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Abstract

Submodular functions are a key concept in combinatorial optimization. One can efficiently solve many
optimization problems involving a submodular function, such as computing its minimum value, or approxi-
mating its maximum value.

In this paper we consider the problem of approximating a submodular function everywhere, i.e., approx-
imating its value at every point of the domain. Given oracle access to a function f on a ground set of size
n, the goal is to design an algorithm which performs poly(n) queries to the oracle, then constructs an oracle
for a function f̂ such that, for every set S, f̂(S) approximates f(S) to within a factor α.

We present two algorithms for solving this problem. The first algorithm assumes that f is a rank function
of a matroid and achieves approximation factor α =

√
n+ϵ, for any ϵ > 0. The second algorithm assumes that

f is a non-negative, monotone, submodular function and achieves approximation factor α = O(
√
n logn).

The main technique is to compute an approximately-maximum volume ellipsoid inscribed in a symmetrized
polymatroid. The analysis involves various properties of submodular functions and polymatroids.

The approximation factors achieved by our algorithms are optimal up to logarithmic factors. Indeed, we
show that no algorithm can achieve a factor better than Ω(

√
n/ logn), even for matroid rank functions.

1 Introduction

Let f : 2[n] → R+ be a function where [n] = {1, 2, · · · , n}. The function f is called submodular if

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) ∀S, T ⊆ [n]. (1)

Additionally, f is called monotone if f(Y ) ≤ f(Z) whenever Y ⊆ Z. An equivalent definition of submodularity
is the property of decreasing marginal values:

f(Y ∪ {x})− f(Y ) ≥ f(Z ∪ {x})− f(Z) ∀Y ⊆ Z ⊆ [n] and x ∈ [n] \ Z. (2)

Eq. (2) can be deduced from Eq. (1) by substituting S = Y ∪{x} and T = Z. The reverse implication also holds;
see, e.g., Schrijver [37, Theorem 44.1]. Throughout this paper we will assume that each submodular function is
presented by a value oracle; i.e., for any set S, an algorithm can query an oracle to find its value f(S).

1.1 Background

Submodular functions are a key concept in operations research and combinatorial optimization, since many
combinatorial optimization problems can be naturally formulated in terms of submodular functions. There are
several books devoted to this subject [12, 35, 34]. One explanation for the usefulness of submodular functions is
that they can be viewed as a discrete analogue to convex functions; for more on this connection, see Lovász [32]
and Murota [34].
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Both minimizing and maximizing submodular functions, possibly under some extra constraints, have been
considered extensively in the literature. Minimizing a submodular function can be solved exactly with only
poly(n) oracle calls, either by the ellipsoid algorithm [17] or through combinatorial algorithms that have been
obtained in the last decade [20, 38]. Unlike submodular function minimization, the problem of maximizing a
submodular function is an NP-hard problem since it generalizes many NP-hard problems, such as the maximum
cut problem. In many settings, constant-factor approximation algorithms have been developed for this problem.
For example, there is a 2

5 -approximation algorithm for maximizing any non-negative, non-monotone submod-
ular function [11], and a (1 − 1/e)-approximation algorithm for maximizing a monotone submodular function
subject to a cardinality constraint [36], or an arbitrary matroid constraint [45]. Approximation algorithms for
submodular analogues of several other well-known optimization problems have been studied, e.g., [46, 43].

Submodular functions have been of recent interest due to their applications in combinatorial auctions,
particularly the submodular welfare problem [30, 27, 8]. The goal of this problem is to partition a set of
items among a set of players in order to maximize their total utility. In this context, it is natural to assume
that the players’ utility functions are submodular, as this captures a realistic notion of diminishing returns.
Under this submodularity assumption, efficient approximation algorithms have recently been developed for this
problem [8, 45].

1.2 Contributions

The extensive literature on submodular functions motivates us to investigate other fundamental questions con-
cerning their structure. How much “information” is contained in a submodular function? How much of that
information can be obtained in just a few value oracle queries? Can an auctioneer efficiently estimate a player’s
utility function if it is submodular? To address these questions, we consider the problem of approximating a
submodular function f everywhere while performing only a polynomial number of queries. More precisely, the
problem we study is:

Problem 1 Given oracle access to a non-negative, monotone, submodular function f : 2[n] → R, design an
algorithm that performs poly(n) queries to f , then constructs an oracle for a function f̂ (not necessarily sub-

modular) which is an approximation of f , in the sense that f̂(S) ≤ f(S) ≤ α · f̂(S) for all S ⊆ [n]. For what
values of α (possibly a function of n) is this possible?

For some submodular functions this problem can be solved exactly, i.e., with α = 1. As an example, for
undirected graph cut functions, it is easy to completely reconstruct the graph while using only O(n2) queries.
For more general submodular functions, we prove the following results.

• When f is the rank function of a matroid, we give an algorithm that computes a function f̂ which achieves
approximation factor α =

√
n+ ϵ, for any ϵ > 0.

• When f is an arbitrary non-negative, monotone, submodular function, we give an algorithm that computes
a function f̂ giving an approximation factor α = O(

√
n log n).

• On the other hand, we show that any algorithm which performs only poly(n) queries must satisfy α =
Ω(
√
n/ log n), even if f is known to be the rank function of a matroid. If f is not assumed to be monotone,

the lower bound improves slightly to α = Ω(
√
n/ log n).

For both of the algorithms mentioned above, the computed function f̂ is actually submodular, and it takes
the particularly simple form of a root-linear function. Formally,

f̂(S) =

√∑
i∈S

ci

for some c ∈ Rn
+. This is a useful structural result because many optimization problems are easier to solve for

root-linear functions than for general submodular functions. This suggests a general technique for solving some
submodular optimization problems: use our algorithm to approximate the submodular function by a root-linear
function, then solve the optimization problem on the root-linear function. Some applications of this technique
are described in Section 7.
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1.3 Related work

Our lower bounds stated above were previously described in an unpublished manuscript [15]. This manuscript
also gave a non-adaptive algorithm that solves Problem 1 with α = n/(c log n) for any constant c; furthermore,
this is optimal (amongst non-adaptive algorithms).

A subsequent paper of Svitkina and Fleischer [43] proposed several new optimization problems on submodular
functions, such as Submodular Load Balancing, Submodular Sparsest Cut, Submodular Knapsack, etc. They
give algorithms for these problems with approximation factor Õ(

√
n). Motivated by the manuscript [15], Svitkina

and Fleischer also studied Problem 1 and gave a randomized algorithm with approximation factor α = 2
√
n,

but only for a very restricted class of submodular functions. Additionally, they adjusted the parameters of our
lower bound construction, yielding an improved Ω(

√
n/ log n) lower bound for Problem 1 when f is monotone

and submodular. They also use variants of our lower bound construction to obtain nearly-optimal lower bounds
for all of the problems that they studied.

Many more submodular optimization problems were proposed in later work [14, 22]. Several portions of
this work build on the techniques in this paper. For example, the lower bounds in [22] for Submodular Edge
Cover and Submodular Cost Set Cover, and the lower bounds in [14] for Submodular Vertex Cover, Submodular
Shortest Path, Submodular Perfect Matching and Submodular Minimum Spanning Tree are all variants on our
lower bound for Problem 1. Additionally, the algorithm for the Submodular Shortest Path problem [14] uses
our algorithm for Problem 1 as a subroutine.

Subsequent work [23, 24] studied the Edge-Submodular (s, t)-cut problem, which they also call the Coopera-
tive (s, t)-cut problem. One of their algorithms for this problem uses our algorithm for Problem 1 as a subroutine.
Furthermore, their lower bound for this problem is again a variant on our lower bound for Problem 1.

1.4 Algorithmic Approach

A high-level overview of our algorithmic approach is as follows. Suppose there exists a centrally symmetric
convex body K ⊂ Rn such that f(S) = max

{
χ(S)Tx : x ∈ K

}
, where χ(S) is the characteristic vector of S.

