
Learning symmetric non-monotone
submodular functions

Maria-Florina Balcan
Georgia Institute of Technology
ninamf@cc.gatech.edu

Nicholas J. A. Harvey
University of British Columbia
nickhar@cs.ubc.ca

Satoru Iwata
RIMS, Kyoto University

iwata@kurims.kyoto-u.ac.jp

Abstract

We prove a new structural result for symmetric submodular functions. We use that
result to obtain an efficient algorithm for approximately learning such functions
in the passive, supervised learning setting. We also complement this result with
a nearly matching lower bound. Our work provides the first results for learning a
large class of non-monotone submodular functions under general distributions.

1 Introduction

Submodular functions have historically played an important role in many areas, including combi-
natorial optimization, computer science, and economics [10]. More recently they have played an
important role in algorithmic game theory and machine learning, e.g. [7, 8]. One reason for their
ubiquity is that they have nice structural properties, in many ways similar to convexity of continuous
functions, and these properties can be exploited algorithmically.

More recently there has been work on learning submodular functions. In particular, the paper of
Goemans et al. [4] considers the problem of “approximate learning everywhere with value queries”.
For the class of monotone submodular functions, they give an algorithm which achieves an approx-
imation factor Õ(

√
n), and they also show Ω̃(

√
n) inapproximability. Their algorithm adaptively

queries the target function at points of its choice, and produces a hypothesis that approximates the
target function within a Õ(

√
n) at every point. A crucial step in their work is showing that any

monotone, non-negative, submodular function can be approximated within a factor of
√
n on every

point by the square root of a linear function. Subsequent work of Balcan and Harvey [1] use this
result to provide an algorithm for learning monotone submodular functions with a Õ(

√
n) approxi-

mation factor, in the distributional (passive supervised) learning setting. Here the goal is to design
an efficient algorithm which outputs a hypothesis that provides a multiplicative approximation of
the target function on most of the samples coming from an underlying data distribution, given only
a polynomial number of i.i.d. samples from that distribution.

In this paper we consider symmetric submodular functions. These are a natural class of submodular
functions to consider, as they generalize cut capacity functions of graphs, and they have played an
important role in both the structural theory and algorithmic theory of submodular functions [3, 9].
We prove a new structural result for symmetric submodular functions: they can be approximated
within a factor of

√
n on every point by the square root of a quadratic function. We use this result

to provide a polynomial time algorithm for learning such functions with an approximation factor of
O(
√
n) in the approximate distributional learning setting of Balcan and Harvey [1]. In particular, we

show how to reduce the problem of learning a submodular function in a distributional learning setting
to the problem learning a linear separator in the usual PAC model in an appropriately constructed
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feature space. By providing an approximation preserving reduction from the problem of learning
monotone submodular functions to the problem of learning symmetric submodular functions, we
additionally show that symmetric submodular functions cannot be learned in this model with an
approximation factor õ(n1/3).

Observe that a symmetric submodular function is not monotone unless it is constant. Thus, our
work provides the first results for learning a large class of non-monotone submodular functions
under general distributions.

Related Work A series of recent papers have considered the problem of learning submodular
functions in a distributional learning setting. In addition to results on approximate learning every-
where with value queries [4] or on approximate distributional learning on that apply on arbitrary
input distributions, there have also been results specific to product distributions.

Balcan and Harvey [1] provide an algorithm for PMAC-learning monotone Lipschitz submodular
functions under product distributions with a constant approximation factor. In subsequent work,
building on a technique of [1], Gupta et al. [5] present an algorithm for learning non-monotone sub-
modular functions under a product distribution based on value queries. Their guarantee is additive
(assuming the function is appropriately normalized), rather than multiplicative and their running
time is npoly (1/ε). Cheraghchi et al. [2] study the noise stability of submodular functions. As a
consequence they obtain an algorithm for learning a submodular function under product distribu-
tions. Their algorithm also works for non-monotone and non-Lipschitz functions, and only requires
access to the submodular function via statistical queries and its running time is npoly (1/ε). Their
algorithm is agnostic (meaning that they do not assume the target function is submodular), and their
performance guarantee proves that the L1-loss of their hypothesis is at most ε more than the best er-
ror achieved by any submodular function (assuming the function is appropriately normalized). Note
however, that as opposed to our work, the Cheraghchi et al. [2] and Gupta et al. [5] algorithms work
only for product distributions and their running time is npoly (1/ε) as opposed to poly (n, 1/ε).

