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Abstract
We study the extent to which combinatorial cut conditions determine the maxi-

mum network coding rate of k-pairs communication problems. We seek a combina-
torial parameter of directed networks which constitutes a valid upper bound on the
network coding rate but exceeds this rate by only a small factor in the worst case.
(This worst-case ratio is called the gap of the parameter.) We begin by consider-
ing vertex-sparsity and meagerness, showing that both of these parameters have a
gap which is linear in the network size. Due to the weakness of these bounds, we
propose a new bound called informational meagerness. This bound generalizes
both vertex-sparsity and meagerness and is potentially the first known combina-
torial cut condition with a sublinear gap. However, we prove that informational
meagerness does not tightly characterize the network coding rate: its gap can be
super-constant.

1 Introduction

A k-pairs communication problem is a special type of network coding problem in which
each message has a single source node and a single sink node. Such problems warrant
study for both practical and theoretical reasons. On the practical side, k-pairs communi-
cation problems model the vast majority of contemporary communication sessions, which
typically involve a single sender and single receiver. On the theoretical side, character-
izing the capacity of k-pairs communication problems has implications for long-standing
open problems in computational complexity [1]. The term “multiple unicast sessions”
has also been used to refer to k-pairs communication problems [7, 11].

A key goal of the existing work on k-pairs communication problems is to compare the
network coding rate to the corresponding multicommodity flow rate, i.e., the maximum
transmittion rate achievable when data is treated as a fluid that cannot be copied or
coded. On the lower-bound side, there are examples [5, 6, 11] showing that the use
of coding can increase the rate by an unbounded factor in directed graphs (as the size
of the graph tends to infinity). In contrast, no undirected graph is known where the
network coding rate exceeds the multicommodity flow rate. The undirected k-pairs
conjecture claims that actually these two rates are always equal [1, 5, 6, 11].

On the upper-bound side, various approaches have been proposed to bound the net-
work coding rate. A general outer bound on the capacity of multi-commodity information
networks can be found in standard textbooks [4]. This bound was used by Borade [3]
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to obtain a bound on the capacity of directed information networks. Building on this
result, Kramer and Savari [10] give an general outer bound, called the bidirected cut-set
bound, on the capacity of (directed or undirected) information networks. Their work
shows how bounds based on cuts can be applied to information networks, even when
undirected channels have complex rate regions. Kramer and Savari [9] also proposed a
stronger outer bound based on a technique from Bayesian networks called d-separation.
Song et al. [12] define a linear program whose optimum value bounds the network coding
rate in directed acyclic graphs. Harvey et al. [1, 5] define a similar linear program which
bounds the network coding rate in undirected and cyclic graphs.

This paper focuses on cut-based techniques for proving upper bounds on the rate of
directed network coding problems. The skeptical reader might wonder why we restrict our
attention to cut-based approaches, rather than more elaborate bounds (e.g., LP-based
bounds) which are potentially stronger. One reason is that cut-based methods are a very
natural approach for inferring properties of information flows. Another reason is that
cut-based bounds are computationally attractive, since they can be efficiently verified:
the cut itself acts as a succinct certificate of the upper bound.

This paper considers three cut-based bounds, which we refer to as edge-sparsity,
vertex-sparsity, and meagerness. Sparsity is a classical notion from the multicom-
modity flow literature which bounds the rate of a concurrent1 multicommodity flow solu-
tion [13]. Sparsity can be defined using either sets of edges or sets of vertices, hence our
distinction between edge-sparsity and vertex-sparsity. Meagerness is a notion introduced
by Harvey et al. [6] to address some shortcomings of sparsity in directed information
networks. These bounds are defined more formally below.

1.1 Definitions

We now introduce our formal definitions and notation. An instance of the k-pairs commu-
nication problem consists of: (1) A directed graph G = (V, E). (2) A capacity c(e) ∈ R+

for each edge e. (3) A set I of “commodities” of size k. (4) For each i ∈ I, a source vertex
σ(i) ∈ V , a sink vertex τ(i) ∈ V , and a demanded communication rate di ∈ R+. It is
convenient to discuss the flow of information by considering only sets of edges, so we will
assume without loss of generality that each source has a single out-edge S(i) = (σ(i), s(i))
and no in-edges, and that each sink has a single in-edge T (i) = (t(i), τ(i)) and no out-
edges. For I ⊆ I, define S(I) = { S(i) : i ∈ I }. For convenience, define S = S(I). The
sets T (I) and T are defined analogously.