We shall see that such a body K can easily be obtained from the submodular polyhedron defined by f . John’s
theorem [25, p203] states that there exists an ellipsoid E centered at the origin such that

E ⊆ K ⊆
√
nE. (3)

Then clearly

max
{
χ(S)Tx : x ∈ E

}
≤ max

{
χ(S)Tx : x ∈ K

}
≤ max

{
χ(S)Tx : x ∈

√
nE
}
. (4)

Defining f̂(S) = max
{
χ(S)Tx : x ∈ E

}
, we have

f̂(S) ≤ f(S) ≤
√
n · f̂(S),

so f is approximated everywhere by f̂ to within a factor
√
n. The main task of our algorithms is to approximately

compute such an ellipsoid E.

2 Mathematical Preliminaries

In this section, we state and review basic facts from convex geometry, focusing on properties of ellipsoids. For
a more detailed discussion of these topics, we refer the reader to standard references [5, 18, 17, 33, 39, 47].

Ellipsoids. All matrices that we discuss are real, symmetric, and have size n × n. If a matrix A is positive
semi-definite we write A < 0, and if it is positive definite we write A ≻ 0. Let A ≻ 0 and let A1/2 be its (unique)
symmetric, positive definite square root, meaning A = A1/2A1/2. We define the ellipsoidal norm ∥·∥A in Rn

by ∥x∥A =
√
xTAx. Let Bn denote the closed, Euclidean unit ball {x ∈ Rn : ∥x∥ ≤ 1 }, and let Vn denote its

volume. Given A ≻ 0, let E(A) denote the ellipsoid centered at the origin defined by A:

E(A) = {x ∈ Rn : xTAx ≤ 1 } = {x : ∥x∥A ≤ 1 }.
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Equivalently, we can obtain E(A) by applying the linear map x 7→ A−1/2x to Bn. Consequently, the volume of
E(A) is Vn/det(A

1/2). Given any non-zero c ∈ Rn, we have that

max{ cTx : x ∈ E(A) } = max{ cTA−1/2x : x ∈ Bn }

= cTA−1/2
( A−1/2c

∥A−1/2c∥

)
=
√
cTA−1c

= ∥c∥A−1 .

Polarity. A set K ⊆ Rn is called centrally symmetric if x ∈ K ⇔ −x ∈ K. A set K ⊂ Rn is called a convex
body if K is convex, compact, and has non-empty interior. The polar of a set K ⊆ Rn is defined to be

K∗ :=
{
c ∈ Rn : cTx ≤ 1 ∀x ∈ K

}
.

Some basic facts about polarity are listed below.

(P1) For any set K, the polar K∗ is closed, convex and contains 0.

(P2) If K is centrally symmetric, then the polar K∗ is centrally symmetric.

(P3) The polar of Bn is Bn itself. Moreover, Bn is the unique set which has this property.

(P4) Let K and L be arbitrary sets. Then (K ∪ L)∗ = K∗ ∩ L∗.

(P5) Let K be a convex body. Then K∗ is bounded if and only if 0 lies in the interior of K.

(P6) For any set K, we have K∗∗ = cl
(
conv(K ∪ {0})

)
. Consequently K∗ = K∗∗∗ = cl(conv(K ∪ {0}))∗.

Furthermore, if K is a convex body and 0 ∈ K then K∗∗ = K.

(P7) For any set K ⊂ Rn and invertible linear map L : Rn → Rn, we have (L(K))∗ = L−T(K∗). In
particular,

E(A)∗ =
(
A−1/2(Bn)

)∗
= A1/2(B∗

n) = E(A−1).

(P8) Let K and L be convex bodies that both contain 0. Then L ⊆ K ⇔ K∗ ⊆ L∗.

(P9) Let K and L be convex bodies that both contain 0. Then (K ∩ L)∗ = cl
(
conv(K∗ ∪ L∗)

)
.

(P10) Let P be a polytope that contains 0 in its interior. Then P ∗ is also a polytope. Moreover, c is a vertex
of P if and only if cTx ≤ 1 is a facet of P ∗.

Minimum volume circumscribed ellipsoid. Let K be a convex body. It is known that there is a unique
ellipsoid circumscribing K with minimum volume. (In this context, “circumscribing” simply means “contain-
ing”.) We will refer to this ellipsoid as the Löwner ellipsoid, although it is also called the Löwner-John ellipsoid
or Löwner-Behrend-John ellipsoid.

Suppose in addition that K is centrally symmetric. It is easy to show that the Löwner ellipsoid must be
centered at the origin. We now show that the Löwner ellipsoid of K can be characterized by a convex program.
An ellipsoid E(A) is feasible if, for every x ∈ K,

x ∈ E(A)

⇐⇒ x ∈ E(A−1)∗

⇐⇒ max
{
xTy : y ∈ E(A−1)

}
≤ 1

⇐⇒ ∥x∥A ≤ 1

(5)

We wish to minimize the volume of E(A), which is proportional to 1/det(A1/2), as observed above. Thus we
arrive at the following mathematical program, which is well-known [7, §8.4.1].

min − log detA

(CP1) s.t. ∥x∥2A ≤ 1 ∀x ∈ K

A ≻ 0
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This is a convex program. The feasible region is clearly convex (since the set of positive definite matrices
is a convex cone). The convexity of the objective function is a consequence of Lemma 1, which shows that the
determinant is strictly log-concave over the cone of positive definite matrices.

Lemma 1 (Fan [10]1) Let A,B ≻ 0, A ̸= B, and 0 < λ < 1. Then

log det
(
λA+ (1− λ)B

)
> λ log detA + (1− λ) log detB.

Using the ellipsoid method [17], an approximately optimal solution to (CP1) can be efficiently computed
provided we can efficiently separate over the constraints ∥x∥2A ≤ 1. The separation problem amounts to maxi-
mizing the convex function x 7→ xTAx over the body K. However, maximizing a convex function over a convex
set is a computationally intractable problem, so (CP1) is in general difficult to solve. We remark that, if K
is a polytope, the separation problem amounts to maximizing x 7→ xTAx over the vertices of K, because the
maximum of a convex function over a polytope is always attained at a vertex.

The strict log-concavity of the determinant shows that (CP1) has a unique optimum solution, since a strict
convex combination of any two distinct optimum solutions would give a strictly better solution. This shows
uniqueness of the minimum volume ellipsoid which is centered at the origin and contains a given centrally
symmetric, convex body.

Maximum volume inscribed ellipsoid. For centrally symmetric convex bodies, polarity provides a close
connection between minimum circumscribed ellipsoids and maximum inscribed ellipsoids. If K is a centrally
symmetric convex body, there is a maximum volume ellipsoid inscribed in K that is centered at the origin,
as was the case with circumscribed ellipsoids. (In this context, “inscribed in K” simply means “contained in
K”.) It follows from (P8) that E(A) is a maximum volume ellipsoid inscribed in K if and only if E(A−1) is a
minimum volume ellipsoid circumscribing K∗.

On the other hand, if K is not centrally symmetric, then a maximum volume ellipsoid inscribed in K
might not contain the origin, in which case its polar would be unbounded, and so certainly not an ellipsoid.
Nevertheless, for any convex body there does indeed exist a unique maximum volume inscribed ellipsoid; see,
e.g., [5, Theorem V.2.2]. This ellipsoid is often called the John ellipsoid, although this attribution is somewhat
inaccurate since John [25] actually considers only circumscribed ellipsoids. However, since circumscribed and
inscribed ellipsoids are interchangeable notions in the centrally symmetric case, the inaccuracy is forgivable.

For a centrally symmetric convex body K, the John ellipsoid can also be characterized by a convex program.
Indeed, by our observation above, finding the John ellipsoid and finding the Löwner ellipsoid (for the polar) are
equivalent problems, and the latter can be solved by (CP1). Thus, the John ellipsoid E(A) is characterized by
the following well-known [7, §8.4.2] mathematical program, which maximizes a concave function over a convex
set.

max log det(A−1)

(CP2) s.t. ∥c∥2A−1 ≤ 1 ∀c ∈ K∗

A−1 ≻ 0

For polytopes, this can be simplified. If K is a polytope with 0 in its interior then K∗ is also a polytope, by
(P10). So, by our discussion of (CP1), we need only include the constraint ∥c∥2A−1 ≤ 1 when c is a vertex of
K∗. This condition is equivalent to cTx ≤ 1 defining a facet of K, by (P10).

