. Without loss of generality, we may assume that this

Query Lower Bounds for Matroid Intersection 95

(a)

8 11 14 16 17

6 9 12 15

4

3

2

1

7 10 13

5

(b)

1 2 4 6 8

3 11 12 13

5

7

9

10

14 15 17

16

(c)

Figure 2. (a) The Ferrers diagram for the partition (5, 4, 4, 2, 1, 1) ⊢ 17. (b) A Young

tableau. (c) A standard Young tableau.

sequence is in non-increasing order. Thus, the cycle type of π is a partition of N , which

is defined as a non-increasing sequence λ = (λ1, . . . , λℓ) of positive integers such that

N =
∑ℓ

i=1 λi. The value ℓ is called the length of λ, and it is also denoted ℓ(λ). The

notation λ ⊢ N denotes that the sequence λ is a partition of N .

Let C(λ) ⊆ SN be the set of all permutations with cycle type λ ⊢ N . The set

C(λ) is a conjugacy class of SN . Moreover, every conjugacy class of SN is obtained in

this way, so the number of conjugacy classes of SN equals the number of partitions of

N . Thus, the non-isomorphic irreducible matrix representations (henceforth, irreps) of

SN can be indexed by the partitions of N . The irreps of SN will be denoted ρλ where

λ ⊢ N .

A Ferrers diagram of λ ⊢ N is a left-aligned array of boxes in the plane for which

the ith row contains λi boxes. An example is shown in Figure 2 (a). A Young tableau

of shape λ is a bijective assignment of the integers in [N] to the boxes of the Ferrers

diagram for λ. An example is shown in Figure 2 (b). A standard Young tableau, or

SYT, is one in which

• for each row, the values in the boxes increase from left to right, and

• for each column, the values in the boxes increase from top to bottom.

An example is shown in Figure 2 (c).

Let λ ⊢ N . Let v be a box in the Ferrers diagram of λ. The hook of box v, denoted

hv, is the set of boxes in the same row as v but to its right or in the same column as v

but beneath it (including v itself). This is illustrated in Figure 3.

Fact 4.14 (Hook Length Formula). The number of SYT of shape λ is denoted

fλ, and has value

fλ =
N !∏
v |hv|

,

96 Nicholas Harvey

v

Figure 3. A box v and its hook hv.

0 1 2 3 4

-1 0 1 2

-2

-3

-4

-5

-1 0 1

-2

Figure 4. The “content” of all boxes in this Ferrers diagram.

where the product is over all boxes in the Ferrers diagram for λ.

Fact 4.15. The dimension of irrep ρλ equals fλ, the number of SYT of shape λ.

Thus Fact 4.14 provides a formula for the dimension of ρλ.

There exist several canonical ways of defining the irrep associated to partition λ,

since a change of basis produces an isomorphic representation. In this paper, we will

fix Young’s seminormal basis [6] as the specific basis in which each irrep is presented.

The formal definition of this basis is not crucial for us, but we will need some of its

properties.

First, we introduce some notation. Let Yλ denote the irrep corresponding to par-

tition λ in Young’s seminormal basis. For any π ∈ SN , the notation Yλ(π) denotes the

matrix associated with π by this irrep. For any set S ⊆ SN , let Yλ(S) =
∑

π∈S Yλ(π).

For 1 ≤ j ≤ N , the jth Jucys-Murphy element is the member of the group algebra

defined by Jj =
∑

1≤i<j (i, j). (Here, (i, j) denotes a transposition in SN .) For conve-

nience, we may also view Jj as a subset of SN , namely the set of j − 1 transpositions

which appear with non-zero coefficient in Jj .

For a Ferrers diagram of shape λ, the content of the box (a, b) (i.e., the box in row

a and column b) is the integer b−a. This is illustrated in Figure 4; note that the content

values are constant on each negative-sloping diagonal. For any standard Young tableau

t and 1 ≤ j ≤ N , define cont(t, j) to be the content of the box occupied by element j

in tableau t.