2 Preliminaries

Let [n] = {1, . . . , n}. A function f : 2[n] → R is

• Normalized if f(∅) = 0.
• Non-negative if f(S) ≥ 0 for all S.
• Monotone (or non-decreasing) if f(S) ≤ f(T ) for all S ⊆ T .
• Symmetric if f(S) = f([n] \ S) for all S.
• Submodular if it satisfies

f(S + i+ j)− f(S + j) ≤ f(S + i)− f(S) ∀S ⊆ [n], i, j ∈ [n], (1)
or equivalently f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) ∀S, T ⊆ [n]. (2)

For the rest of this paper we will implicitly assume that all submodular functions are normalized.

For a subset U ⊆ [n], let χ(U) ∈ {0, 1}n denote the characteristic vector of U , i.e., χ(U)i = 1 iff
i ∈ U . For a vector x ∈ Rn and a set U ⊆ [n], let x(U) = χ(U)Tx =

∑
i∈U xi.

Let f be a submodular function. The extended polymatroid [10, Eq. (44.5)] associated with f is

EPf := { x ∈ Rn : x(U) ≤ f(U) ∀U ⊆ [n] } .

The base polytope [10, Eq. (44.7)] of f is a facet of EPf , defined by

Bf := EPf ∩ { x ∈ Rn : x([n]) = f([n]) } .

A set Q ⊆ Rn is called centrally symmetric if x ∈ Q ⇐⇒ −x ∈ Q. Given a symmetric, positive
definite matrix A of size n× n, let E(A) denote the ellipsoid centered at the origin defined by A:

E(A) = {x ∈ Rn : xTAx ≤ 1 }.
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3 Structural results

The paper of Goemans et al. [4] showed that any monotone submodular function can be approxi-
mated within a factor of

√
n on every point by the square root of a linear function. The proof is

based on interesting tools from convex geometry, such as John’s ellipsoid theorem, which shows
that any centrally symmetric convex body Q ⊂ Rn can be approximated to within a factor of

√
n by

an ellipsoid E (known as the John ellipsoid). (Formally, E ⊆ Q ⊆
√
n · E.) The base polytope of

a monotone submodular function f is always contained within the non-negative orthant, so it is not
centrally symmetric, but one can easily symmetrize it by reflecting it into all orthants and taking the
convex hull. Goemans et al. show that optimizing {0, 1}-linear functions over the resulting body re-
covers the function f , and therefore optimizing over that body’s John ellipsoid instead approximates
f to within a factor

√
n. Furthermore, that ellipsoid is shown to be axis-aligned, so optimizing over

it in the direction c ∈ {0, 1}n amounts to evaluating the square-root of a linear function in c.

This approach fails for non-monotone submodular functions because their base polytope is not con-
tained within the non-negative orthant, so reflecting it and taking the convex hull ruins the structure.
Our main observation is that, for symmetric submodular functions, the base polytope is already
centrally symmetric, so John’s ellipsoid theorem can be applied directly to that polytope, without
performing any reflections. In this case the John ellipsoid is not axis-aligned, so optimizing over
that ellipsoid produces the square-root of a quadratic function, rather than a linear function. As we
show in the following section this is enough to design a learning algorithm with provable guarantees
in a distributional setting.

Lemma 1. Let f : 2[n] → R be a symmetric, submodular function. Then:

(1): Bf is centrally symmetric, and
(2): f(S) = max

{
χ(S)Tx : x ∈ Bf

}
for all S ⊆ [n].

Proof. Since f is normalized and symmetric, we have f([n]) = f(∅) = 0. Thus

Bf = EPf ∩

{
x :

∑
i

xi = 0

}
.

Fix any x ∈ Bf . Then, for any U ⊆ [n],

−x(U) = −
∑
i∈U

xi =

n∑
i=1

xi︸ ︷︷ ︸
=0

−
∑
i∈U

xi =
∑

i∈[n]\U

xi ≤ f([n] \ U) = f(U),

where the inequality comes from x ∈ EPf and the last equality holds since f is symmetric. This
shows that −x ∈ EPf , and since since −

∑n
i=1 xi = 0, we also have −x ∈ Bf . This proves (1).