John’s theorem. LetK be a centrally symmetric convex body and let E(A) be the maximum volume ellipsoid
inscribed in K. John’s theorem states that K is contained in

√
n · E(A) = E(A/n); equivalently, ∥x∥A ≤

√
n

for all x ∈ K, by Eq. (5). John’s theorem has an equivalent statement in terms of minimum volume ellipsoids:
if E(A) is the minimum volume ellipsoid circumscribing K then 1√

n
E(A) ⊆ K. This connection follows from

(P8).
John’s theorem plays an important role in the local theory of Banach spaces. Another equivalent statement

is that the Banach-Mazur distance between any n-dimensional Banach space and the n-dimensional Hilbert
space ln2 is at most

√
n. A consequence is that the Banach-Mazur distance between any two n-dimensional

Banach spaces is at most n; this bound is known to be tight up to a constant factor [13].

1Fan does not actually state the strict inequality, although his proof does show that it holds.
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E(A) E(L(A,z))

Figure 1: The red ellipsoid is E(A). The point z satisfies ∥z∥A >
√
n. The blue ellipsoid E(L(A, z)) is the

John ellipsoid for the convex hull of E(A), z and −z. Its volume is larger than the volume of E(A).

John’s theorem can be proven in several ways. See, for example, Ball [4, Lecture 3] or Matoušek [33, §13.4].
We adopt a more algorithmic argument. Suppose there is an element z ∈ K with ∥z∥A >

√
n. Then the following

lemma gives an explicit construction of an ellipsoid E(L(A, z)) of strictly larger volume that is contained in the
convex hull of E(A), z and −z, implying that E(L(A, z)) is contained in K. This is illustrated in Figure 1. The
new ellipsoid E(L(A, z)) is larger than E(A) since Eq. (6) shows that the change in volume is greater than 1
when ∥z∥2A = l > n. This proves John’s theorem.

Lemma 2 For A ≻ 0 and z ∈ Rn with l = ∥z∥2A ≥ n, let

L(A, z) =
n

l

l − 1

n− 1
A+

n

l2

(
1− l − 1

n− 1

)
AzzTA.

Then L(A, z) is positive definite, the ellipsoid E(L(A, z)) is contained in conv(E(A)∪ {z,−z}), and its volume
volE(L(A, z)) equals γn(l) · volE(A) where

γn(l) =

√(
l

n

)n(
n− 1

l − 1

)n−1

. (6)

This lemma is not new — its polar statement plays an important role in the ellipsoid method for solving
linear programs. We discuss this further and give a proof of the lemma in Appendix A.1.

3 Ellipsoidal Approximations and Polymatroids

As described in Section 1.4, our main task is as follows. Given a submodular function f , we construct a convex
body K which describes f , then we wish to construct an ellipsoid E satisfying Eq. (3). In Section 3.1, we
describe a generic procedure for any convex body K that approximately finds such an ellipsoid E, given an
oracle for approximately maximizing quadratic functions over K. Next, in Section 3.2 we describe the specific
convex body K that describes the submodular function f . Finally, in Section 3.3, we show how the symmetries
of K can be exploited to implement such an oracle.

3.1 Ellipsoidal Approximations

Definition 1 Let K be a convex body. If E(A) ⊆ K ⊆ λE(A) then the ellipsoid E(A) is called a λ-ellipsoidal
approximation to K.

The John ellipsoid is therefore a
√
n-ellipsoidal approximation to a centrally symmetric convex body K, and

so is 1/
√
n times the Löwner ellipsoid. These are existential results. Algorithmically, the situation very much

depends on how the convex body is given.
The simplest case is when K is a polyhedral set given explicitly as the intersection of halfspaces. In this

case, the feasible region of (CP2) can be described with one inequality for each given halfspace, and so the
ellipsoid method can be used to solve (CP2) to within any desired accuracy. This gives an alternate way to
derive the result of Grötschel, Lovász and Schrijver [17, Theorem 4.6.5] which gives a polynomial-time algorithm
to compute a

√
n+ 1-ellipsoidal approximation to a centrally symmetric convex body K given explicitly by a

system of linear inequalities.
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Algorithm Ellipsoidal-Approximation
Input: A centrally symmetric convex body K and an ellipsoid E0 ⊆ K
Output: A (

√
n+ ϵ)/α-ellipsoidal approximation of K

Set j ← 0
Repeat

◃ Ej = E(Aj) is an ellipsoid contained in K
Execute the α-approximate decision procedure on Ej and K
If it returns a z ∈ K with ∥z∥Aj >

√
n+ ϵ

Set Aj+1 ← L(Aj , z), as in Lemma 2
Set j ← j + 1

Else
Return Ej

End

Figure 2: An algorithm for constructing a (
√
n+ ϵ)/α-ellipsoidal approximation of K, given an α-approximate

decision procedure for maximizing ∥x∥A over K.

A much more general case is when K is itself described by a separation oracle. In this case, it is customary
to assume that K is well-bounded, meaning that parameters R ≥ r > 0 are given such that B(0, r) ⊆ K ⊆
B(0, R); algorithms in this model can have running time that depends polynomially on log(R/r). The best
known algorithmic result for this model is a polynomial-time algorithm giving only a

√
n(n+ 1)-ellipsoidal

approximation [17, Theorem 4.6.3]. This result is too weak to prove our desired result on approximating
submodular functions everywhere. Moreover, there is no substantially better algorithm for this general model:
no algorithm, even randomized, can produce a λ-ellipsoidal approximation with λ better than Õ(n) for a well-
bounded, centrally symmetric convex body given by a separation oracle [40].

An improved approximation can be obtained if we assume a stronger oracle for K. Suppose K is given
by an α-approximate decision procedure which, given A ≻ 0 with E(A) ⊆ K, either returns a x ∈ K with
∥x∥A >

√
n + ϵ or guarantees that every x ∈ K satisfies ∥x∥A ≤ (

√
n + ϵ)/α. Furthermore, suppose that K is

well-bounded, in the sense that we are given an ellipsoid E0 and parameter ρ such that E0 ⊆ K ⊆ ρ ·E0. Then
we can construct a (

√
n+ ϵ)/α-ellipsoidal approximation of K, for any ϵ > 0, by the same process as our proof

of John’s theorem in Section 2. This algorithm is shown in Figure 2.
The correctness of this algorithm follows from the definition of the α-approximate decision procedure: when

the algorithm returns, we are guaranteed that every x ∈ K satisfies ∥x∥Aj ≤ (
√
n + ϵ)/α. Since Ej ⊆ K, this

means that Ej is an (
√
n + ϵ)/α-ellipsoidal approximation of K. To bound the number of iterations required,

we analyze the volume of the ellipsoids Ej . When applying Lemma 2 we have ∥z∥Aj >
√
n+ ϵ, so

vol(Ej+1)

vol(Ej)
≥ γn((

√
n+ ϵ)2) ≥ γn(n+ 2ϵ

√
n) ≥ 1 +

2ϵ2

3n2
,

the last inequality by Lemma 3 below. This increase in volume and the fact that K ⊆ ρE0 ensure that the
number of iterations is at most O(n2ϵ−2 log(ρn)) = O(n3ϵ−2 log ρ).

Lemma 3 The function γn(l) given in Lemma 2 satisfies γn(n+ x) ≥ 1 + x2/(6n3) whenever 0 < x ≤ n.

3.2 Symmetrized polymatroids

Let f : 2[n] → R be a monotone, submodular function with f(∅) = 0. For any vector x ∈ Rn and S ⊆ [n], let
x(S) =

∑
i∈S xi. The polytope Pf ⊆ Rn defined by

Pf =

{
x(S) ≤ f(S), ∀S ⊆ [n]

x ≥ 0

}

is called the polymatroid, or submodular polyhedron, associated with f . One important property [37, Corollary
44.3f] of this polyhedron is that

f(S) = max
{
χ(S)Tx : x ∈ Pf

}
.
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We will henceforth assume, without loss of generality, that Pf is full-dimensional. It is easy to see that this
assumption holds iff f({i}) > 0 for all i. However if f({i}) = 0 then we may simply restrict to the function
which ignores coordinate i, since f(S) = f(S + i) for every S ⊆ [n].