Query Lower Bounds for Matroid Intersection 97

Fact 4.16. Yλ(Jj) is a diagonal matrix and the diagonal entries are Yλ(Jj)t,t =

cont(t, j), where t is a tableau of shape λ.

A proof of this fact can be found in the book of James and Kerber [6].

§ 4.5. Analysis of In-Same-Cycle

In this section, we describe a method for computing the rank of the communication

matrix for the ISC problem. This proves Theorem 4.12 (up to some omitted details).

It turns out that the communication matrix is diagonalizable, and that the values of

those diagonal entries (i.e., the spectrum) are integers that can be precisely computed.

Overview of Proof. Our argument proceeds as follows.

• Step 1. The matrix C can be written as a sum of matrices in the regular repre-

sentation.

• Step 2. There exists a change-of-basis matrix which block-diagonalizes the matrices

of the regular representation (i.e., decomposes them into irreps). Thus C can also

be block-diagonalized.

• Step 3. The blocks of C can be expressed as a polynomial in the matrices cor-

responding to the Jucys-Murphy elements. Thus each block is actually a diagonal

matrix (if the change-of-basis matrix is chosen properly).

• Step 4. The diagonal entries of each block (i.e., eigenvalues of C) are given by a

polynomial in the content values, so they can be explicitly computed. The rank of

C is simply the number of non-zero eigenvalues, so a closed form expression for the

rank can be given.

Step 1. Let π ∈ SN be the permutation corresponding to Alice’s input and let σ ∈ SN

correspond to Bob’s input. Define KN , or simply K, to be

KN = { τ ∈ SN : 1 and 2 are in the same cycle of τ } .

Note that K is closed under taking inverses: π ∈ K =⇒ π−1 ∈ K. Recall the definition

of the communication matrix C:

Cπ,σ =

1 if σ−1 ◦ π ∈ K,

0 otherwise.

This leads to the following easy lemma.

98 Nicholas Harvey

Lemma 4.17. C =
∑

τ∈K R(τ), where R(τ) denotes a matrix of the regular

representation.

Proof. Let ρ = σ−1 ◦ π, implying that π = σ ◦ ρ. Clearly ρ is the unique permu-

tation with this property. Thus R(τ)π,σ = 1 iff τ = ρ. Thus, the entry in row π and

column σ of
∑

τ∈K R(τ) is 1 if ρ ∈ K and 0 otherwise. This matches the definition of

C.

Step 2. By Maschke’s theorem, there exists a change-of-basis matrix B which de-

composes the regular representation into irreps. (We can choose B such that each irrep

in the decomposition is a matrix representation in Young’s seminormal basis.) We will

analyze the rank of C by considering the contribution from each irrep. We have

rankC = rankBC B−1 = rank
(∑

τ∈K

BR(τ)B−1
)

=
∑
λ⊢N

fλ · rankYλ(K),(4.1)

where the second equality follows from Lemma 4.17. To see the third equality, recall

that each BR(τ)B−1 is decomposed into blocks of the form Yλ(τ), so each block of

BCB−1 is of the form Yλ(K). Furthermore, each irrep λ appears fλ times.

Step 3. The following lemma gives the reason that the communication matrix for

ISC can be analyzed so precisely. It gives a direct connection between the ISC problem

and the Jucys-Murphy elements.

Lemma 4.18.
∑

π∈K π = J2 ·
∏N

j=3(1 + Jj), where 1 denotes the identity per-

mutation.

Proof. The proof is by induction on N , the trivial case being N = 2. So let N > 2.

For any π ∈ KN−1 and transposition (i,N), we have π ◦ (i,N) ∈ KN . Conversely, for

any π ∈ KN , there is a unique way to obtain π as a product of π′ ∈ KN−1 and a

transposition (i,N), by taking i = π−1(N) and π′ = π ◦ (i,N) (restricted to SN−1).

Here is a simple, but interesting, corollary of this lemma.

Corollary 4.19. |KN | = |SN |/2. In other words, for any π,

Prσ [ISC(π, σ) = 1] = 1/2,

where σ is chosen uniformly from SN .