To prove (2), we will use the greedy algorithm. Fix any S ⊆ [n]. Let π : [n] → [n] be an ordering
of [n] such that π(i) ∈ S for all i = 1, . . . , |S|. Define U0, . . . , Un ⊆ [n] and x ∈ Rn by

Ui = {π(1), . . . , π(i)}
xπ(i) = f(Ui)− f(Ui−1).

It is known [10, Theorem 44.3] that x is an optimal solution of max
{
χ(S)Tx : x ∈ EPf

}
. In fact,

it is also an optimal solution when optimizing over Bf because
∑n
i=1 xi = f([n])− f(∅) = f([n]),

by telescoping and since f is normalized. Furthermore,

χ(S)Tx =
∑
i∈S

xi =
∑

1≤i≤|S|

xπ(i) = f(S)− f(∅) = f(S)

proving (2). �

Theorem 2. Let f : 2[n] → R+ be a symmetric submodular function. Then there exists a function
f̂ of the form f̂(S) =

√
χ(S)TMχ(S) where M is a symmetric, positive definite matrix, such that

f̂(S) ≤ f(S) ≤
√
nf̂(S) for all S ⊆ [n].

3



Proof. Following Goemans et al. [4], we use John’s ellipsoid theorem to show that there exists an
ellipsoid E centered at the origin such that

E ⊆ Bf ⊆
√
nE.

This holds because of Lemma 1, claim (1). Then for any S ⊆ [n] we have

max
{
χ(S)Tx : x ∈ E

}
≤ max

{
χ(S)Tx : x ∈ K

}
≤ max

{
χ(S)Tx : x ∈

√
nE

}
.

(3)
Define f̂(S) = max

{
χ(S)Tx : x ∈ E

}
. Then Lemma 1, claim (2) implies that

f̂(S) ≤ f(S) ≤
√
n · f̂(S) ∀S ⊆ [n],

so f is approximated everywhere by f̂ to within a factor
√
n.

Given any non-zero c ∈ Rn, we have that

max{ cTx : x ∈ E(A) } = max{ cTA−1/2x : ‖x‖ ≤ 1 }

= cTA−1/2
( A−1/2c∥∥A−1/2c∥∥) =

√
cTA−1c

Thus f̂(S) has the closed-form expression f̂(S) =
√
χ(S)TA−1χ(S), as desired. �

We emphasize that, for monotone functions the relevant ellipsoid is axis-aligned, so the matrix A
is diagonal and f̂(S) is the square root of a linear function in S. For symmetric functions, A will
typically not be diagonal, and therefore the function f̂(S) is indeed quadratic in S.

4 PMAC learning of symmetric submodular functions

In this section we show how our new structural result can be used to provide learning guarantees in
the PMAC learning model for approximate distributional learning introduced in [1]. In this model,
there is a fixed but unknown distribution D over sets in 2[n] and a fixed but unknown function
f∗ : 2[n] → R+. A learning algorithm is provided a collection S = {S1, S2, . . .} of polynomially
many sets drawn i.i.d. from D, as well as the value of f∗ at each Si ∈ S . The goal is to design a
polynomial-time algorithm that outputs a function f such that, with large probability over S, the set
of sets for which f is a good approximation for f∗ has large measure with respect to D; the function
f should also be evaluatable in polynomial time. More formally, the approximation guarantee is

PrS1,S2,...∼D

[
PrS∼D [ f(S) ≤ f∗(S) ≤ αf(S) ] ≥ 1− ε

]
≥ 1− δ,

where f is the output of the learning algorithm when given inputs { (Si, f
∗(Si)) }i=1,2,.... The

approximation factor α ≥ 1 allows for multiplicative error in the function values.

Recall that the traditional PAC model requires one to predict the value exactly on a set of large
measure and with high confidence. In contrast, the PMAC model requires one to approximate the
value of a function on a set of large measure and with high confidence. Asking for low multiplicative
error on most points composes naturally with approximation algorithm guarantees.

Theorem 3. Let F be the class of symmetric, submodular functions functions over X = 2[n]

that take non-zero values on all sets except ∅ and [n]. There is an algorithm that PMAC-learns F
with approximation factor

√
n+ 1. That is, for any distribution D over X , for any ε, δ sufficiently

small, with probability 1 − δ, the algorithm produces a function f that approximates f∗ within a
multiplicative factor of

√
n+ 1 on a set of measure 1 − ε with respect to D. The algorithm uses

m = O
(
n
ε log

(
n
δε

))
training examples and runs in time poly(n, 1/ε, 1/δ).