Now for any set Q ⊆ Rn, let

S(Q) = {x ∈ Rn : |x| ∈ Q },

where |x| denotes component-wise absolute value. Thus S(Pf ) is a centrally symmetric convex body. Further-
more, it is easy to see that

f(S) = max
{
χ(S)Tx : x ∈ S(Pf )

}
. (7)

Suppose now that E(A) is a λ-ellipsoidal approximation to S(Pf ). As in (4), for any c ∈ Rn we have

∥c∥A−1 = max{cTx : x ∈ E(A)}
≤ max{cTx : x ∈ S(Pf )}
≤ λmax{cTx : x ∈ E(A)} = λ ∥c∥A−1 .

In particular, taking c = χ(S) for any S ⊆ [n], we obtain

∥χ(S)∥A−1 ≤ f(S) ≤ λ ∥χ(S)∥A−1 ,

by Eq. (7). Thus the function f̂ defined by

f̂(S) = ∥χ(S)∥A−1 (8)

provides a λ-approximation to f(S) everywhere. To summarize this discussion, we have shown that a λ-
ellipsoidal approximation to S(Pf ) yields a λ-approximation to f everywhere.

3.3 Exploiting Symmetry in Ellipsoidal Approximations

In Section 3.1, we showed that a (
√
n+ ϵ)/α-ellipsoidal approximation of a centrally symmetric convex body K

can be obtained using an α-approximate decision procedure for K. In this section, we show that the symmetries
of Pf can be exploited to help design such a decision procedure.

If a centrally symmetric convex body K is invariant under a linear transformation T (i.e., T (K) = K) then,
by uniqueness, the maximum volume inscribed ellipsoid E is also invariant under T . More generally, define
Aut(K), the automorphism group of K, to be the set of all linear operators mapping K to itself. Then the
maximum volume ellipsoid E inscribed in K satisfies T (E) = E for all T ∈ Aut(K). (See, e.g., Güler and
Gürtina [19].) In our case, Aut(S(Pf )) contains the subgroup of transformations T of the form T (x) = Cx
where C is a diagonal ±1 matrix. We call such convex bodies axis aligned. This means that the maximum
volume ellipsoid E(A) inscribed in S(Pf ) is also axis aligned. This implies that A is a diagonal matrix, as
proven below.

Unfortunately, if the algorithm Ellipsoidal-Approximation is given an axis-aligned body K as input, it
does not necessarily output an axis-aligned ellipsoidal approximation to K. Indeed, for a diagonal matrix A,
Lemma 2 does not necessarily construct an axis-aligned ellipsoid E(L(A, z)). However, the following proposition
shows that an arbitrary ellipsoid in K can be mapped to an axis-aligned ellipsoid without decreasing its volume.
(This shows that the maximum volume ellipsoid is axis aligned.)

To state the proposition, we need some notation. For a matrix A, let Diag(A) denote the diagonal matrix
whose diagonal entries are the same as A’s.

Proposition 4 Let K be an axis-aligned convex body, and let E(A) be an ellipsoid inscribed in K. Then
the axis aligned ellipsoid E(B) defined by the diagonal matrix B = (Diag(A−1))−1 satisfies E(B) ⊆ K and
volE(B) ≥ volE(A).

Proposition 4 shows that the Ellipsoidal-Approximation algorithm can be modified so that, if its input
K is axis-aligned, then the ellipsoid Ej computed in every iteration is also axis aligned. This modification has
two important consequences. First, this means that it suffices to design an α-approximate decision procedure
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Algorithm Approximate-Everywhere
Input: A monotone, submodular function f with f(∅) = 0 and f({i}) > 0 for every i ∈ [n]

Output: A root-linear function f̂ giving a (
√
n+ ϵ)/α-approximation to f everywhere

Set j ← 0
Let D0 be the diagonal matrix whose ith diagonal entry is (n/f({i}))2
Repeat

◃ Dj is a diagonal matrix and Ej = E(Dj) is an axis aligned ellipsoid contained in S(Pf )
Execute an α-approximate decision procedure on Ej and S(Pf )
If it returns a z ∈ K with ∥z∥Dj >

√
n+ ϵ

Set B ← L(Dj , z), as in Lemma 2
Set Dj+1 ← (Diag(B−1))−1

Set j ← j + 1
Else

Return the function f̂ given by f̂(S) =
√∑

i∈S ci where ci = 1/Di,i

End

Figure 3: The algorithm for constructing a function f̂ which is a
√
n+ 1/α-approximation to f .

for E(A) and K where A is assumed to be diagonal. Secondly, when applying this algorithm to K = S(Pf ) as

in Section 3.2, the function f̂ constructed in Eq. (8) is simply

f̂(S) = ∥χ(S)∥A−1 =

√∑
i∈S

ci,

where ci = 1/Ai,i for every i ∈ [n]. Thus f̂ is a root-linear function, and it is an easy exercise to verify that any
such function is submodular.

In summary, algorithm Approximate-Everywhere, presented in Figure 3, gives our method for approx-
imating submodular functions everywhere. The correctness of this algorithm follows from the preceding dis-
cussions, and from the observation that the initial ellipsoid E0 = E(D0) satisfies E0 ⊆ S(Pf ), as proven in
Lemma 5. Furthermore, since S(Pf ) ⊆ n2 E0, the number of iterations is at most O(n3ϵ−2 log n), as discussed
in Section 3.1.

Lemma 5 Let D0 be the diagonal matrix whose ith diagonal entry is (n/f({i}))2. Then E(D0) ⊆ S(Pf ) and
S(Pf ) ⊆ n2 E(D0).

In order to implement algorithm Approximate-Everywhere, we require an α-approximate decision pro-
cedure for maximizing ∥x∥D over S(Pf ), where D is a positive definite diagonal matrix. By symmetry, it suffices
to obtain such a procedure for Pf instead of S(Pf ).

Theorem 6 Suppose we have an α-approximate decision procedure for max { ∥x∥D : x ∈ Pf }, where D is di-
agonal and positive definite. Then Approximate-Everywhere outputs a (

√
n + ϵ)/α-approximation to f

everywhere after at most O(n3ϵ−2 log n) iterations.

4 Matroid Rank Functions

In this section, we consider the problem of approximating a submodular function f everywhere, in the special
case that f is the rank function of a matroid. By Theorem 6, it suffices to find an α-approximate decision
procedure for max { ∥x∥D : x ∈ Pf }, where D is a diagonal, positive definite matrix. We show how to solve this
optimization problem exactly in polynomial time.

Let M = ([n], I) be a matroid and I its family of independent sets. Let f(·) be its rank function, i.e.,

f(S) = max { |U | : U ⊆ S, U ∈ I } .

It is known that f is monotone and submodular. Edmonds [9] showed that the vertices of the polymatroid Pf

are precisely {χ(I) : I ∈ I }. In particular, this implies that the vertices are all 0-1 vectors.

9



Clearly maximizing ∥x∥D is equivalent to maximizing its square. So our goal is to solve

max

{∑
i

dix
2
i : x ∈ Pf

}
where di = Di,i > 0.

This optimization problem maximizes a convex function over a polytope, and therefore the maximum is attained
at one of the vertices. Since any vertex x is a 0-1 vector, it satisfies x2

i = xi for every i ∈ [n]. It follows that

max

{∑
i

dix
2
i : x ∈ Pf

}
= max

{∑
i

dixi : x ∈ Pf

}
.

The latter problem can be solved in polynomial-time (i.e., with a linear number of queries to an independence
oracle for the matroid) by the greedy algorithm for finding a maximum weight independent set in a matroid [9].

Theorem 7 Suppose that f is the rank function of a matroid. Then combining Approximate-Everywhere
with our exact algorithm for optimizing max { ∥x∥D : x ∈ Pf }, we can construct a (

√
n+ ϵ)-approximation to f

in polynomial time.

We remark that this simple approach of linearizing the objective function (i.e., replacing x2
i by xi) inher-

ently requires the matrix D to be diagonal. For example, the quadratic spanning tree problem, defined as
max { ∥x∥A : x ∈ Pf } where Pf is a graphic matroid polytope and A is an arbitrary symmetric matrix, is NP-
hard as it includes the Hamiltonian path problem as a special case [3]. Furthermore, NP-hardness continues to
hold under the additional assumption that D is positive definite.