A network code specifies a function for each e ∈ E which determines the message
sent on e as a function of the messages received at e’s tail vertex. We assume that the
sources are mutually independent random processes, where S(i) transmits a uniformly
distributed message in some alphabet Σi. A network coding solution is a network
code in which H(S(i)) = H(T (i)) and H(T (i)|S(i)) = 0 for each i ∈ I. A network
coding solution has rate r if there exists a constant α such that H(e) ≤ α · c(e) ∀e ∈ E
and H(S(i)) ≥ α · r · di ∀i ∈ I. The network coding rate of an instance G is the
supremum of the rates of all network coding solutions.

We now present some tools for bounding the network coding rate of an instance. A

1Here, concurrent means that the demanded rate of all sources is scaled by the same factor. Hence,
the feasible rate region is a subset of R, not of Rk.
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set B ⊆ E is said to be downstream of A ⊆ E if there is no path from S to B in G\A.
This relation is denoted A ; B. A basic property is A ; B =⇒ H(A) = H(A,B),
where H(A) denotes the joint entropy of the messages transmitted on the edges in A. A
strictly stronger notion than downstreamness is informational dominance [5]. We
say edge set A informationally dominates edge set B if the information transmitted on
edges in A determines the information transmitted on edges in B in all network coding

solutions with positive rate. This relation is denoted A
i

; B, and the set of all edges
dominated by A is denoted Dom(A). We will discuss informational dominance further
in Section 3.

We now define and elaborate on the cut-based bounds mentioned above.

• Edge-sparsity. Given A ⊆ E, we say that A separates commodity i if there is
no path from S(i) to T (i) in G \ A. Let Ce(A) =

∑
e∈A c(A) and De(A) denote

the total demand of commodities separated by A. The sparsity of edge set A is
S e(A) := Ce(A)/De(A). The edge-sparsity of G is S e

G := minA⊆E S e(A). The
edge-sparsity is an upper bound for the maximum flow rate in both undirected and
directed graphs and for the network coding rate in undirected graphs. However,
the well-known butterfly graph [2] shows that the edge-sparsity is not an upper
bound for the network coding rate in directed graphs.

• Vertex-sparsity. Given U ⊂ V , we say that U separates commodity i if σ(i) ∈ U
and τ(i) ∈ U or vice-versa. Let Cv(U) denote the total capacity of all edges with
one endpoint in U and the other in U . Let Dv(U) denote the total demand of
commodities separated by U . The sparsity of U is S v(U) := Cv(U)/Dv(U). The
vertex-sparsity of G is S v

G := minU⊂V S v(U). This quantity is an upper bound
for the maximum flow rate and the network coding rate in both undirected and
directed graphs (see, e.g., [3, 5, 7, 10]). However, edge-sparsity gives a stronger
bound on the flow rate.

• Meagerness. Given an edge set A ⊆ E and a commodity set P ⊆ I, we say that
A isolates P if for all pairs i, j ∈ P , every path from S(i) to T (j) intersects A.
The meagerness of A and G are respectively

M(A) := min
P : A isolates P

C(A)∑
i∈P di

and MG := min
A⊆E

M(A).

This quantity is an upper bound for the network coding rate in directed and
undirected graphs [5, 6]. However, for undirected graphs, edge-sparsity gives a
stronger bound.

For any bound mentioned above, we define its gap to be the ratio between the value
of the bound and the network coding rate of the instance.

1.2 Our Contributions

We analyze the quality of these cut-based bounds and show that both vertex-sparsity
and meagerness can have a gap that is linear in the size of the instance. Since these
bounds can be weak, we propose a new combinatorial cut condition called informa-
tional meagerness. This bound generalizes both vertex-sparsity and meagerness and
is potentially the first known combinatorial cut condition with a sublinear gap. However,
we prove that informational meagerness does not tightly characterize the network coding
rate: its gap can be logarithmic in the size of the instance.
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Figure 1: The graph Gn has meagerness gap and vertex-sparsity gap at least Ω(n).

2 Vertex-sparsity and Meagerness

As mentioned above, edge-sparsity is not an upper bound for the network coding rate in
directed k-pairs instances. On the other hand, vertex-sparsity and meagerness are valid
upper bounds, but these bounds are not always tight. It was shown in [5, 6], via an
example called the split butterfly, that the meagerness bound can have a gap of at least
3/2. Formally, we exhibit a family of graphs Gn for which the vertex-sparsity gap and
meagerness gap are Ω(n).