Proof. Viewing the Jucys-Murphy elements as sets, we have |Ji| = i − 1. Since

the permutations arising in the product J2 ·
∏N

j=3(1 + Jj) are distinct, we have |KN | =
1 ·

∏N
j=3 j = N !/2.

Query Lower Bounds for Matroid Intersection 99

Lemma 4.18 shows that the sum
∑

π∈K π can be expressed as a polynomial in the

Jucys-Murphy elements. In other words, for every λ ⊢ N , the matrix Yλ(K) can be

expressed as a polynomial in the matrices { Yλ(Jj) : 2 ≤ j ≤ N }. It follows directly

from Fact 4.16 that Yλ(K) is diagonal. Furthermore, we can determine the diagonal

entries explicitly. For every SYT t of shape λ, the corresponding diagonal entry of

Yλ(K) satisfies the expression

(4.2) Yλ(K)t,t = Yλ(J2)t,t ·
N∏
j=3

(
1 + Yλ(Jj)t,t

)
.

As mentioned above, the blocks of BC B−1 are all of the form Yλ(K). Thus

BC B−1 is actually diagonal, and Eq. (4.2) completely determines the spectrum of

C, since the values Yλ(Jj)t,t are known (see Fact 4.16).

Step 4. In the remainder of this section, we will analyze Eq. (4.2) more closely. Our

main goal is to determine when its value is non-zero. This holds whenever Yλ(J2)t,t ̸= 0

and Yλ(Jj)t,t ̸= −1 for all j ≥ 3. By Fact 4.16, Yλ(J2)t,t = 0 only when 2 lies on the

main diagonal of t, which is impossible in any SYT. Similarly, Yλ(Jj)t,t = −1 only when

j lies on the first subdiagonal. So we have the following fact, which is crucial to the

analysis. For an SYT t,

(4.3) Yλ(K)t,t ̸= 0 ⇐⇒ in tableau t, all values j ≥ 3 avoid the first subdiagonal.

Let us now consider three cases.

Case 1: λ3 > 1. Fix an arbitrary SYT t of shape λ. The box in position (3, 2) (row 3,

column 2) of t contains some value j ≥ 6. Since this box is on the first subdiagonal,

Eq. (4.3) shows that Yλ(K)t,t = 0.

Case 2: λ2 = 0, i.e., λ = (N). There is a unique SYT of shape λ, in which every box

(1, j) contains j. Thus Yλ(Jj) = j − 1 for all j, so Eq. (4.2) shows that the unique

entry of Yλ(K) has value N !/2.

Case 3: λ2 ≥ 1 and λ3 ≤ 1. In the Ferrers diagram of shape λ, only the box (2, 1) is on

the first subdiagonal. Consider now an SYT t of shape λ. If the box (2, 1) contains

j ≥ 3 then Yλ(K)t,t = 0 by Eq. (4.3).

On the other hand, if the box (2, 1) contains the value 2 then all values j ≥ 3

avoid the first subdiagonal, implying that Yλ(K)t,t ̸= 0. In fact, the precise value of

Yλ(K)t,t can be determined. Since the value 2 is in box (2, 1) we have Yλ(J2)t,t =

−1. The multiset { Yλ(Jj)t,t : j ≥ 3 } is simply the multiset of all content values

100 Nicholas Harvey

in boxes excluding (1, 1) and (2, 1). Let B denote this set of N − 2 boxes. Then

Yλ(K)t,t = Yλ(J2)t,t ·
N∏
j=3

(
1 + Yλ(Jj)t,t

)
= −

∏
(a,b)∈B

(1 + b− a)

= λ1! · (λ2 − 1)! · (N − λ1 − λ2)! · (−1)N−λ1−λ2+1

We have now computed the entire spectrum of C. The remaining task is to compute

the rank (i.e., count the number of non-zero eigenvalues). As argued above, any shape

λ with λ3 > 1 contributes zero to the rank, and the shape λ = (N) contributes exactly

1. It remains to consider shapes with λ2 ≥ 1 and λ3 ≤ 1. As argued above, the number

of non-zero diagonal entries in Yλ(K) equals the number of SYT in which box (2, 1)

contains the value 2; let us denote this quantity by gλ. Furthermore, there are precisely

fλ copies of the block corresponding to shape λ (by Fact 4.15). Thus,

(4.4) rankC = 1 +
∑
λ s.t.