5 General Monotone Submodular Functions

In this section, we present a 1/O(logn)-approximate decision procedure for max{∥x∥D : x ∈ Pf} for a general
monotone submodular function f . Taking squares, we rewrite the problem as:

max

{
n∑

i=1

c2ix
2
i : x ∈ Pf

}
, (9)

where we let c = diag(D1/2). Assuming that the ellipsoid E(D) is inscribed in S(Pf ), we will either find an
x ∈ Pf for which

∑n
i=1 c

2
ix

2
i > n+ 1 or guarantee that no x ∈ Pf gives a value greater than (n+ 1)/α2, where

α = 1/O(log n).
We first consider the case in which all ci = 1, and derive a (1 − 1/e)2-approximation algorithm for (9).

Consider the following greedy algorithm. Let T0 = ∅, and for every k = 1, · · · , n, let

Tk = argmax
S=Tk−1∪{j}, j /∈Tk−1

f(S),

that is, we repeatedly add the element which gives the largest increase in the submodular function value. Let
x̂ ∈ Pf be the vector defined by x̂(Tk) = f(Tk) for 1 ≤ k ≤ n; the fact that x̂ is in Pf is a fundamental property
of polymatroids. We claim that x̂ provides a (1− 1/e)2-approximation for (9) when all ci’s are 1.

Lemma 8 For the solution x̂ constructed above, we have

n∑
i=1

x̂2
i ≥

(
1− 1

e

)2

max

{
n∑

i=1

x2
i : x ∈ Pf

}
.

Proof. Nemhauser, Wolsey and Fisher [36] show that, for every k ∈ [n], we have

f(Tk) ≥
(
1− 1

e

)
max

S:|S|=k
f(S).
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Let h(k) = f(Tk) for k ∈ [n]; because of our greedy choice and submodularity of f , h(·) is concave. Define the
monotone submodular function ℓ by ℓ(S) = e

e−1h(|S|). The fact that ℓ is submodular comes from the concavity
of h. Observe that, for every S, f(S) ≤ ℓ(S), and therefore, Pf ⊆ Pℓ and

max

{
n∑

i=1

x2
i : x ∈ Pf

}
≤ max

{
n∑

i=1

x2
i : x ∈ Pℓ

}
.

By convexity of the objective function, the maximum over Pℓ is attained at a vertex. But all vertices of Pℓ are
permutations of the coordinates of e

e−1 x̂ (or are dominated by such vertices), and thus

max

{
n∑

i=1

x2
i : x ∈ Pf

}
≤
(

e

e− 1

)2
(

n∑
i=1

x̂2
i

)
.

�
We now deal with the case when the ci’s are arbitrary. First our guarantee that the ellipsoid E(D) is within

S(Pf ) means that f({i})ei (where ei is the ith unit vector) is not in the interior of E(D), i.e. we must have
cif({i}) ≥ 1 for all i ∈ [n]. We can also assume that cif({i}) ≤

√
n+ 1. If not, x = f({i})ei constitutes a

vector in Pf with
∑

j c
2
jx

2
j > n+ 1. Thus, for all i ∈ [n], we can assume that 1 ≤ cif({i}) ≤

√
n+ 1.

To reduce to the case with ci = 1 for all i, consider the linear transformation T : Rn → Rn : x → y =
(c1x1, · · · , cnxn). The problem max{

∑
i c

2
ix

2
i : x ∈ Pf} is equivalent to max{

∑
i y

2
i : y ∈ T (Pf )}. Unfortunately,

T (Pf ) is not a polymatroid, but it is contained in the polymatroid Pg defined by:

g(S) = max

{∑
i∈S

yi : y ∈ T (Pf )

}

= max

{∑
i∈S

cixi : x ∈ Pf

}
.

The fact that g is submodular can be derived either from first principles (exploiting the correctness of the greedy

algorithm) or as follows. The Lovász extension f̂ of f is defined as f : Rn → R : w → max{wTx : x ∈ Pf} (see
Lovász [32] or [12]). It is L-convex, see Murota [34, Prop. 7.25], meaning that, for w1, w2 ∈ Rn, f̂(w1)+ f̂(w2) ≥
f̂(w1 ∨w2) + f̂(w1 ∧w2), where ∨ (resp. ∧) denotes component-wise max (resp. min). The submodularity of g

now follows from the L-convexity of f̂ by taking vectors w obtained from c by zeroing out some coordinates.
We can approximately (within a factor (1−1/e)2) compute max{

∑
i y

2
i : y ∈ Pg}, or equivalently approximate

max{
∑

i c
2
ix

2
i : x ∈ T−1(Pg)}. The question is how much “bigger” is T−1(Pg) compared to Pf? To answer this

question, we perform another polymatroidal approximation, this time of T−1(Pg) and define the submodular
function h by:

h(S) = max

{∑
i∈S

xi : x ∈ T−1(Pg)

}

= max

{∑
i∈S

1

ci
yi : y ∈ Pg

}
.

Again, h(·) is submodular and we can easily obtain a closed form expression for it, see Lemma 11. We have
thus sandwiched T−1(Pg) between Pf and Ph: Pf ⊆ T−1(Pg) ⊆ Ph. To show that all these polytopes are close
to each other, we show the following theorem whose proof is deferred to the full version:

Theorem 9 Suppose that for all i ∈ [n], we have 1 ≤ cif({i}) ≤
√
n+ 1. Then, for all S ⊆ [n], h(S) ≤(

2 + 3
2 ln(n)

)
f(S).

Our algorithm is now the following. Using the (1− 1/e)2-approximation algorithm applied to Pg, we find a
vector x̂ ∈ T−1(Pg) such that

∑
i

c2i x̂
2
i ≥

(
1− 1

e

)2

max

{∑
i

c2ix
2
i : x ∈ T−1(Pg)

}
.
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Now, by Theorem 9, we know that x̃ = x̂/O(log n) is in Pf . Therefore, we have that∑
i

c2i x̃
2
i =

1

O(log2(n))

∑
i

c2i x̂
2
i

≥ 1
O(log2(n))

max
{∑

i c
2
ix

2
i : x ∈ T−1(Pg)

}
≥ 1

O(log2(n))
max

{∑
i c

2
ix

2
i : x ∈ Pf

}
,

giving us the required approximation guarantee.
The lemmas below give a closed form expression for g(·) and h(·); their proofs are used in the proof of

Theorem 9. They follow from the fact that the greedy algorithm can be used to maximize a linear function
over a polymatroid. Both lemmas apply to any set S after renumbering its indices. For any i and j, we define
[i, j] = {k ∈ N : i ≤ k ≤ j} and f(i, j) = f([i, j]). Observe that f(i, j) = 0 for i > j.

Lemma 10 For S = [k] with c1 ≤ c2 ≤ · · · ≤ ck, we have g(S) =
∑k

i=1 ci [f(i, k)− f(i+ 1, k)] .

Lemma 11 For S = [k] with c1 ≤ · · · ≤ ck, we have:

h(S) =
∑

i,j : 1≤i≤j≤k

ci
cj
·
(
f(i, j)− f(i+ 1, j)

−f(i, j − 1) + f(i+ 1, j − 1)
)

=
∑

l,m : 1≤l≤m≤k

(cl − cl−1)

(
1

cm
− 1

cm+1

)
f(l,m).

6 Lower Bound

In this section, we show that approximating a submodular function everywhere requires an approximation
ratio of Ω

(√
n/ log n

)
, even when restricting f to be a matroid rank function (and hence monotone). For

non-monotone submodular functions, we show that the approximation ratio must be Ω
(√

n/ log n
)
.

The argument has two steps:

• Step 1. Construct a family of submodular functions parameterized by natural numbers α > β and a set
R ⊆ [n] which is unknown to the algorithm.

• Step 2. Use discrepancy arguments to determine whether a sequence of queries can determine R. This
analysis leads to a choice of α and β.

Step 1. Let U be the uniform rank-α matroid on [n]; its rank function is

rU(S) = min {|S|, α} .

Now let R ⊆ [n] be arbitrary such that |R| = α. We define a matroid MR by letting its independent sets be

IMR = { I ⊆ [n] : |I| ≤ α and |I ∩R| ≤ β } .

This matroid can be viewed as a partition matroid, truncated to rank α. One can check that its rank function
is

rMR(S) = min
{
|S|, β + |S ∩ R̄|, α

}
.