2.1 A Linear Gap

For n ≥ 2, we define a directed graph Gn with n commodities and 4n vertices. The
edges of Gn are fi := (s(i), s(i + 1)), gi := (s(i), t(i + 1)), and hi := (t(i), t(i + 1)) (for
1 ≤ i < n) and gn := (s(n), t(1)). All edges have unit capacity and all commodities have
unit demand. The graph Gn is illustrated in Figure 1.

Lemma 1. The network coding rate of Gn is 1/n.

Proof. Consider any network coding solution in Gn. We have the following chain of
downstreamness and informational dominance relations:

{gn} ; {gn, T (1), h1} (gn is the only inbound edge to {T (1), h1}.)
i

; {S(1), f1, g1, h1} (S(1) and T (1) are equal RVs and {S(1)} ; {f1, g1}.)
; {S(1), f1, T (2), h2} ({g1, h1} are the inbound edges to {T (2), h2}.)
i

; {S(1), S(2), f2, g2, h2} (S(2) and T (2) are equal RVs and {S(2), f1} ; {f2, g2}.)
; {S(1), S(2), f2, T (3), h3} ({g2, h2} are the inbound edges to {T (3), h3}.)

Using an inductive argument along these lines, we obtain the informational dominance

relation {gn} i
; {S(1), . . . , S(n)}. Since gn has capacity 1, we obtain that α ≥ H(gn) ≥

H(S(1), . . . , S(n)) ≥ α · n · r, where r is the rate of our network coding solution and α is
the unspecified constant appearing in the definition of “rate.” Thus r ≤ 1/n. Moreover,
this rate is achievable by a trivial multiplexing solution. ¤

Lemma 2. M(Gn) = 1.

Proof. We consider a set of commodities P and show that any set which isolates P
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must be large. If P contains a single commodity then we must remove at least one
edge to isolate this commodity, so we obtain meagerness of at least 1 for this case. So
suppose that P = {i1, i2, . . . , ik} for k ≥ 2 where i1 < · · · < ik. We claim that we
must remove at least k edges to isolate P . To prove this, we will exhibit k edge-disjoint
paths connecting the sources and (non-corresponding) sinks for commodities in P . For
1 ≤ a < k, we have the path σia , sia , tia+1, tia+2, . . . , tia+1 , τia+1 , and the final path is
σik , sik , sik+1, sik+2, . . . , t1, t2, . . . , ti1 , τi1 . ¤

Lemma 3. S v
Gn

= Ω(1).

Proof. Without loss of generality, we may contract all source and sink edges. Next,
let U ⊂ V (Gn) be arbitrary. We will show that any commodity i > 1 separated by
U can be charged uniquely to an edge that is cut by U . If {s(i), s(i− 1)} ⊆ U and
t(i) ∈ U , or vice versa, then we charge to the edge gi−1, which is cut by U . Otherwise, if
{s(i− 1), t(i)} ⊆ U and s(i) ∈ U , or vice versa, then we charge to the edge fi−1, which
is cut by U . Hence Dv(U) ≤ Cv(U) + 1, since we have neglected commodity i = 1. ¤

Lemmas 1-3 show that Gn has meagerness gap and vertex-sparsity gap at least Ω(n).

For completeness, we mention another example which can be used to show the same
result.2 Consider a directed n-cycle where each node is a source and the corresponding
sink is at distance n−1 from the source. All edges have unit capacity and all commodities
have unit demand. A moment’s thought shows that the maximum flow rate and the edge-
sparsity are both 1/(n− 1), but the vertex-sparsity and meagerness are both equal to 1.
In fact, the network coding rate in this instance is also 1/(n−1) since it has been proven
that the network coding rate equals the maximum flow rate in any instance of the k-pairs
communication problem on a directed cycle [5]. (As an exercise, the reader may wish to
use our techniques to prove this claim.) Therefore this example also has meagerness gap
and vertex-sparsity gap at least Ω(n).

3 Informational Meagerness

Before defining informational meagerness, we first define informational isolation. First
observe that the definition of isolation from Section 1 has the following equivalent state-
ment: a set A ⊆ E isolates P if and only if A ∪ S(P ) ; T (P ). By analogy, we say

that A informationally isolates P if A ∪ S(P )
i

; T (P ). Note that the set of com-
modities isolated by A is a subset of the commodities informationally isolated by A. The
informational meagerness (or, more whimsically, iMeagerness) of A and G are:

iM(A) := min
P : A informationally isolates P

C(A)∑
i∈P di

and iMG := min
A⊆E

iM(A).