λ2≥1 and λ3≤1

fλ · gλ.

The value of this expression is obtained by the following lemma.

Lemma 4.20. Let λ ⊢ N satisfy λ2 ≥ 1 and λ3 ≤ 1. Then

fλ =

(
N

λ1, λ2, N − λ1 − λ2

)
· λ2 (λ1 − λ2 + 1)

(N − λ1) (N − λ2 + 1)
.

gλ =

(
N

λ1, λ2, N − λ1 − λ2

)
· λ2 (λ1 − λ2 + 1)

N(N − 1)
.

Substituting into Eq. (4.4) yields

1 +
∑

1≤λ1≤N−1

∑
1≤λ2≤min{λ1,N−λ1}

(
N

λ1, λ2, N−λ1−λ2

)2

· λ2
2 (λ1 − λ2 + 1)2

N(N−1)(N−λ1)(N−λ2+1)
.

This concludes the proof of Theorem 4.12.

§ 5. Paving matroids

In this section, we introduce “one-alternation” matroid intersection algorithms,

which first M1, then query M2, but do not again query M1. We show that any such

algorithm requires 2n−o(n) queries to solve matroid intersection. This implies another

linear lower bound for ordinary matroid intersection algorithms.

Our arguments are based on the use of paving matroids, which we now introduce.

To do so, we first describe another operation on matroids which we call base-removal.

Query Lower Bounds for Matroid Intersection 101

Lemma 5.1. Let M = (S,B) be a matroid. Let B ∈ B be a base such that, for

all A ⊆ S with |A| = |B| and |A ⊕ B| = 2, we have A ∈ B. Then (S,B − B) is also a

matroid.

Proof. Let r be the rank function of M. Define the function r̃ : S → N as follows.

r̃(A) =

r(A)− 1 if A = B

r(A) otherwise

We now claim that r̃ is the rank function of the matroid (S,B − B). To show this, it

suffices to show that it is submodular, i.e., satisfies

r̃(A) + r̃(B) ≥ r̃(A ∪B) + r̃(A ∩B) ∀ A,B ⊆ S.

It is known [22] [19, Theorem 44.1] that this is equivalent to

r̃(A+ a) + r̃(A+ b) ≥ r̃(A ∪ {a, b}) + r̃(A) ∀A ⊆ S & ∀a, b ∈ S \A.

Since r̃ differs from r only in that r̃(B) = r(B)− 1, it suffices to verify whether

r(B) + r(B − j + i)
?
≥ r(B + i) + r(B − j) ∀j ∈ B, i ∈ S \B.

We have

r̃(B) + r̃(B − j + i) = (|B| − 1) + |B|,

by definition of r̃ and since |B ⊕ (B − j + i)| = 2. Also,

r̃(B + i) + r̃(B − j) = |B|+ (|B| − 1)

since B is a base. Thus the desired inequality is satisfied (with equality).

Now let S be a ground set of cardinality n, where n is even. Let M = (S,B) be

the uniform matroid of rank n/2. Let C∗ ⊆ 2S be a code of minimum distance 4 for

which all codewords have weight n/2. That is, C∗ ⊂ B, and for all A,B ∈ C we have

|A⊕B| ≥ 4. A greedy code construction shows that we may take

|C∗| ≥
(

n

n/2

)
/n2 = 2n−o(n).