Now we consider when rU(S) ̸= rMR
(S). By the equations above, it is clear that this holds iff

β + |S ∩ R̄| < min {|S|, α} . (10)

Case 1: |S| ≤ α. Eq. (10) holds iff β+ |S ∩ R̄| < |S|, which holds iff β < |S ∩R|. That inequality together with
|S| ≤ α implies that |S ∩ R̄| < α− β.

Case 2: |S| > α. Eq. (10) holds iff β + |S ∩ R̄| < α. That inequality implies that |S ∩R| > β + (|S| − α) > β.
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Our family of monotone functions is

F = { rMR : R ⊆ [n], |R| = α } ∪ {rU} .
Our family of non-monotone functions is

F ′ = { rMR
+ h : R ⊆ [n], |R| = α } ∪ {rU + h} ,

where h is the function defined by h(S) = −|S|/2.
Step 2 (Non-monotone case). Consider any algorithm which is given a function f ∈ F ′, performs a sequence
of queries f(S1), . . . , f(Sk), and must distinguish whether f = rU+h or f = rMR +h (for some R). For the sake
of distinguishing these possibilities, the added function h is clearly irrelevant; it only affects the approximation
ratio. By our discussion above, the algorithm can distinguish rMR from rU only if one of the following two cases
occurs.

Case 1: ∃i such that |Si| ≤ α and |Si ∩R| > β.

Case 2: ∃i such that |Si| > α and β + |Si ∩ R̄| < α.

As argued above, if either of these cases hold then we have both |Si ∩R| > β and |Si ∩ R̄| < α− β. Thus

|Si ∩R| − |Si ∩ R̄| > 2β − α. (11)

Now consider the family of sets A = {S1, . . . , Sk, [n]}. A standard result [1, Theorem 12.1.1] on the discrepancy
of A shows that there exists an R such that∣∣ |Si ∩R| − |Si ∩ R̄|

∣∣ ≤ ϵ ∀i (12a)∣∣ |[n] ∩R| − |[n] ∩ R̄|
∣∣ ≤ ϵ, (12b)

where ϵ =
√
2n ln(2k). Eq. (12b) implies that |R| = n/2 + ϵ′, where |ϵ′| ≤ ϵ/2. By definition, α = |R|. So if

we choose β = n/4 + ϵ then 2β − α > ϵ. Thus Eq. (11) cannot hold, since it would contradict Eq. (12a). This
shows that the algorithm cannot distinguish f = rMR

+ h from f ′ = rU + h.
The approximation ratio of the algorithm is at most f ′(R)/f(R). We have f ′(R) = |R| − |R|/2 = |R|/2

and f(R) = β − |R|/2 ≤ (n/4 + ϵ)− (n/2− ϵ)/2 < 2ϵ. This shows that no deterministic algorithm can achieve
approximation ratio better than

f ′(R)

f(R)
=
|R|
4ϵ
≥ n/2− ϵ

4ϵ
= Ω(

√
n/ log k)

Since k = nO(1), this proves the claimed result. If k = O(n) then the lower bound improves to Ω(
√
n) via a

result of Spencer [41].
The construction of the set R in [1, Theorem 12.1.1] is probabilistic: choosing R uniformly at random works

with high probability, regardless of the algorithm’s queries S1, . . . , Sk. This implies that the lower bound also
applies to randomized algorithms.

Step 2 (Monotone case). In this case, we pick α ≈
√
n and β = Ω(ln k). The argument is similar to the

non-monotone case except that we cannot apply standard discrepancy results since they do not construct R
with |R| = α ≈

√
n. Instead, we derive analogous results using Chernoff bounds. We construct R by picking

each element independently with probability 1/
√
n. With high probability |R| = Θ(

√
n). We must now bound

the probability that the algorithm succeeds.

Case 1: Given |Si| ≤ α, what is Pr [ |Si ∩R| > β ]? We have E [ |R ∩ Si| ] = |Si|/
√
n = O(1). Chernoff bounds

show that Pr [ |R ∩ Si| > β ] ≤ exp(−β/2) = 1/k2.

Case 2: Given |Si| > α, what is Pr
[
β + |Si ∩ R̄| < α

]
? As observed above, this event is equivalent to |Si∩R| >

β + (|Si| − α) =: ξ. Let µ = E
[
|Si ∩ R̄|

]
= |Si|/

√
n. Note that

ξ

µ
=

log n

|Si|/
√
n
+
√
n ·
(
1− α

|Si|

)
,

which is Ω(log n) for any value of |Si|. A Chernoff bound then shows that Pr [ |Si ∩R| > ξ ] < exp(−ξ/2) ≤ 1/k2.
A union bound shows that none of these events occur with high probability, and thus the algorithm fails

to distinguish rMR from rU. The approximation ratio of the algorithm is at most f ′(R)/f(R) = α/β =
Ω(
√
n/ log k). This lower bound also applies to randomized algorithms, by the same reasoning as in the non-

monotone case. Since k = nO(1), this proves the desired result.
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7 Applications

7.1 Submodular Load Balancing

Let f1, . . . , fm be monotone submodular functions on the ground set [n]. The non-uniform submodular load
balancing problem is

min
V1,...,Vm

max
j

fj(Vj), (13)

where the minimization is over partitions of [n] into V1, . . . , Vm.

Suppose we construct the approximations f̂1, . . . , f̂m such that

f̂j(S) ≤ fj(S) ≤ g(n) · f̂j(S) ∀j ∈ [m], S ⊆ [n].

Furthermore, suppose that each f̂j is of the form

f̂j(S) =

√∑
i∈S

cj,i,

for some non-negative real values cj,i. Consider the problem of finding a partition V1, . . . , Vm that minimizes

maxj f̂j(Vj). By squaring, we would like to solve

min
V1,...,Vm

max
j

∑
i∈Vj

cj,i. (14)

This is precisely the problem of scheduling jobs without preemption on non-identical parallel machines, while
minimizing the makespan. In deterministic polynomial time, one can compute a 2-approximate solution
X1, . . . , Xm to this problem [31], which also gives an approximate solution to Eq. (13).

Formally, let W1, . . . ,Wm be an optimal solution to Eq. (14), let X1, . . . , Xm be a solution computed using
the algorithm of [31], and let Y1, . . . , Ym be an optimal solution to the original problem in Eq. (13). Then we

have 1
2 ·maxj f̂

2
j (Xj) ≤ maxj f̂

2
j (Wj), and thus

1√
2g(n)

·max
j

fj(Xj) ≤ max
j

fj(Yj).

Thus, the Xj ’s give a (
√
2 g(n))-approximate solution to Eq. (13). Applying the algorithm of Section 5 to

construct the f̂j ’s, we obtain an O(
√
n log n)-approximation to the non-uniform submodular load balancing

problem.

7.2 Submodular Max-Min Fair Allocation

Consider m buyers and a ground set [n] of items. Let f1, . . . , fm be monotone submodular functions on the
ground set [n], and let fj be the valuation function of buyer j. The submodular max-min fair allocation problem
is

max
V1,...,Vm

min
j

fj(Vj), (15)

where the maximization is over partitions of [n] into V1, . . . , Vm. This problem was studied by Golovin [16] and
Khot and Ponnuswami [28]. Those papers respectively give algorithms achieving an (n−m+1)-approximation

and a (2m−1)-approximation. Here we give a O(n
1
2m

1
4 log n log

3
2 m)-approximation algorithm for this problem.

The idea of the algorithm is similar to that of the load balancing problem. We construct the approximations
f̂1, . . . , f̂m

f̂j(S) ≤ fj(S) ≤ g(n) · f̂j(S) ∀j ∈ [m], S ⊆ [n],

such that f̂j is of the form

f̂j(S) =

√∑
i∈S

cj,i,

14



for some non-negative real values cj,i. Consider the problem of finding a partition V1, . . . , Vm that maximizes

minj f̂j(Vj). By squaring, we would like to solve

max
V1,...,Vm

min
j

∑
i∈Vj

cj,i.

This problem is the Santa Claus max-min fair allocation problem, for which Asadpour and Saberi [2] give a
O(
√
m log3 m) approximation algorithm. Using this, together with the algorithm of Section 5 to construct the

f̂j ’s, we obtain an O(n
1
2m

1
4 log n log

3
2 m)-approximation for the submodular max-min fair allocation problem.
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A Appendix

We give here the proofs that were omitted from the main body.