Since A
i

; B =⇒ H(A) ≥ H(A,B), it follows that iMG bounds the network coding
rate in G.

The next section will show that iMG is not a tight bound on the network coding rate.
We will construct a family of graphs, called the iterated split butterfly, which proves
that the iMeagerness gap of a directed graph with n vertices can be at least Ω(log n).

2This example was communicated to us by J. Kleinberg [8] as an instance in which the vertex-sparsity
greatly exceeds the maximum flow value. We learned of this example only after we had discovered Gn.
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Figure 2: The graph ISB(2). All edges except (q(λ), r(λ)) have infinite capacity. The
edges between (s(a), t(b)) for cousins a, b are indicated with dotted red lines.

3.1 Definition of ISB(n)

For a positive integer n, let T(n) denote a rooted complete binary tree of height n, i.e.,
T(n) has 2n+1 − 1 nodes indexed by all the binary strings of length less than or equal to
n (including the empty string), and node a is an ancestor of node b if and only if a is
indexed by a prefix of the binary string corresponding to b. (We will sometimes refer to
the same relation by saying that b is a descendant of a. Note, in particular, that every
node is considered to be both an ancestor and a descendant of itself.) The leaves of T(n)
are indexed by the 2n binary strings of length n. We will refer to leaves of T(n) using
Greek letters λ, µ, ν, ... and we will refer to nodes of T(n) (including leaves) using Roman
letters a, b, c, .... For a node a of T(n) we define the depth of a to be the length of the
corresponding binary string. We define two nodes a, b to be cousins if they have the
same depth but a 6= b.

We now define a directed graph ISB(n) whose vertex and edge sets are based on the
structure of T(n). The vertex set of ISB(n) consists of the following vertices:

• For every node a of T(n) (including the leaves) there are four vertices σ(a), s(a),
τ(a), t(a) of ISB(n).

• For every leaf λ of T(n) there are two vertices q(λ), r(λ) of ISB(n).

The edge set of ISB(n) consists of the following directed edges:

• Edges (σ(a), s(a)) and (t(a), τ(a)) for every node a of T(n).
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• Edges (q(λ), r(λ)) for every leaf λ of T(n).

• Edges (s(a), q(λ)) for every node a and leaf λ.

• Edges (r(λ), t(a)) for every node a and every leaf λ which is a descendant of a.

• Edges (s(a), t(b)) for every pair of cousins a, b.

All edges of ISB(n) have infinite capacity except for the edges (q(λ), r(λ)), which each
have capacity 2−n.

We now define a network coding instance in ISB(n). The commodities are indexed
by the nodes of T(n). The source edge of commodity a is (σ(a), s(a)) and the sink edge
is (t(a), τ(a)). The demand of commodity a is 2−depth(a).

3.2 Calculating the iMeagerness of ISB(n)

Before we can compute the iMeagerness of ISB(n), we must describe the combinatorial
characterization of informational dominance. Let G(B, c) to be the graph constructed
from G by removing all edges that cannot reach T (c), all edges in B, and then all
edges not reachable from a source. An indirect walk is a sequence of directed paths
Q1, P1, Q2, P2, . . . , Q` where all paths start at a source, Q1 starts at S(c), Qj ends at
T (c), and Qi and Pi end at the same vertex for all 1 ≤ i < `.

Theorem 4 (Harvey et al. [5]). Dom(A) is the unique minimal set of edges B satisfying
the following four criteria:

1. A ⊆ B.

2. For every commodity c, the source edge S(c) = (σ(c), s(c)) belongs to B if and
only if the sink edge T (c) = (t(c), τ(c)) belongs to B.

3. Every edge which is not in B is reachable in G \B from a source.

4. For every source edge S(c) which is not in B, there is an indirect walk for
commodity c in G(B, c).

Lemma 5. Suppose a, b are cousins in T(n). Let T (a, b) denote the set of vertices
incident to a source or sink edge for commodity a or b, and let

Q(a, b) = { q(λ) : λ is a descendant of a or b } .

Let R(a, b) be the set of all edges of ISB(n) with at least one endpoint lying outside the
set Q(a, b) ∪ T (a, b). Then Dom(R(a, b)) = R(a, b).

Proof. We simply verify the criteria of Theorem 4 with A = B = R(a, b). Criteria (1)
and (2) are trivially satisfied. To verify criterion (3), note that the edges not in R(a, b)
are the source/sink edges for commodities a and b, the edges from {s(a), s(b)} to Q(a, b),
and the edges (s(a), t(b)) and (s(b), t(a)) (since we assume that a and b are cousins).
Clearly all of these edges are reachable from a source edge.

