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Abstract

Pipage rounding is a dependent random sampling
technique that has several interesting properties and
diverse applications. One property that has been useful
in applications is negative correlation of the resulting
vector. There are some further properties that would
be interesting to derive, but do not seem to follow from
negative correlation. In particular, recent concentration
results for sums of independent random matrices are not
known to extend to a negatively dependent setting.

We introduce a simple but useful technique called
concavity of pessimistic estimators. This technique
allows us to show concentration of submodular functions
and concentration of matrix sums under pipage rounding.
The former result answers a question of Chekuri et al.
(2009). To prove the latter result, we derive a new
variant of Lieb’s celebrated concavity theorem in matrix
analysis.

We provide numerous applications of these results.
One is to spectrally-thin trees, a spectral analog of
the thin trees that played a crucial role in the recent
breakthrough on the asymmetric traveling salesman
problem. We show a polynomial time algorithm that,
given a graph where every edge has effective conductance
at least κ, returns an O(κ−1 · log n/ log log n)-spectrally-
thin tree. There are further applications to rounding of
semidefinite programs and to a geometric question of
extracting a nearly-orthonormal basis from an isotropic
distribution.

1 Introduction

Rounding is a crucial step in the design of many approx-
imation algorithms. Given a fractional vector satisfying
some constraints, a rounding method produces an integer
vector that satisfies those constraints, either exactly or

∗Department of Computer Science, UBC, Vancouver, Canada.

Email: nickhar@cs.ubc.ca. Supported by an NSERC Discovery

Grant and a Sloan Foundation Fellowship.
†Work done while at the Department of Mathematics, MIT.

Current affiliation: Department of Econometrics & Operations

Research, VU Amsterdam, The Netherlands; and CWI, The
Netherlands. Email: n.olver@vu.nl. Supported by NSF grant

CCF-1115849.

approximately. Randomized rounding [38] [54, Chapter
5], in which the coordinates of the fractional vector are
rounded randomly and independently, produces good in-
teger vectors for many applications. Dependent rounding
methods, in which the resulting integer vector does not
have independent coordinates, are important in many
scenarios where naive randomized rounding does poorly.
Various techniques exist for designing dependent round-
ing methods (see, e.g., the surveys [45, 4]).

It is common for a rounding scenario to involve
two types of constraints: hard constraints, which must
be satisfied exactly by the integer solution, and soft
constraints, which must be approximately satisfied
by the integer solution. Low-congestion multi-path
routing [46], max cut with given sizes of parts [1], thin
spanning trees [3], and submodular maximization under
a matroid constraint [14, 18] are examples of problems
whose solutions involve such a rounding scenario. The
hard constraint is often membership in an integer
polytope that is defined using combinatorial objects
(e.g., matchings or matroids). The soft constraints are
usually simple linear inequalities.

With randomized rounding, the independent choices
lead to concentration phenomena that are useful for
handling soft constraints. For example, Chernoff bounds
are commonly used to show that linear inequalities
are approximately satisfied [38]. The past decade has
seen various uses of matrix concentration bounds (e.g.,
[2, 41, 49]) to show that linear matrix inequalities are
approximately satisfied by random sampling or rounding.
Such uses have arisen in many areas: graph sparsification
[43], compressed sensing [51], statistics [19], machine
learning [39] and numerical linear algebra [31].

With dependent rounding, concentration phenomena
can also occur. Pipage rounding, swap rounding and
maximum entropy sampling are dependent rounding
techniques that have seen many important uses over the
past decade [46, 1, 23, 14, 3, 18]. An important feature
in some scenarios is that any Chernoff bound that is
valid under independent randomized rounding remains
valid under these dependent rounding techniques. This
fact is proven by showing that the rounded solution has
a negatively correlated distribution, then appealing to



the fact that Chernoff bounds remain valid under such
distributions [36]. Unfortunately, commutativity plays a
key role in proving that fact, and these arguments do not
seem to extend to known matrix concentration bounds [2,
34, 41, 49]. Consequently, these matrix inequalities have
so far not been combined with dependent rounding.

We prove the first result showing that matrix
concentration bounds are usable in a dependent rounding
scenario. Our technique is not based on negative
correlation, but rather the fortuitous interaction between
pipage rounding and various pessimistic estimators.
In particular, we show that Tropp’s matrix Chernoff
bound [49] has a pessimistic estimator that decreases
monotonically under pipage rounding. As a consequence,
we can extend the reach of pipage rounding from soft
constraints that are linear inequalities to soft constraints
that are linear matrix inequalities. Our proof uses non-
trivial techniques from matrix analysis and complex
analysis; in particular, we prove a new variant of Lieb’s
concavity theorem.

1.1 Motivation and Results. One key area where
our techniques yield new results is for thin spanning trees.
These are intriguing objects in graph theory that relate to
foundational topics, such as nowhere-zero flows [25], and
the asymmetric traveling salesman problem [3]. Given a
graph G on n nodes, a spanning tree T of G is α-thin if,
for every cut, the number of edges of T crossing the cut
is at most α times the number of edges of G crossing
the cut. It has been conjectured that any graph with
connectivity k has an f(k)-thin spanning tree where
f(k) = O(1/k). This would imply a constant factor
approximation algorithm for the asymmetric traveling
salesman problem [35]. Asadpour et al. [3] give a
randomized algorithm to find a spanning tree that is
O( logn

k log logn )-thin. Later Chekuri et al. [17, 18] gave a
simpler algorithm using randomized pipage rounding or
swap rounding.