A.1 Proof of Lemma 2

Lemma 2 For A ≻ 0 and z ∈ Rn with l = ∥z∥2A ≥ n, let

L(A, z) =
n

l

l − 1

n− 1
A+

n

l2

(
1− l − 1

n− 1

)
AzzTA.

Then L(A, z) is positive definite, the ellipsoid E(L(A, z)) is contained in conv(E(A)∪ {z,−z}), and its volume
volE(L(A, z)) equals γn(l) · volE(A) where

γn(l) =

√(
l

n

)n(
n− 1

l − 1

)n−1

.

Let us first consider the polar statement to Lemma 2, disregarding the exact definitions of L(A, z) and γn(l).
The polar statement is: if ∥z∥A >

√
n then there exists an ellipsoid E(M) containing(

conv(E(A) ∪ {z,−z})
)∗

such that volE(M) < volE(A−1). The meaning of this statement is more transparent after the following
manipulation. (

conv(E(A) ∪ {z,−z})
)∗

=
(
E(A) ∪ {z,−z}

)∗
(by (P6))

= E(A)∗ ∩ {z,−z}∗ (by (P4))

= E(A−1) ∩
{
x : −1 ≤ zTx ≤ 1

}
. (16)

Thus, the polar of Lemma 2 gives an ellipsoid which contains a section of E(A) determined by centrally
symmetric parallel cuts. This is precisely what is used in the ellipsoid method for solving linear programs; see,
for example, Grötschel, Lovász and Schrijver [17, p72], Bland, Goldfarb and Todd [6, p1056], and Todd [44]. In
fact, Todd derives an exact expression [44, Theorem 2(ii)] for the minimum volume ellipsoid containing (16).
After a series of manipulations, one can show that his expression exactly matches our definition of L(A, z),
showing that E(L(A, z)) is actually the John ellipsoid for conv(E(A) ∪ {z,−z}).

Proof (of Lemma 2). Let λ and µ be the respective coefficients of A and AzzTA in L(A, z). For any n × n
matrix H and vectors u, v ∈ Rn, the Sherman-Morrison formula says that

(H + uvT)−1 = H−1 − H−1uvTH−1

1 + vTH−1u
,

whenever 1 + vTH−1u ̸= 0. We shall apply this to L(A, z) = λA + µAzzTA. Using the facts l = zTAz and
λ+ lµ = n/l, we obtain

L(A, z)−1 =
1

λ
A−1 − µl

λn
zzT. (17)

Now observe that

µl

λn
=

(n− 1)

n(l − 1)

(
1− l − 1

n− 1

)
=

n− l

n(l − 1)
=

l(n− 1)

n(l − 1)
− 1 =

1

λ
− 1.

Combining this with Eq. (17) shows that

L(A, z)−1 =
1

λ
A−1 +

(
1− 1

λ

)
zzT. (18)
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The expression in (18) is clearly positive definite since A−1 ≻ 0, zzT < 0, and 1 ≥ 1/λ > 0. Thus L(A, z) is
positive definite.

For an arbitrary c ∈ Rn, we have

cTL(A, z)−1c =
1

λ
cTA−1c+

(
1− 1

λ

)
(cTz)2.

Since λ ≥ 1, this implies that

max { cx : x ∈ E(L(A, z)) }

=
√
cTL(A, z)−1c

≤ max
{√

cTA−1c, |cTz|
}

= max
{
cTx : x ∈ conv(E(A) ∪ {z,−z})

}
.

This shows that E(L(A, z))∗ ⊇
(
conv(E(A) ∪ {z,−z})

)∗
. By (P8), E(L(A, z) ⊆ conv(E(A) ∪ {z,−z}).

To compute the volume ratio, we use the following counterpart to the Sherman-Morrison formula.

det(H + uvT) = (1 + uTH−1v) detH

Applying this to L(A, z), we have

detL(A, z) =

(
1 +

µl

λ

)
λn detA =

(n
l

)n( l − 1

n− 1

)n−1

detA.

Thus, we obtain the required expression for γn(l) =
√
detA/detL(A, z). �

A.2 Proof of Lemma 3

Lemma 3. The function γn(l) given in Lemma 2 satisfies γn(n+ x) ≥ 1 + x2/(6n3) whenever 0 < x ≤ n.

Proof (of Lemma 3). Recall that

γn(l) =

√(
l

n

)n(
n− 1

l − 1

)n−1

.

Then

(
γn(n+ x)

)2
=

(
n+ x

n

)n

·

(
n− 1

n+ x− 1

)n−1

=

(
n+ x

n

)(
(n+ x)(n− 1)

n(n+ x− 1)

)n−1

=

(
n+ x

n

)(
1− x

n(n+ x− 1)

)n−1

≥

(
n+ x

n

)(
1− x(n− 1)

n(n+ x− 1)

)

=
(n+ x)(n2 − n+ x)

n2(n+ x− 1)

= 1 +
x2

n2(n+ x− 1)

≥ 1 +
x2

2n3
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The result now follows since
√
1 + y ≥ 1 + y/3 for y ∈ [0, 1]. �

A.3 Proof of Proposition 4

To prove Proposition 4, we will require the following result.

Proposition 12 Let A1, A2 ≻ 0 and 0 ≤ λ ≤ 1. Define Bi = λA1 + (1− λ)A2 and B−1
o = λA−1

1 + (1− λ)A−1
2 .

By convexity of the positive definite cone, both Bi and Bo are positive definite. Then

E(A1) ∩E(A2) ⊆ E(Bi) ⊆ E(A1) ∪ E(A2) (19a)

log volE(Bi) ≤ λ log volE(A1) + (1− λ) log volE(A2). (19b)

Also,

E(A1) ∩ E(A2) ⊆ E(Bo) ⊆ conv(E(A1) ∪E(A2)) (20a)

log volE(Bo) ≥ λ log volE(A1) + (1− λ) log volE(A2). (20b)

Proof. If x ∈ E(A1) ∩ E(A2) then xTA1x ≤ 1 and xTA2x ≤ 1, implying that xTBix ≤ 1 and thus x ∈ E(Bi).
On the other hand, if x ∈ E(Bi) then xT(λA1 + (1− λ)A2)x ≤ 1, implying that min

{
xTA1x, x

TA2x
}
≤ 1 and

thus either x ∈ E(A1) or x ∈ E(A2). This proves (19a). The fact that log volE(A) = log Vn − 1
2 log detA,

together with the log-concavity of the determinant (stated in Lemma 1), implies (19b).
Now we apply (19a) to A−1

1 and A−1
2 , obtaining

E(A−1
1 ) ∩E(A−1

2 ) ⊆ E(B−1
o ) ⊆ E(A−1

1 ) ∪E(A−1
2 )

=⇒ (E(A1)
∗ ∪E(A2)

∗)∗ ⊆ E(Bo) ⊆ (E(A1)
∗ ∩ E(A2)

∗)∗ (by (P7) and (P8))

=⇒ E(A1) ∩ E(A2) ⊆ E(Bo) ⊆ conv(E(A1) ∪ E(A2)) (by (P4) and (P9))

We omit the closure operator in the last line because the convex hull of the union of a finite number of compact
sets is also compact [39, Corollary 9.8.2]. This proves (20a). The fact that log volE(A) = log Vn+

1
2 log detA

−1,
together with the log-concavity of the determinant, implies (20b). �

By induction, we obtain the following corollary.

Corollary 13 Let Ai ≻ 0 and λi ≥ 0 for 1 ≤ i ≤ k with
∑

i λi = 1. Let L = conv(∪iE(Ai)). Define

Bi =

k∑
i=1

λiAi and B−1
o =

k∑
i=1

λiA
−1
i .

Then E(Bi) and E(Bo) are ellipsoids both contained within L and they satisfy

log volE(Bi) ≤
k∑

i=1

λi log volE(Ai) ≤ log volE(Bo).

We are now able to prove Proposition 4.

Proposition 4. Let K be an axis-aligned convex body, and let E(A) be an ellipsoid inscribed in K. Then
the axis aligned ellipsoid E(B) defined by the diagonal matrix B = (Diag(A−1))−1 satisfies E(B) ⊆ K and
volE(B) ≥ volE(A).