For any subcode C ⊆ C∗, we obtain a new matroid by applying base-removal M at

every set C ∈ C. Formally, we define PC = (S,B \ C). Lemma 5.1 shows that PC is

indeed a matroid. Such matroids are a type of paving matroids [7] [21, §16.6].
Suppose that Alice is given a matroid PC where C ⊆ C∗ and Bob is given a matroid

MB = (S, {B}) where B ∈ C∗. It is clear that PC and MB have a common base iff

102 Nicholas Harvey

B ̸∈ C. This shows a connection to the Index problem in communication complexity,

in which Alice is given a vector x ∈ {0, 1}m and Bob is given an index i ∈ [m]. Their

task is to compute the value xi. The Index problem reduces to matroid intersection

in the following way. First, we identify C∗ with [m]. Alice, given x, constructs the

corresponding subset C ⊆ C∗, and the matroid PC . Bob, given i, Bob constructs the

corresponding set B ∈ C∗ and MB . We have xi = 1 precisely when PC and MB have a

common base.

This reduction implies a few results. The first result relates to one-round commu-

nication protocols, in which Alice can send messages to Bob, but Bob cannot reply to

Alice. These protocols correspond to “one-alternation algorithms” for matroid inter-

section: algorithms which first make some number of queries to M1, then make some

number of queries to M2, then halt without querying M1 again.

Lemma 5.2. Any (randomized or deterministic) one-alternation matroid inter-

section algorithm must perform 2n−o(n) queries to M1.

Proof. It is known [8] that any randomized or deterministic one-round protocol

for the Index problem must use Θ(m) bits of communication. It follows that the

communication complexity of any one-round protocol for MatInt is Θ(|C∗|) = 2n−o(n).

The desired result then follows by a simulation argument similar to the one in Fact 4.7.

Lemma 5.2 yields yet another linear lower bound on the number of queries needed

by any matroid intersection algorithm, even randomized algorithms. This result is a

consequence of the following fact.

Fact 5.3. The deterministic (multi-round) communication complexity of any

function f is at least the logarithm (base 2) of the deterministic one-round communi-

cation complexity. This also holds for randomized protocols.

Proof. See Kushilevitz and Nisan [8, p49].

Finally, it holds that N0(Index) ≥ logm and N1(Index) ≥ logm. (This follows

via a trivial reduction from the EQ and NEQ functions on logm bits; these functions

are defined and analyzed in Kushilevitz and Nisan [8].) Our reduction therefore shows

that N0(MatInt) ≥ n− o(n) and N1(MatInt) ≥ n− o(n).

§ 6. Discussion

Queries vs Communication. Can one prove better lower bounds by directly ana-

lyzing query complexity rather than resorting to communication complexity? It is con-

ceivable that matroid intersection requires Ω(nr1.5) queries but D(MatInt) = O(n).

Query Lower Bounds for Matroid Intersection 103

In Section 3, we presented an analysis of the query complexity for very elementary

matroids. Extending such an analysis to general matroids seems quite difficult as the

independence oracle queries are very powerful compared to queries that have been suc-

cessfully analyzed in other work, e.g., Rivest and Vuillemin [17].

In-Same-Cycle. Section 4 analyzed the ISC problem, using a rank argument to lower

bound D(ISC). We conjecture that the rank lower bound is weak for this problem,

and that actually D(ISC) = ω(n) holds. This seems difficult to prove, due to the

paucity of techniques for proving gaps between the deterministic and non-deterministic

complexities.

We were able to show an Ω(n logn) lower bound on the communication complexity

of (randomized or deterministic) one-round communication protocols for this problem.

We have also shown that N0(ISC) = Ω(n) and N1(ISC) = Ω(n).

The definition of ISC involved a partition P of a ground set S = U ∪ V into

pairs such that each pair has exactly one element of U and one of V . This “bipartite

restriction” of P allows us to draw a connection to permutations, and consequently to

the representation theory of Sn. However, from a matroid perspective, the assumption

is unnecessary. We could have defined the ISC problem simply to involve a partition

P of the ground set S into pairs, without respecting any bipartition. This definition

does not result in a connection to Sn, but rather to the Brauer algebra [1, 14], whose

representation theory is also well-studied. However, we have shown that the rank of the

resulting communication matrix is only 2O(n).