A spectrally-thin spanning tree is a stronger notion
that is naturally motivated by work on spectral sparsi-
fication [43, 5]. A spanning tree T is α-spectrally-thin
if LT � αLG, where LG refers to the Laplacian of G,
and � to the Löwner ordering of Hermitian matrices.
In Section 4.3, we show a result on spectrally thin trees
that strongly mirrors the result of Asadpour et al.

Theorem 1.1. There is a deterministic, polynomial-
time algorithm that given any graph on n nodes where
every edge has effective conductance at least κ, constructs
a O( logn

κ log logn )-spectrally-thin spanning subtree.

Our definition of spectral-thinness seems increasingly
relevant due to the recent breakthrough of Marcus
et al. [32], which implies that O(1/κ)-spectrally-thin

trees exist. Details of this connection are given in
Appendix E. It is unknown if similar techniques can
show that O(1/k)-thin trees exist. The best known
algorithmic construction of spectrally-thin trees is still
Theorem 1.1.

This result is a special case of a result in a more
abstract geometric setting. Suppose V = {v1, . . . , vm}
are unit vectors in `n2 for which

∑m
i=1 viv

T
i is a multiple

of the identity. Does there exist a subset VB =
{ vi : i ∈ B } that is a basis of Rn and for which the
maximum eigenvalue of

∑
i∈B viv

T
i is small? The

maximum eigenvalue is 1 if and only if VB is orthonormal,
but an arbitrary V need not contain an orthonormal
basis. Again, the breakthrough of Marcus et al. [32]
yields a non-constructive proof of a basis with maximum
eigenvalue O(1); see Appendix E. In Section 4.2, we
show how to find in polynomial time a basis VB ⊆
V for which the maximum eigenvalue of

∑
i∈B viv

T
i

is O(log n/ log log n), whereas previous constructive
techniques [2, 34, 41, 49] only provide a bound of
O(log n).

1.2 Techniques. Our results are based on the pipage
rounding technique [1, 46, 23, 14], which has had several
interesting uses in the recent literature. Our result
applies to both the deterministic and randomized forms
of pipage rounding, as well as to swap rounding.

We now give a brief overview of pipage rounding;
further discussion is in Section 3.1.

• Given any point in a matroid base polytope, pipage
rounding produces a sequence of new points within
the polytope. Each new point is chosen to lie on
a lower-dimensional face than the previous one,
ensuring convergence to an extreme point. To get
from one point to the next, only two coordinates
are modified: one is increased, and the other is
decreased by the same amount. The existence of
such a sequence of points is a consequence of the
basis exchange properties of matroids.

• One approach to ensure useful properties of the
final extreme point is to define a potential function
that is concave (resp., convex) in directions that
increase one coordinate and decrease another by
the same amount. Deterministic pipage rounding
ensures that each new point does not increase
(resp., decrease) the value of this function, whereas
randomized pipage rounding ensures this only in
expectation. Examples of such functions include
the ad hoc functions used in [1], or the multilinear
extension of a submodular function [14].

• Randomized pipage rounding [46, 23, 18] outputs
an extreme point whose coordinates are negatively



correlated (more precisely, negative cylinder depen-
dent). This, together with existing theorems, im-
plies that linear functions of that point satisfy the
same Chernoff-type concentration bounds that are
satisfied under independent rounding.

The goal of this paper is to show that, for various
concentration bounds, the extreme point produced by
pipage rounding satisfies the same bounds that would
be achieved by independent randomized rounding. For
Chernoff bounds this follows from negative correlation,
but for other bounds such a result was not previously
known.

• Let f be a monotone submodular function defined
on the ground set of the matroid. When using
randomized pipage rounding, does the value of f
at the final extreme point satisfy the same lower
tail bound as when using independent rounding?
Chekuri et al. [17] conjectured this to be true, and
they proved such a result when using swap rounding.

• Let f be a linear function mapping points in
the matroid base polytope to symmetric matrices.
When using pipage rounding, can the value of f at
the final extreme point be guaranteed to satisfy the
same eigenvalue bounds as when using independent
rounding?

It does not seem easy to answer these questions using
negative correlation properties. We present a new
approach that leads to a positive answer to both of
these questions.

Our approach is based on pessimistic estimators [37],
which we now briefly define; a more detailed discussion
is in Section 3.2. Given a distribution and an event
E on the Boolean cube, a pessimistic estimator is an
upper bound on the probability of E that satisfies some
additional properties. The key property is that one can
repeatedly condition on coordinates being either zero or
one, without increasing the estimator. For both of the
aforementioned questions, we will define a pessimistic
estimator for the event that independent randomized
rounding fails to achieve the desired concentration.
We then show that these pessimistic estimators are
concave when one element’s sampling probability is
increased and another’s is decreased by the same
amount. Due to that concavity property, the base
output by randomized pipage rounding satisfies the
same concentration bounds that would be satisfied
under independent randomized rounding. For the
second question (matrix concentration), the pessimistic
estimator can be efficiently evaluated, so deterministic
pipage rounding can also be used.

The concavity property of our pessimistic estimator
for matrix concentration is a non-trivial fact. We

establish that fact by proving a new variant of Lieb’s
concavity theorem [30]. Although there is much interest
in the mathematical physics community on extensions
and variants of Lieb’s theorem, our particular variant
does not seem to appear in the literature.

2 Preliminaries

Let [m] = {1, . . . ,m}. For a set S ⊆ [m], the vector
χ(S) ∈ Rm is the characteristic vector of S. For a
vector x ∈ Rm and a set S ⊆ [m], the notation x(S)
denotes

∑
i∈S xi. The vector ei denotes the ith standard

basis vector of the finite dimensional vector space that
is apparent from context. The vector ~1 denotes a vector
whose components are all ones and whose dimension
is apparent from context. We will use R+ and Z+ to
denote the nonnegative and positive reals respectively.