Proof Sketch. We use Algorithm 1 to PMAC-learn such functions to with approximation factor√
n+ 1.

Let f : 2[n] → R+ be the symmetric submodular target function. By Theorem 2 we know that there
exists a function f̂ of the form f̂(S) =

√
χ(S)TAχ(S) where A is a symmetric positive definite

matrix such that f̂(S) ≤ f(S) ≤
√
nf̂(S) for all S ⊆ [n].
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ALGORITHM 1: Algorithm for PMAC-learning the class of symmetric submodular functions.
Input: A sequence of labeled training examples S = {(S1, f

∗(S1)), (S2, f
∗(S2)), . . . (Sm, f

∗(Sm))}.
• Re-represent each training example S as χM (S), where is χM (S) is N =

(
n
2

)
+ n-dimensional with

one feature for each subset of [n] with at most 2 items; for i1 6= i2, χM (S)i1,i2 = 1 if both items i1
and i2 appear in S and χM (S)i1,i2 = 0 otherwise; also χM (S)i,i = χ(S)i .

• For each 1 ≤ i ≤ m, let yi be the outcome of flipping a fair {+1,−1}-valued coin, each coin flip
independent of the others. Let xi ∈ RN+1 be the point defined by

xi =

{
(χM (Ai), f

∗2(Ai)) (if yi = +1)
(χM (Ai), (n+ 1) · f∗2(Ai)) (if yi = −1).

• Find a linear separator u = (w,−z) ∈ RN+1, where w ∈ RN and z ∈ R, such that u is consistent
with the labeled examples (xi, yi) ∀i ∈ [m].

Output: The function f defined as f(S) =
√

1
(n+1)z

wTχM (S).

This structural result suggests re-representing each set S by a new set of N =
(
n
2

)
+n features, with

one feature for each subset of [n] with at most 2 items. Formally, for any set S ⊆ [n], we denote
by χM (S) its feature representation over this new set of features. χM (S)i1,i2 = 1 if both items i1
and i2 appear in S and χM (S)i1,i2 = 0 otherwise. Clearly f̂(S) is representable as the square root
of a linear function over this new set of features. Given this the argument then follows similarly
to the one in [1]. In particular, note that following examples in RN+1 are linearly separable since
nwTχM (S)− (f∗(S))2 ≥ 0 and nwTχM (S)− (n+ 1)(f∗(S))2 < 0.

Examples labeled +1: ex+
S := (χM (S), (f∗(S))2) ∀S ⊆ [n]

Examples labeled −1: ex−S := (χM (S), (n+ 1) · (f∗(S))2) ∀S ⊆ [n]

This suggests trying to reduce our learning problem to the standard problem of learning a linear
separator for these examples in the standard PAC model [6, 11]. However, in order to apply standard
techniques to learn such a linear separator, we must ensure that our training examples are i.i.d. To
achieve this, we create a i.i.d. distributionD′ in RN+1 that is related to the original distributionD as
follows. First, we draw a sample S ⊆ [n] from the distribution D and then flip a fair coin for each.
The sample fromD′ is labeled ex+

S i.e. +1 if the coin is heads and ex−S i.e. −1 if the coin is tails. As
mentioned above, these labeled examples are linearly separable in RN+1. Conversely, suppose we
can find a linear separator that classifies most of the examples coming from D′ correctly. Assume
that this linear separator in RN+1 is defined by the function uTx = 0, where u = (ŵ,−z), w ∈ RN
and z > 0. The key observation is that the function f(S) = 1

(n+1)z ŵ
TχM (S) approximates (f∗(·))2

to within a factor n+ 1 on most of the points coming from D. �

Interestingly, the cut function in a graph, a canonical example of a non-monotone symmetric sub-
modular function, is a quadratic function in Rn since it can be written as f(S) = χ(S)TLχ(S),
where L is the Laplacian of the graph; therefore it is PAC learnable from Õ(n2/ε) examples. So it is
natural to ask whether the upper bound in Theorem 3 can be improved, perhaps to obtain a constant
factor approximation. We show in the following that this is not possible: symmetric submodular
functions cannot be PMAC-learned with approximation factor õ(n1/3).