Criterion (4) is verified by arbitrarily choosing leaves λ, µ which are descendants of
a, b, respectively, and using the two indirect walks:

Q1 = σ(a), s(a), q(λ) ; P1 = σ(b), s(b), q(λ) ; Q2 = σ(b), t(a), τ(a)

Q1 = σ(b), s(b), q(µ) ; P1 = σ(a), s(a), q(µ) ; Q2 = σ(a), t(b), τ(b).

Since all four criteria are satisfied, we have Dom(R(a, b)) = R(a, b). ¤
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Lemma 6. The iMeagerness of ISB(n) is at least 1/2.

Proof. Suppose A is a set of edges of ISB(n) and P is a non-empty set of commodities
informationally isolated by A. (By abuse of notation, we will also use P to denote the
corresponding set of nodes of T(n).) We must prove that C(A) is at least D(P )/2. This
is trivial if A contains any infinite-capacity edges. Suppose now that A is contained in
the set of finite-capacity edges of ISB(n).

Our key claim is that P can not contain two nodes which are cousins. To see this,
suppose for the sake of contradiction that P contains a pair of cousins a, b. Let S(P )
denote the set of source edges for commodities in P and let S(P ) denote the set of all other
source edges. Note that every edge S(x) ∈ S(P ) has neither endpoint in T (a, b)∪Q(a, b),
and hence S(x) ∈ R(a, b). Additionally, every edge in e ∈ A has finite capacity, so
e = (q(λ), r(λ)) for some λ. Since r(λ) 6∈ T (a, b) ∪ Q(a, b), it follows that e ∈ R(a, b).
We have shown that A ∪ S(P ) ⊆ R(a, b). A basic property of Dom is monotonicity:
X ⊆ Y =⇒ Dom(X) ⊆ Dom(Y ). This property implies that Dom(A ∪ S(P )) ⊆
Dom(R(a, b)) = R(a, b). On the other hand, S(a) 6∈ R(a, b) by definition, so clearly

S(P ) 6⊆ R(a, b). Thus S(P ) 6⊆ Dom(A∪S(P )), i.e., A∪S(P ) 6 i; S(P ). This contradicts
our assumption that A informationally isolates P .

Our key claim implies that no two distinct nodes in P have the same depth. Let a
be the node of minimum depth in P , i.e., a is the closest to the root. Recalling that
a node at depth d corresponds to a commodity whose demand is 2−d, we see that the
combined demand of all commodities in P is at most 2 · 2−depth(a). So to finish, it suffices
to prove that the combined capacity of edges in A is at least 2−depth(a), i.e., that |A| ≥
2n−depth(a), which is the number of leaves in T(n) that are descendants of a. In fact, A must
contain each edge (q(λ), r(λ)) where λ is a descendant of a, because otherwise the path
σ(a), s(a), q(λ), r(λ), t(a), τ(a) would lie in the complement of A ∪ S(P ), contradicting
our hypothesis that S(a) is informationally dominated by A ∪ S(P ). ¤

3.3 Calculating the network coding rate for ISB(n)

For every node a ∈ T(n), define edge sets E(a), Ẽ(a), F (a) in ISB(n) as follows: F (a)
contains the source edge S(b) = (σ(b), s(b)) for every node b ∈ T(n) which is not an
ancestor of a; E(a) contains the set F (a), and it also contains the edge (q(λ), r(λ)) for

every leaf λ which is a descendant of a. Finally let Ẽ(a) = E(a) ∪ {S(a)}.

Lemma 7. The sets E(a), Ẽ(a), F (a) satisfy the following:

• Fact 1: If a is a node whose two children are aL, aR then Ẽ(aL) ∪ Ẽ(aR) = E(a)

and Ẽ(aL) ∩ Ẽ(aR) = F (a).

• Fact 2: E(a) ; T (a), and Ẽ(a) ⊆ Dom(E(a)).