Let Sn denote the space of symmetric, real matrices
of size n × n. Let Sn+,Sn++ ⊂ Sn respectively denote
the cones of positive semidefinite and positive definite
matrices. Let Dn ⊆ Sn denote the space of n × n
diagonal matrices. Let � denote the Löwner partial
order on symmetric matrices, i.e., A � B iff B−A ∈ Sn+.
Similarly, A ≺ B iff B − A ∈ Sn++. For A ∈ Sn, let
λmax(A) and λmin(A) respectively denote the largest
and smallest eigenvalues of A. For B ∈ Sn, let B+

denote its Moore-Penrose pseudoinverse. For B ∈ Sn+,

let B+/2 ∈ Sn+ denote the positive semidefinite square
root of B+. The image of B is imB and the orthogonal
projection onto imB is IimB .

The notation ‖·‖ denotes the `2 norm for vectors
and the `2 operator norm for matrices.

If D is a distribution, X ∼ D means that the random
variable X has distribution D.

3 Concavity of Pessimistic Estimators

In this section we state the known results on pipage
rounding, then state our concavity of pessimistic es-
timators technique. We then apply this technique in
three scenarios: (1) Chernoff bounds, (2) submodular
functions, and (3) matrix concentration. The latter two
results are new, and in particular are not known to follow
using negative correlation. This pessimistic estimator
for matrix concentration underlies all applications in
Section 4.

3.1 Pipage Rounding. Pipage rounding is a depen-
dent rounding process originating in works of Ageev,
Srinivasan and Sviridenko [1, 46]. Calinescu et al. [14]
generalized it to a matroid setting. We now state the
main results of randomized and deterministic pipage
rounding.

Let M be a matroid on [m] and let P ⊂ Rm be



its base polytope. For all algorithmic applications in
this paper, M can be presented to the algorithm via an
independence oracle. A function g : P → R is said to be
concave under swaps if
(3.1)
∀p ∈ P, ∀a, b ∈ [m], z 7→ g

(
p+ z(ea− eb)

)
is concave.

Theorem 3.1. (Ageev et al. [1, 46, 14])

(i) Randomized Pipage Rounding. There is a
randomized, polynomial-time algorithm that, given
x ∈ P , outputs an extreme point x̂ of P with
E [ x̂ ] = x and such that, for any g concave under
swaps, E [ g(x̂) ] ≤ g(x).

(ii) Deterministic Pipage Rounding. There is
a deterministic, polynomial-time algorithm that,
given x ∈ P and a value oracle for a function g
that is concave under swaps, outputs an extreme
point x̂ of P with g(x̂) ≤ g(x).

Proof. Let p be a point in the matroid polytope P and
assume that g satisfies (3.1). Delete all coordinates of p
that are equal to zero and consider the residual problem.
It is well-known that, for any such point p, there exists
a chain of sets ∅ = C0 ⊆ C1 ⊆ · · ·Ck ⊆ [m] whose
corresponding constraints of P span the constraints that
are tight at p. If |Ci \ Ci−1| = 1 for every i then these
give m linearly independent tight constraints, so the
point p is an extreme point. Otherwise there is some set
Ci, i ≥ 1, for which |Ci \Ci−1| > 1. In this case p is not
an extreme point. To see this, let a and b be distinct
elements of Ci \Ci−1. Note that the point p+ z(ea− eb)
satisfies all the constraints that are tight at p. So, for all
z in some open neighborhood of 0, the point p+z(ea−eb)
is still feasible for P .

Define

` = min { z ∈ R : p+ z(ea − eb) ∈ P }
and u = max { z ∈ R : p+ z(ea − eb) ∈ P } .

Define

p` = p+ `(ea − eb) and pu = p+ u(ea − eb).

Since g
(
p+ z(ea − eb)

)
is concave, we must have either

g
(
p`) ≤ g(p) or g

(
pu
)
≤ g(p).

Furthermore, both p` and pu lie on a lower-dimensional
face than p does. So starting from some initial p0 ∈ P ,
m iterations suffice to find an extreme point p̂ of P with
g(p̂) ≤ g(p0).

The randomized version of pipage rounding does not
even need access to the function g. Instead, it simply

chooses the next point p′ to be p` with probability u
u−` ,

or pu with probability −`
u−` . This ensures that E [ p′ ] = p,

and the concavity of g yields E [ g(p′) ] ≤ g(p) by Jensen’s
inequality. Apply this procedure to some initial point
p0 ∈ P until an extreme point p̂ is obtained. Then p̂
satisfies E [ p̂ ] = p0 and E [ g(p̂) ] ≤ g(p0). �

The swap rounding procedure of Chekuri et al. [17,
18] also proves Theorem 3.1.

3.2 Pessimistic estimators. For x ∈ [0, 1]m, let
D(x) be the product distribution on {0, 1}m with
marginals given by x, i.e., PX∼D(x) [Xi = 1 ] = xi. Let
E ⊆ {0, 1}m. A pessimistic estimator [37, 47] for E is a
function g : [0, 1]m → R that satisfies

PX∼D(x) [X ∈ E ] ≤ g(x) ∀x ∈ [0, 1]m(3.2)

min{g(x− xiei), g(x+ (1− xi)ei)}
≤ g(x) ∀x ∈ [0, 1]m, i ∈ [m].

For uses of pessimistic estimators in derandomization,
the function g is also required to be efficiently com-
putable. Given any point x0 ∈ [0, 1]m, the method of
conditional expectations can then be used to efficiently
find x̂ ∈ {0, 1}m with g(x̂) ≤ g(x0). In randomized pi-
page rounding g need not be efficiently computable as g
is not even provided as input to the algorithm.