Are there other families of matroids for which matroid intersection reduces to a

permutation problem that can be analyzed by similar techniques? Could this lead to

stronger lower bounds? We were unable to find other interesting families of matroids

which give a clean connection to Jucys-Murphy elements, as in Lemma 4.18. However,

we did find a different approach to analyzing the ISC problem, using characters rather

than directly computing the spectrum. We precisely computed the number of non-zero

characters using tools from the theory of symmetric functions [20]. It is possible that

this approach may be less brittle than the approach using Jucys-Murphy elements, and

might allow a broader class of problems to be analyzed.

Bounded-Alternation Matroid Intersection Algorithms. In Section 5, we de-

fined the notion of one-alternation algorithms for matroid intersection, and proved that

such algorithms must perform 2n−o(n) queries. The definition generalizes in the natural

way to algorithms with only k alternations. Can one prove a query lower bound for

k-alternation matroid intersection algorithms? Is it true that 2Ω(n) queries are required

for any constant k?

104 Nicholas Harvey

References

[1] Hélène Barcelo and Arun Ram. Combinatorial representation theory. In Louis J. Billera,

Anders Björner, Curtis Greene, Rodica Simion, and Richard P. Stanley, editors, New

perspectives in algebraic combinatorics, volume 38 of Mathematical Sciences Research In-

stitute Publications, pages 23–90. Cambridge University Press, 1999.

[2] Amit Chakrabarti. Lower bounds for multi-player pointer jumping. In Proceedings of the

23rd IEEE Conference on Computational Complexity (CCC), pages 33–45, 2007.

[3] William H. Cunningham. Improved bounds for matroid partition and intersection algo-

rithms. SIAM Journal on Computing, 15(4):948–957, November 1986.

[4] Carsten Damm, Stasys Jukna, and Jiri Sgall. Some bounds on multiparty communication

complexity of pointer jumping. Computational Complexity, 7(2):109–127, 1998.

[5] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[6] Gordon James and Adalbert Kerber. The Representation Theory of the Symmetric Group.

Addison-Wesley, 1981.

[7] Donald E. Knuth. The asymptotic number of geometries. Journal of Combinatorial

Theory, Series A, 16:398–400, 1974.

[8] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University

Press, 1997.

[9] László Lovász. Communication complexity: A survey. In B. H. Korte, editor, Paths,

Flows, and VLSI Layout, pages 235–265. Springer Verlag, 1990.

[10] Kurt Mehlhorn and Erik Schmidt. Las Vegas is better than determinism in VLSI and

distributed computing. In Proceedings of the 14th Annual ACM Symposium on Theory of

Computing (STOC), pages 330–337, 1982.

[11] James G. Oxley. Matroid Theory. Oxford University Press, 1992.

[12] Christos H. Papadimitriou and Michael Sipser. Computational complexity. Journal of

Computer and System Sciences, 28(2):260–269, 1984.

[13] Stephen Ponzio, Jaikumar Radhakrishnan, and Srinivasan Venkatesh. The communication

complexity of pointer chasing. Journal of Compter and System Sciences, 62(2):323–355,

2001.

[14] Arun Ram. Characters of Brauer’s centralizer algebras. Pacific Journal of Mathematics,

169(1):173–200, 1995.

[15] Ran Raz and Boris Spieker. On the “log rank”-conjecture in communication complexity.

Combinatorica, 15(4):567–588, 1995.

[16] Alexander A. Razborov. On the distributional complexity of disjointness. Theoretical

Computer Science, 106(2):385–390, 1992.

[17] Ronald L. Rivest and Jean Vuillemin. On recognizing graph properties from adjacency

matrices. Theoretical Computer Science, 3(3):371–384, 1976.

[18] Bruce E. Sagan. The Symmetric Group: Representations, Combinatorial Algorithms, and

Symmetric Functions. Springer, second edition, 2001.

[19] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-

Verlag, 2003.

[20] Richard P. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press,

1999.

[21] Dominic J. A. Welsh. Matroid Theory, volume 8 of London Mathematical Society Mono-

graphs. Academic Press, 1976.

Query Lower Bounds for Matroid Intersection 105

[22] Hassler Whitney. On the abstract properties of linear dependence. American Journal of

Mathematics, 57:509–533, 1935.