Theorem 4. The class of symmetric submodular function cannot be PMAC learned with an ap-
proximation factor õ(n1/3).

Proof. We provide an approximation-preserving reduction from the problem of PMAC learning the
class of monotone submodular functions to the problem of PMAC learning the class of symmetric
non-monotone submodular functions. Because of the PMAC learning lower bound of Balcan and
Harvey [1], which showed that monotone, submodular functions cannot be PMAC-learned with
approximation factor õ(n1/3), the reduction implies the desired result.

The key in our reduction is showing how for any monotone submodular function f there is a related
submodular function g such that knowing the values of one of them completely determines the values
of the other. 1 For a set S and integer i, let S + i denote S ∪ {i}.

1We thank M. Queyranne for pointing this classic claim.
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Claim 5. Let f : 2[n] → R be a monotone, submodular function. Define g : 2[n]+0 → R by
g(S) = f(S) and g(S + 0) = f([n] \ S) for all S ⊆ {1, . . . , n}. Then g is symmetric and
submodular.

To complete the proof of Theorem 4 it suffices to prove the claim. Clearly g is symmetric, so we
check submodularity.

Case 1: 0 6∈ A ∪B. This follows from submodularity of f .

Case 2: 0 ∈ A ∩B. This follows from submodularity of the map S 7→ f([n] \ S).

Case 3: Lastly we consider the case that only one set contains 0. For A,B ⊆ [n], we have
g(A) + g(B + 0) = f(A) + f([n] \B) ≥ f(A ∩B) + f

(
([n] \A) ∩ ([n] \B)

)
= g(A ∩B) + g

(
(A ∪B) + 0

)
= g

(
A ∩ (B + 0)

)
+ g
(
A ∪ (B + 0)

)
,

where the inequality is by monotonicity of f . �

5 Discussion and Open Problems

The most natural open question raised by our work is whether there an algorithm for learning ar-
bitrary non-monotone submodular functions in the PMAC model to within an approximation factor
O(n1/2). Another interesting open question is whether symmetric submodular functions can be ap-
proximately learned everywhere with value queries with a factor of Õ(n1/2) (Note that by using a
reduction similar to the one in Theorem 4 and a result of [4] we can show a lower bound of õ(n1/2)
for learning symmetric submodular functions in this model). For the simpler case of monotone sub-
modular functions, Goemans et al. [4] use their structural result for monotone submodular functions
to give an algorithm for approximately learning everywhere with value queries. To do so, Goemans
et al. compute an approximation to the John ellipsoid E for a convex body derived from EPf , given
an oracle for approximately maximizing certain norms over that body. Their task is made simpler
by the fact that their convex body has an axis-aligned John ellipsoid. For symmetric submodular
functions this is more challenging because the John ellipsoid of the polytope Bf need not be axis-
aligned. It would be very interesting to resolve whether there is an efficient algorithm to compute a
poly-logarithmic approximation to the John ellipsoid for Bf , where f is a symmetric, submodular
function. Finally, it would be interesting to close the gap between the O(n1/2) upper bound and our
õ(n1/3) of our lower bound in the PMAC model .

References
[1] M.-F. Balcan and N. Harvey. Learning submodular functions. In STOC, 2011.
[2] M. Cheraghchi, A. R. Klivans, P. Kothari, and H. K. Lee. Submodular functions are noise

stable. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2012.
[3] S. Fujishige. Canonical decompositions of symmetric submodular functions. Discrete Applied

Mathematics, 5:175–190, 1983.
[4] M. Goemans, N. Harvey, S. Iwata, and V. Mirrokni. Approximating submodular functions

everywhere. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2009.
[5] A. Gupta, M. Hardt, A. Roth, and J. Ullman. Privately releasing conjunctions and the statistical

query barrier. In STOC, 2011.
[6] M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory. 1994.
[7] A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models.

In Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, 2005.
[8] M. Narasimhan and J. Bilmes. Local search for balanced submodular clusterings. In Proceed-

ings of the Twentieth International Joint Conference on Artificial Intelligence, 2007.
[9] M. Queyranne. Minimizing symmetric submodular functions. Mathematical Programming,

82:3–12, 1998.
[10] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2004.
[11] V. N. Vapnik. Statistical Learning Theory. Wiley and Sons, 1998.

6