Claim 3.2. (Concavity of Pessimistic Estimators)
Let E ⊆ {0, 1}m. Let g be a function that satisfies
inequality (3.2) and is concave under swaps.

Suppose randomized pipage rounding is started at
an initial point x0 ∈ P , and let x̂ be the (random)
extreme point of P that is output. If g(x0) ≤ ε then
P [ x̂ ∈ E ] ≤ ε.

Suppose deterministic pipage rounding is given
oracle access to g and an initial point x0 ∈ P with
g(x0) < 1. Then the extreme point x̂ of P that is output
satisfies x̂ 6∈ E.

We omit the proof of Claim 3.2 as it is an easy
consequence of Theorem 3.1.

3.3 Chernoff bound. Let us start with a simple
result to illustrate the technique. First we state the
Chernoff bound in convenient notation. We discuss only
the right tail; an analogous result holds for the left tail.
Fix any vector w ∈ [0, 1]m. For t ∈ R and θ > 0, define
gt,θ : [0, 1]m → R by

gt,θ(x) := e−θt · EX∼D(x)

[
eθw

TX
]
.



Let µ = wTx and δ ≥ 0. Then

PX∼D(x)

[
wTX ≥ t

]
≤ inf

θ>0
gt,θ(x)

and g(1+δ)µ, ln(1+δ)(x) ≤
( eδ

(1 + δ)1+δ

)µ
.(3.3)

Claim 3.3. gt,θ is concave under swaps.

Proof. We can rewrite

g(x) = e−θt ·
∏
i

(
1 + xi(e

θwi−1)
)
.

Rewriting g
(
x+ z(ea − eb)

)
in this way, all factors are

non-negative and only two of them depend on z, so for
some c ≥ 0,

d2

dz2
g
(
x+ z(ea − eb)

)
= c

d2

dz2

((
1 + (xa+z)(eθwa−1)

)(
1 + (xb−z)(eθwb−1)

))
= c
(
− 2
(
eθwa − 1

)(
eθwb − 1

))
.

This is non-positive so g is concave under swaps. �

Consequently, Claim 3.2 implies the following result.

Corollary 3.4. If randomized pipage rounding starts
at x0 ∈ P and outputs the extreme point x̂ of P , then
for all w ∈ [0, 1]m and δ ≥ 0,

(3.4) P
[
wTx̂ ≥ (1 + δ)µ

]
≤
( eδ

(1 + δ)1+δ

)µ
where µ = wTx0. Furthermore, if this right-hand side is
strictly less than 1, then deterministic pipage rounding
outputs an extreme point x̂ of P with wTx̂ < (1 + δ)µ.

The key point is that the right-hand sides of (3.3)
and (3.4) are the same. Chekuri et al. [17] proved this
fact using negative correlation of x̂, generalizing a result
of Srinivasan [46].

3.4 Submodular functions. Chekuri et al. [17, The-
orem 1.3] prove an analog of the Chernoff bound for con-
centration of submodular functions under independent
rounding. They show that the same bound remains true
under swap rounding [17, Theorem 1.4] and ask whether
it remains true under pipage rounding.

Formally, let f : {0, 1}m → R be a non-negative,
monotone, submodular function with marginals in [0, 1].
The multilinear extension of f is F : [0, 1]m → R with
F (x) := EX∼D(x) [ f(X) ]. For t ∈ R and θ < 0, define
gt,θ : [0, 1]m → R by

gt,θ(x) := e−θt · EX∼D(x)

[
eθf(X)

]
.

The left tail bound of Chekuri et al. is: with µ =
F (x), δ ∈ [0, 1),

PX∼D(x) [ f(X) ≤ t ] ≤ inf
θ<0

gt,θ(x)

and g(1−δ)µ, ln(1−δ)(x) ≤ exp(−δ2µ/2).

Claim 3.5. gt,θ is concave under swaps.

Proof. Recall that θ < 0. Define h : {0, 1}m → R
by h(X) = eθf(X). Then since x 7→ exp(θx) is
convex and non-increasing, and f is supermodular and
non-decreasing, it follows that h is supermodular; see
Appendix A for the proof of this fact. The multilinear
extension of h is

H(x) = EX∼D(x) [h(X) ] .

It follows from results of Calinescu et al. [14], applied
to the submodular function −h and its multilinear
extension −H, that ∂2H

∂xi∂xj
≥ 0 for any i, j ∈ [m]. Since

g(x) = e−θt ·H(x), the second derivative of

z 7→ g
(
x+ z(ei − ej)

)
is non-positive. Thus g is concave under swaps. �

Claim 3.2 implies the following result, answering a
question of Chekuri et al. [17, p. 3].

Corollary 3.6. If randomized pipage rounding starts
at x0 ∈ P and outputs the extreme point x̂ of P
then, letting µ = F (x0), we have P [ f(x̂) ≤ (1− δ)µ ] ≤
exp(−δ2µ/2).

Chekuri et al. [18, p. 583] state that this fact does not
follow from negative correlation of x̂.

3.5 Matrix Concentration. Tropp [49], improving
on Ahlswede-Winter [2] and Oliviera [34], proves a
beautiful analog of the Chernoff bound for sums of
independent random matrices. We state a simplified
form here.

Theorem 3.7. Let M1, . . . ,Mm ∈ Sn+ satisfy Mi � R·I.
For t ∈ R and θ > 0, define gt,θ : [0, 1]m → R by

gt,θ(x) := e−θt · tr exp
( m∑
i=1

logEX∼D(x)

[
eθXiMi

] )
.