Proof. Let T be the group of all ±1 diagonal matrices. Then for any matrix M , we have

Diag(M) =
1

|T |
∑
T∈T

T M T.

This holds because, for every i, exactly half the summands negate both the ith row and ith column. Thus

B−1 = Diag(A−1) =
1

|T |
∑
T∈T

T A−1 T =
1

|T |
∑
T∈T

(T AT )−1.
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By Corollary 13, E(B) is contained in conv
(
∪T∈T E(T AT )

)
. But E(T AT ) = T

(
E(A)

)
⊆ K, since K is axis

aligned. Thus E(B) ⊆ K and

log volE(B) ≥ 1

|T |
∑
T∈T

log volE(T AT ) ≥ 1

|T |
∑
T∈T

log volT
(
E(A)

)
= log volE(A).

This completes the proof. �

A.4 Proof of Lemma 5

Lemma 5. Let D0 be the diagonal matrix whose ith diagonal entry is (n/f({i}))2. Then E(D0) ⊆ S(Pf ) and
S(Pf ) ⊆ n2 E(D0).

Proof. Any x ∈ E(D0) satisfies
∑n

i=1 x
2
i (n/f({i}))2 ≤ 1 and therefore |xi| ≤ f({i})/n for each i ∈ [n]. This

implies that
∑

i∈S |xi| ≤ maxi∈S f({i}) ≤ f(S). Thus x ∈ S(Pf ), and so the first inclusion is proven.
Any x ∈ S(Pf ) satisfies |xi| ≤ f({i}) for every i ∈ [n]. Thus

xTD0x

n4
=

n∑
i=1

x2
i

n2f({i})2
< 1.

This implies that x ∈ n2 E(D0), and so the second inclusion is proven. �

A.5 Lemma 10 and Lemma 11

Proof (of Lemma 10). By the greedy algorithm, we have g(S) =
∑k

i=1 cix
∗
i where x∗

i = f(i, k) − f(i + 1, k)
for i ∈ [k]. �

Proof (of Lemma 11). Since 1
c1
≥ 1

c2
≥ · · · ≥ 1

ck
, we have

h(S) =
k∑

j=1

1

cj
y∗j

where y∗j = g(1, j)− g(1, j − 1). This means that

h(S)

=
k∑

j=1

1

cj

(
g(1, j)− g(1, j − 1)

)

=
k∑

j=1

1

cj

(
j∑

i=1

ci(f(i, j)− f(i+ 1, j))

−
j−1∑
i=1

ci(f(i, j − 1)− f(i+ 1, j − 1))

)

=

k∑
j=1

1

cj

(
j∑

i=1

ci(f(i, j)− f(i+ 1, j))

−
j∑

i=1

ci(f(i, j − 1)− f(i+ 1, j − 1))

)
=

∑
i,j:1≤i≤j≤k

ci
cj
·
(
f(i, j)− f(i+ 1, j)

21



− f(i, j − 1) + f(i+ 1, j − 1)
)

=
∑

l,m:1≤l≤m≤k

(
cl
cm
− cl−1

cm
− cl

cm+1
+

cl−1

cm+1

)
f(l,m)

=
∑

l,m:1≤l≤m≤k

(cl − cl−1)

(
1

cm
− 1

cm+1

)
f(l,m).

�

A.6 Theorem 9

Proof (of Theorem 9). First observe that, for singleton sets S = {i}, we have f(S) = h(S) (e.g. by definition or
from Lemma 11). By scaling f (which scales h as well) and scaling c accordingly (so that 1 ≤ cif({i}) ≤

√
n+ 1),

we can assume that maxi∈S f({i}) = 1.

By submodularity of h, we have h(S) ≤
∑

i∈S h({i}) =
∑

i∈S f({i}) ≤ |S| ≤ |S|f(S) by submodularity and
monotonicity, and so there is nothing to prove if |S| ≤ n ≤ 2 + 3

2 lnn. In particular, we can assume that n ≥ 5.

The remainder of the proof is based on the following claim which we will prove shortly.

Claim 14 If R = maxi∈S ci
mini∈S ci

and f(S) ≤ |S|/3 then h(S) ≤ (1 + lnR)f(S).

Assuming the claim, for any set S, let T = {i ∈ S : f({i}) ≥ 1
n−1}. Then

h(S) ≤ h(T ) +
∑

i∈S\T

h({i}) ≤ h(T ) + 1 ≤ h(T ) + f(S).

If f(T ) > |T |/3 then we have

h(S) ≤ h(T ) + f(S) ≤ 3f(T ) + f(S)

≤ 4f(S) ≤ (2 +
3

2
lnn)f(S),

for n ≥ 5. On the other hand, if f(T ) ≤ |T |/3, we can apply the claim to T to get

h(S) ≤ (1 + lnR)f(T ) + f(S) ≤ (2 + lnR)f(S),

where R = maxi∈T ci
mini∈T ci

. Since 1 ≤ cif({i}) ≤
√
n+ 1 and 1

n−1 ≤ f({i}) ≤ 1 for i ∈ T , we get R ≤ (n−1)
√
n+ 1 ≤

n3/2, and this gives the right guarantee for the theorem.

We now prove the claim. Fix S ⊆ [n] where |S| = k. Assume that S = [k] and that c1 ≤ c2 ≤ · · · ck.
Furthermore, we know that ck = Rc1. Scale c so that c1 = 1 (and we do not assume anymore any relationship
between ci and f({i}). By submodularity and monotonicity, we know that

f(T ) ≤ min(|T |, f(S)). (21)

Consider the two equivalent expressions for h(S) given in Lemma 11. Maximize this value over all (not
necessarily submodular) functions f(·) satisfying (21) for T ⊂ S with f(S) fixed at its current value, and over
all vectors c with 1 = c1 ≤ c2 ≤ · · · ≤ ck ≤ R. Since the coefficient (cl − cl−1)(

1
cm
− 1

cm+1
) of f(l,m) in the

second expression is nonnegative, the maximum is attained by the function f∗ given by f∗(T ) = min(|T |, f(S))
for every T ⊆ S. Define d = ⌈f(S)⌉. For this function f∗, we have:

f∗(i, j) =

 0 if j − i ≤ −1
j − i+ 1 if − 1 ≤ j − i ≤ d− 2
f(S) if d− 1 ≤ j − i,
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and thus, for 1 ≤ i ≤ j ≤ k, we have:

f∗(i, j)− f∗(i+ 1, j)− f∗(i, j − 1) + f∗(i+ 1, j − 1)

=


1 if j − i = 0
0 if 1 ≤ j − i ≤ d− 2
f(S)− d if j − i = d− 1
d− 1− f(S) if j − i = d
0 if j − i ≥ d+ 1.

The first expression for h(S) given in Lemma 11 now reduces to the following expression for H:

H = k − (d− f(S))
k−d+1∑
i=1

ci
ci+d−1

− (f(S)− d+ 1)
k−d∑
i=1

ci
ci+d

.

We now need to maximize this expression over all vectors c with 1 = c1 ≤ c2 ≤ · · · ≤ ck ≤ R. By the
arithmetic/geometric mean inequality 1

n

∑n
i=1 ai ≥ (

∏n
i=1 ai)

1/n, we get

H ≤ k − (d− f(S))(k − d+ 1)

(
k−d+1∏
i=1

ci
ci+d−1

) 1
k−d+1

−(f(S)− d+ 1)(k − d)

(
k−d∏
i=1

ci
ci+d

) 1
k−d

= k − (d− f(S))(k − d+ 1)

(
d−1∏
i=1

ci
ci+k−d+1

) 1
k−d+1

−(f(S)− d+ 1)(k − d)

(
d∏

i=1

ci
ci+k−d

) 1
k−d

.

since this is a telescoping product and 2d ≤ k whenever f(S) ≤ k/3. This implies

H ≤ k − (d− f(S))(k − d+ 1)R−(d−1)/(k−d+1)

− (f(S)− d+ 1)(k − d)R−d/(k−d)

≤ k − (d− f(S))(k − d+ 1)

(
1− (lnR)(d− 1)

k − d+ 1

)
− (f(S)− d+ 1)(k − d)

(
1− (lnR)d

k − d

)
= (1 + lnR)f(S),

where the second inequality follows from e−x ≥ 1− x for any x. This proves the claim and completes the proof
of the theorem.

�
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