Proof. The first fact follows straightforwardly from the definitions of E(a), Ẽ(a), F (a).
The second fact is verified as follows. Let Π be a path from any source to the sink
edge T (a) = (t(a), τ(a)). The edge preceding t(a) on the path Π is either of the form
(s(b), t(a)) for some cousin b of a, or it is of the form (r(λ), t(a)) for some descendant λ
of a. In the former case, Π must contain the edge S(b) = (σ(b), s(b)) since this is the only
incoming edge to s(b). In the latter case, Π must contain the edge (q(λ), r(λ)) since this
is the only incoming edge to r(λ). Thus, in either case, Π intersects E(a) and therefore
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E(a) ; T (a). Since S(a) and T (a) are equal random variables under any network coding

solution, we immediately obtain Ẽ(a) ⊆ Dom(E(a)). ¤

Theorem 8. The network coding rate for ISB(n) is at most 1/(n + 1).

Proof. Our first claim in the proof is the following fact: for k = 1, 2, . . . , n,
∑

depth(a)=k

H(E(a))−
∑

depth(a)=k−1

H(E(a)) ≥
∑

depth(a)=k−1

H(F (a)). (1)

This is proved as follows. Note that for any two nodes aL, aR of depth k with a common
parent a, we have H(Ẽ(aL)) + H(Ẽ(aR)) ≥ H(Ẽ(aL) ∪ Ẽ(aR)) + H(Ẽ(aL) ∩ Ẽ(aR)) =
H(E(a)) + H(F (a)), by submodularity of entropy and fact 1. Thus, grouping all nodes
of depth k into pairs with a common parent, we obtain

∑

depth(a)=k

H(Ẽ(a)) ≥
∑

depth(a)=k−1

(
H(E(a)) + H(F (a))

)
. (2)

Next, fact 2 implies that H(E(a)) ≥ H(Ẽ(a)). Hence equation (1) follows.

Now summing equation (1) for k = 1, 2, . . . , n, we obtain

∑

depth(a)=n

H(E(a))−
∑

depth(a)=0

H(E(a)) ≥
∑

depth(a)<n

H(F (a)). (3)

Let r denote the root of T(n), i.e., the unique node at depth 0. From fact 2, we have

H(E(r)) ≥ H(Ẽ(r)). Next, since S = F (r) ∪ {S(r)} ⊆ Ẽ(r) and all sources are inde-

pendent, we obtain H(Ẽ(r)) ≥ ∑
a∈T(n) H(S(a)). Hence, substituting into equation (3)

and writing a node a at depth n as a leaf λ, we obtain
∑

leaf λ

H(E(λ)) ≥
∑

depth(a)<n

H(F (a)) +
∑

a∈T(n)

H(S(a)). (4)

For a leaf λ let B(λ) denote the edge (q(λ), r(λ)) and note that E(λ) is the disjoint union
of the sets F (λ) and {B(λ)}. Hence, H(F (λ))+H(B(λ)) ≥ H(E(λ)) (by submodularity).
Combining this with (4) we obtain

∑

leaf λ

H(B(λ)) +
∑

leaf λ

H(F (λ)) ≥
∑

a∈T(n)

H(S(a)) +
∑

depth(a)<n

H(F (a)). (5)

We now claim that the following identity holds:
∑

leaf λ

H(F (λ)) =
∑

depth(a)<n

H(F (a)). (6)

To prove this, let b 6¹ a denote the relation “b is not an ancestor of a.” Using the
definition of F (λ) and independence of sources, we see that the left side of (6) is equal to

∑

leaf λ

∑

b6¹λ

H(S(b)) =
∑

b∈T(n)

|{ λ : λ is a leaf ∧ b 6¹ λ }| ·H(S(b))

=
∑

b∈T(n)

(2n − 2n−depth(b)) ·H(S(b)).
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By the same reasoning, the right side of (6) is equal to
∑

depth(a)<n

∑

b6¹a

H(S(b)) =
∑

b∈T(n)

|{ a : depth(a) < n ∧ b 6¹ a }| ·H(S(b))

=
∑

b∈T(n)

(
(2n − 1)− (2n−depth(b) − 1)

) ·H(S(b)),

thus establishing the identity (6). Subtracting (6) from (5) we obtain
∑

leaf λ

H(B(λ)) ≥
∑

a∈T(n)

H(S(a)).

If there exists a network coding solution of rate r, then there exists a constant α such
that H(B(λ)) ≤ 2−n · α for all leaves λ, and H(S(a)) ≥ r · 2−depth(a) · α for all nodes a.
Hence ∑

leaf λ

2−n · α ≥
∑

a∈T(n)

r · 2−depth(a) · α.

This simplifies to α ≥ r(n + 1)α, since T(n) has 2n leaves and
∑

a∈T(n) 2−depth(a) = n + 1.

Hence r ≤ 1/(n + 1) as claimed. ¤
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