Then, for µ ≥
∥∥EX∼D(x) [

∑
iXiMi ]

∥∥ and δ ≥ 0,

PX∼D(x) [ ‖
∑
iXiMi‖ ≥ t ] ≤ inf

θ>0
gt,θ(x)

and g(1+δ)µ, ln(1+δ)(x) ≤ n ·
( eδ

(1 + δ)1+δ

)µ/R
.



The following is our main lemma on pessimistic
estimators; we delay the proof until later in this section.

Lemma 3.8. gt,θ is concave under swaps.

Consequently, Claim 3.2 implies the following result.

Corollary 3.9. Let P be a matroid base polytope and
let x0 ∈ P . Let M1, . . . ,Mm ∈ Sn+ satisfy Mi � R · I.
Let µ ≥

∥∥EX∼D(x0) [
∑
iXiMi ]

∥∥. If randomized pipage
rounding starts at x0 and outputs the extreme point
x̂ = χ(S) of P then we have
(3.5)

P
[ ∥∥∑

i∈SMi

∥∥ ≥ (1 + δ)µ
]
≤ n ·

( eδ

(1 + δ)1+δ

)µ/R
.

Furthermore, if this right-hand side is strictly less than 1,
then deterministic pipage rounding outputs an extreme
point x̂ = χ(S) of P with

∥∥∑
i∈SMi

∥∥ < (1 + δ)µ.

The inequalities in Theorem 3.7 involve non-trivial
matrix analysis, such as operator concavity of log and
Lieb’s celebrated concavity theorem [30]. It seems that
even those results do not suffice to prove Lemma 3.8. To
prove it, we derive a new variant of Lieb’s theorem.
Lieb [30] actually proved several related concavity
theorems; for us, the most relevant form is as follows.

Theorem 3.10. (Lieb [30]) Let L,K ∈ Sn and C ∈
Sn++. Then z 7→ tr exp

(
L+ log(C + zK)

)
is concave in

a neighborhood of 0.

The main technical result of this paper is:

Theorem 3.11. Let L ∈ Sn, C1, C2 ∈ Sn++ and
K1,K2 ∈ Sn+. Then the univariate function

(3.6) z 7→ tr exp
(
L+log(C1+zK1)+log(C2−zK2)

)
is concave in a neighborhood of 0.

There are several known approaches to proving
Lieb’s theorem. The simplest is Tropp’s approach
[50]; however, his proof is based on joint convexity of
quantum entropy, which is itself usually proven using
Lieb’s theorem. We were unable to prove Theorem 3.11
using Tropp’s approach. Lieb’s original proof [30],
which proves concavity by directly analyzing the second
derivative, involves numerous delicate steps of matrix
analysis. We were able to adapt this approach to
prove a weaker form of Theorem 3.11 that requires
some additional commutativity assumptions; details are
in Appendix D. This weaker result suffices to prove
Lemma 3.8. Epstein [21] gives an elegant approach
to proving Lieb’s theorem using complex analysis,

and in particular powerful results concerning Herglotz
functions. Our proof of Theorem 3.11, which appears in
Appendix C, is an adaptation of Epstein’s approach.

Proof of Lemma 3.8. We will show that for all x ∈ (0, 1)m

and a, b ∈ [m], the map

z 7→ gt,θ
(
x+ z(ea − eb)

)
is concave. The boundary of [0, 1]m is handled by
continuity.

To begin, note that

EX∼D(x)

[
eθXiMi

]
= xi · eθMi + (1− xi) · I
=: Ci.(3.7)

Adding z (with |z| sufficiently small) to the sampling
probability of coordinate i, the expectation becomes

EX∼D(x+zei)

[
eθXiMi

]
= (xi + z) · eθMi + (1− xi − z) · I

= Ci + z
(
eθMi − I

)
︸ ︷︷ ︸

=: Ki

.(3.8)

Note that Ci � I and Ki � 0 because Mi � 0 and θ > 0.
Furthermore, the matrices Ci and Ki commute since any
eigenbasis for Mi is also an eigenbasis of Ci and Ki.

Let us return to the main statement of the lemma.
We must show that, for distinct a, b ∈ [m], and for z in a
neighborhood of zero, the following univariate function
is concave.

z 7→ gt,θ
(
x+ z(ea − eb)

)
= tr exp

(
logEX∼D(x+zea)

[
eθXaMa

]
+ logEX∼D(x−zeb)

[
eθXbMb

]
+
∑
i 6∈{a,b} logEX∼D(x)

[
eθXiMi

])
= tr exp

(
log
(
Ca + zKa

)
+ log

(
Cb − zKb

)
+
∑
i 6∈{a,b} logCi

)
The last equality follows from (3.7) and (3.8). Letting
L =

∑
i 6∈{a,b} logCi, the desired concavity follows from

Theorem 3.11. �

Remark. Another well-known matrix concentration
inequality is the Ahlswede-Winter [2] inequality, for
which pessimistic estimators were studied by Wigderson
and Xiao [53]. It is natural to wonder whether we
could have used their pessimistic estimators instead.
Unfortunately they do not seem applicable for our
scenario. The issue is that the Ahlswede-Winter



inequality is most effective for analyzing sums of i.i.d.
random matrices, due to some inequalities that arise
in their analysis. In our scenario, due to the way that
pipage rounding works, we require non-i.i.d. product
distributions, so it is much more convenient to base our
approach on Theorem 3.7.

4 Applications

4.1 Rounding of semidefinite programs. Let M
be a matroid and let P ⊂ Rn be its base polytope.
Consider the spectrahedron

(4.9) Q := P ∩
{
x ∈ Rm :

m∑
i=1

xiAi � I
}
,

where each A1, . . . , Am ∈ Sn+. We think of P as specify-
ing “hard” constraints and the semidefinite constraint
as being “soft”.

Theorem 4.1. Suppose that Ai � I for all i. If
randomized pipage rounding starts at x0 ∈ Q and outputs
the extreme point χ(S) of P , then P

[∑
i∈SAi � α

]
≥

1− 1/n, for some α = O(log n/ log log n). Furthermore,
if deterministic pipage rounding starts at x0 ∈ Q, then it
outputs an extreme point χ(S) of P with

∑
i∈SAi � α.

This theorem is optimal with respect to α, as
discussed below. The hypothesis that Ai � I is a “width”
condition that commonly arises in optimization and
rounding. Variations of this theorem involving events
of the form

∑
i∈SAi � αB for some B ∈ Sn+ can be

obtained by an appropriate change of basis.

Proof. Apply Corollary 3.9 with Mi = Ai, δ =
4 log n/ log log n, µ = 1 and R = 1. A standard cal-
culation shows that the right-hand side of (3.5) is less
than 1/n. �

Chekuri, Vondrák and Zenklusen [17, 18] considered
the problem of rounding a point in a matroid polytope
to an extreme point, subject to additional packing
constraints. Their result generalizes the low-congestion
multi-path routing problem studied earlier by Srinivasan
et al. [46, 23], but it is itself a special case of Theorem 4.1
where the matrices Ai are diagonal. The factor α =
O(log n/ log log n) is optimal in Theorem 4.1 because
it is optimal for rounding this low-congestion multi-
path routing problem, and even for the congestion
minimization problem [29].

4.2 Rounding an isotropic distribution to a
nearly orthonormal basis. Let w1, . . . , wm ∈ Rn
satisfy ‖wi‖ = 1 for all i. Let p1, . . . , pm be a probability
distribution on these vectors such that

∑
i piwiw

T
i = I/n.

(This is the covariance matrix of the distribution, if we
assume that

∑
i piwi = 0.) A random vector drawn from

that distribution is said to be in isotropic position.

Theorem 4.2. There is a polynomial time algorithm
(either randomized or deterministic) to compute a subset
S ⊆ [m] such that {wi : i ∈ S } forms a basis of
Rn, and for which

∥∥∑
i∈S wiw

T
i

∥∥ ≤ α, where α =
O(log n/ log log n).

As is discussed in Appendix E, the recent break-
through on the Kadison-Singer problem [32] implies the
following existential result:

Theorem 4.3. There exists S ⊆ [m] such that
{wi : i ∈ S } forms a basis of Rn, and for which∥∥∑

i∈S wiw
T
i

∥∥ = O(1).

We now prove Theorem 4.2 using Theorem 4.1. Let
M be the linear matroid corresponding to the vectors
{w1, . . . , wm}. Let P be the base polytope of that linear
matroid. Let r : 2[m] → Z+ be the rank function of that
matroid, i.e., r(S) = dim

(
span {wi : i ∈ S }

)
. Then

P :=
{
x ∈ Rn+ : x(J) ≤ r(J) ∀J ⊆ [m]

and x([m]) = r([m])
}
.

Define Ai = wiw
T
i , and

Q = P ∩
{
x ∈ Rm :

∑
i

xiAi � I
}
.

Let x = n·p. Then the following claim and the hypothesis
that

∑
i piwiw

T
i = I/n show that x ∈ Q.

Claim 4.4. x ∈ P .

Since ‖wi‖ = 1, we have Ai = wiw
T
i � I.

Theorem 4.1 gives an algorithm to construct an extreme
point χ(S) of P for which

∑
i∈S Ai � α, with α =

O(log n/ log logn). Since P is the base polytope of M,
{wi : i ∈ S } forms a basis of Rn. Finally,

∑
i∈S wiw

T
i �

α · I. This completes the proof of Theorem 4.2, modulo
the proof of Claim 4.4.

Proof of Claim 4.4. By the assumption
∑
i piwiw

T
i =

I/n we have r([m]) = n and∑
i

xi = n
∑
i

pi = tr
(
n
∑
i

piwiw
T
i

)
= tr(I) = n.

So x satisfies the last constraint in the definition of P .
It remains to show that

∑
i∈J xi ≤ r(J) for all J .

For any positive semidefinite matrix, the average of the



non-zero eigenvalues is a lower bound on the maximum
eigenvalue, so

tr(
∑
i∈J piwiw

T
i )

rank(
∑
i∈J piwiw

T
i )
≤
∥∥∥∑
i∈J

piwiw
T
i

∥∥∥
≤
∥∥∥ m∑
i=1

piwiw
T
i

∥∥∥ = 1/n.

Thus∑
i∈J

xi = n
∑
i∈J

pi = n · tr(
∑
i∈Jpiwiw

T
i )

≤ rank(
∑
i∈Jpiwiw

T
i ) = r(J).

This proves that x ∈ P . �

In Appendix B.1, we show that Theorem 4.2 can
be generalized from a decomposition of the identity into
rank-one matrices wiw

T
i to a decomposition into matrices

of arbitrary rank. We remark that Theorem 4.3 is not
known to have a generalization to matrices of arbitrary
rank.

Column-subset selection. Column-subset selec-
tion is a topic of recent interest in numerical linear
algebra [12, 48, 20, 11] that relates to important ques-
tions in operator theory [9, 10, 44, 48, 55]. The following
theorem generalizes Theorem 4.2 to this setting. We
remove the hypothesis that the vectors are isotropic, and
allow the set S to be somewhat smaller. Formally, we en-
sure that |S| is at least the stable rank of {w1, . . . , wm},
which is

st. rank(w1, . . . , wm) := tr(
∑
iwiw

T
i )/‖

∑
iwiw

T
i ‖.

The stable rank is a lower bound on rank({w1, . . . , wm})
that de-emphasizes the contribution of small singular
values; it has been used as a more tractable proxy for
rank in previous work on column-subset selection.

Theorem 4.5. Let w1, . . . , wm ∈ Rn satisfy ‖wi‖ = 1
for all i. Then there is a deterministic, polynomial time
algorithm to compute S ⊆ [m] of size

|S| ≥ bst. rank(w1, . . . , wm)c

such that {wi : i ∈ S } is linearly independent, and∥∥∑
i∈S wiw

T
i

∥∥ ≤ O(log n/ log log n).

The proof of Theorem 4.5 is essentially the same as
the proof of Theorem 4.2, except that the matroid M is
truncated to have rank equal to bst. rank(w1, . . . , wm)c.

4.3 Thin trees. Let G = (V,E) be a graph. For
convenience we assume that V = [n]. The cut defined
by U ⊆ V is

δG(U) = {uv ∈ E : exactly one of u and v is in U } .

For a subgraph T of G, let δT (U) denote all edges of T
with exactly one endpoint in U .

Definition 4.6. A subgraph T of G is called ε-thin if
|δT (U)| ≤ ε · |δG(U)| for all U ⊆ V .

Conjecture 4.7. (Goddyn [25]) Every graph with
connectivity at least k has an f(k)-thin spanning subtree,
for some function f that vanishes as k tends to infinity.

The crucial detail in this conjecture is that the
function f should not depend on the size of the graph.
The best progress on this conjecture for general graphs
is as follows.

Theorem 4.8. (Asadpour et al. [3]) Let G be a
graph with n vertices and connectivity k. Then G has a
O
(

logn
k log logn

)
-thin spanning subtree. Moreover, there is

a randomized, polynomial time algorithm to construct
such a tree.

Now we define spectrally-thin trees and prove an
analog of this theorem. The Laplacian of G is the
symmetric matrix LG with rows and columns indexed
by V defined by

LG :=
∑
uv∈E

(eu − ev)(eu − ev)T.

Definition 4.9. Let T be a spanning subtree of G and
let LT be the Laplacian of T . The tree T is ε-spectrally-
thin if LT � εLG.

Any tree that is ε-spectrally-thin is also ε-thin,
because

|δT (U)| = χ(U)T LT χ(U)

≤ ε · χ(U)T LG χ(U)

= ε · |δG(U)|.

The converse is not true. Moreover, the connectivity hy-
pothesis in Theorem 4.8 does not suffice1 to obtain a good
spectrally-thin tree. The proof is in Appendix B.2.1.

Theorem 4.10. For every n, k ≥ 1, there exists a
weighted graph with n vertices and connectivity k that
does not have an o(

√
n/k)-spectrally-thin spanning sub-

tree.

1 This result was independently observed by M. de Carli Silva,

N. Harvey and C. Sato, and by M. Goemans [26], using slightly
different examples.



Nevertheless, if we strengthen the connectivity lower
bound to a lower bound on the effective conductances,
then we have the following construction of spectrally-thin
trees. For an edge e = uv ∈ E, the effective resistance in
G between u and v is Re := (eu − ev)

TL+
G(eu − ev).

The effective conductance in G between u and v is
Ce := 1/Re.

Theorem 4.11. Let G be a graph with n vertices such
that κ ≤ Ce for every edge e. Then there is a polynomial
time algorithm (either randomized or deterministic) to
construct a O

(
logn

κ log logn

)
-spectrally-thin spanning subtree

of G.

Theorem 4.11 follows directly from Theorem 4.1,
letting M be the graphic matroid corresponding to
G. It also follows from Theorem 4.2, as we show in
Appendix B.2. That viewpoint is advantageous, since
Theorem 4.3 then immediately implies

Theorem 4.12. Let G be a graph with n vertices such
that κ ≤ Ce for every edge e. Then G has a O(1/κ)-
spectrally-thin spanning subtree.

We are not aware of any formal connection between
Theorem 4.12 and Conjecture 4.7 or the traveling
salesman problem.

Although Theorem 4.8 and Theorem 4.11 are for-
mally incomparable, it is worth understanding their
similarities and differences. Both results have a seem-
ingly suboptimal factor of log n/ log log n. Theorem 4.8
requires only a connectivity lower bound, which is im-
portant in applications [25, 3], but the resulting tree is
thin, not spectrally-thin; also, their algorithm is random-
ized. Theorem 4.11 requires a conductance lower bound
(which is stronger than a connectivity lower bound), but
the resulting tree is spectrally-thin (which is stronger
than being thin); also, our algorithm can be made deter-
ministic. The use of randomization seems quite inherent
in the algorithms [3, 18] for Theorem 4.8, as the thinness
condition involves controlling exponentially many cuts,
which seems difficult to accomplish by a deterministic,
polynomial-time algorithm.

The quantities k and κ can be related in certain
classes of graphs. We say that a family of graphs
has nearly equal resistances if there is a constant c
(independent of the number of vertices) such that Re ≤
cRf for all edges e, f . For example, any Ramanujan
graph has nearly equal resistances. Edge-transitive
graphs, such as hypercubes, have nearly equal (in fact,
exactly equal) resistances.

Corollary 4.13. Let G be a graph with n vertices,
nearly equal resistances, and connectivity k. Then
there is a deterministic, polynomial time algorithm to
construct a O

(
logn

k log logn

)
-spectrally-thin tree of G.

The proof is in Appendix B.2.
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A A fact about submodularity and convexity

The following simple fact is needed in the proof of
Claim 3.5.

Lemma A.1. Let f : 2[m] → R be non-decreasing and
submodular. Let g : R→ R be non-increasing and convex.
Then g ◦ f is supermodular.

Proof. We require the following property of convex
functions. Suppose a, b, c, d satisfy

(A.1) a ≤ min {b, c} ≤ max {b, c} ≤ d.

Then any function g that is convex on [a, d] satisfies

(A.2)
g(d)− g(c)

d− c
≥ g(b)− g(a)

b− a
.

Fix any A ⊆ B ⊆ [m], and an element x ∈ [m] \ B.
Define

a := f(A), b := f(A+ x), c := f(B),

d := f(B) + f(A+ x)− f(A), e := f(B + x).

Since f is non-decreasing, (A.1) holds. Since f is
submodular, e ≤ d holds. Since g is non-increasing,
g(e) ≥ g(d). Combining that with (A.2) and the
observation that d− c = b− a, we obtain

g(e)− g(c) ≥ g(d)− g(c) ≥ g(b)− g(a).

That is,

g
(
f(B + x)

)
− g
(
f(B)

)
≥ g

(
f(A+ x)

)
− g
(
f(A)

)
,

so g ◦ f is supermodular. �

B Proofs of Applications

B.1 Rounding decompositions of the identity.
Here, we give a generalization of Theorem 4.2 to a
decomposition of the identity into matrices of arbitrary
rank.

Theorem B.1. Let X1, . . . , Xm ∈ Sn+ satisfy∑m
i=1Xi = I. Then there exists a subset S ⊆ [m] with

|S| ≤ n such that
∑
i∈S Xi/ trXi has full rank and

maximum eigenvalue at most α = O(log n/ log log n).

Proof. Let Vi be a matrix such that Xi = ViV
T
i . Define

the function r : 2[m] → Z+ by

r(J) = rank
(∑
j∈J

VjV
T
j

)
= rankVJ ,

where VJ is the matrix obtained by concatenating in any
order all columns from the matrices {Vj : j ∈ J }. It is
well-known that such a function r is:

• Normalized: r(∅) = 0,

• Monotone: r(I) ≤ r(J) whenever I ⊆ J , and

• Submodular: r(I) + r(J) ≥ r(I ∪ J) + r(I ∩ J) for
all I, J ⊆ [m].

For any normalized, monotone, submodular function
f : 2[m] → R, its base polytope is defined to be

B(f) :=
{
x ∈ Rm+ : x(J) ≤ f(J) ∀J ⊆ [m],

and x([m]) = f([m])
}
.

Define the vector p ∈ Rm by pi = trXi. Note that
p ≥ 0 and

∑
i pi = tr(

∑
iXi) = n, so we can think

of p as defining a “fractional multiset” of n matrices.
Intuitively, we want to “round” the coordinates of p to
integers. To that end, define the polytope

P ′ := B(r) ∩ {x : bpc ≤ x ≤ dpe } ,

where bpc and dpe respectively denote the component-
wise floor and ceiling of the vector p ∈ Rm. The polytope
P ′ is not necessarily a matroid polytope; for example,
a vector in P ′ could have a coordinate strictly greater
than 1.

Claim B.2. p ∈ P ′.

Claim B.3. P := {x− bpc : x ∈ P ′ } is a matroid base
polytope.

Claim B.2 is proven below. Claim B.3 is a “folklore
result”, known to experts in the area, that can be
derived using reductions and contractions of submodular
functions [22, §3.1(b)]; see also Fujishige’s remarks on
crossing submodular functions [22, Eq. (3.97)].

Define Ai = Xi/ trXi and

Q := P ∩
{
x ∈ Rm :

∑
i

xiAi � I
}
.

Setting x = p− bpc, we have x ∈ P by Claim B.2 and∑
i

xiAi �
∑
i

pi
Xi

trXi
=
∑
i

Xi = I,

so x ∈ Q.
Since trAi = 1, we have Ai � I. Applying

Theorem 4.1, we obtain a vector x̂ ∈ {0, 1}n that is
an extreme point of P , and for which

∑
i x̂iAi � α. Let

S be the support of x̂. Note that x̂+ bpc ∈ P ′. So

|S| =

m∑
i=1

x̂i ≤
m∑
i=1

(x̂i + bpic) ≤ r([m]) = n

and
∑
i∈S Xi/ trXi � α as required. �



Proof of Claim B.2. The box constraint bpc ≤ p ≤ dpe is
trivially satisfied. We have noted above that

∑
i pi = n,

so the constraint p([m]) ≤ r([m]) = n is also satisfied.
It remains to show that

∑
i∈I pi ≤ r(I) for all I.

For any positive semidefinite matrix, the average of the
non-zero eigenvalues is a lower bound on the maximum
eigenvalue, so

tr(
∑
i∈I Xi)

rank(
∑
i∈I Xi)

≤
∥∥∥∑
i∈I

Xi

∥∥∥ ≤ ∥∥∥ m∑
i=1

Xi

∥∥∥ = 1.

Thus
∑
i∈I pi = tr(

∑
i∈IXi) ≤ rank(

∑
i∈IXi) = r(I).

This proves that p ∈ P . �

B.2 Thin trees. Proof of Theorem 4.11. Recall the
notation defined in Section 2. For e = uv ∈ E, define

vectors xe = L
+/2
G (eu − ev) and we = xe/ ‖xe‖. Then

Re = ‖xe‖2; let pe = Re/(n − 1). It is well-known [8]
that the vector of effective resistances describes the edge
marginals of the uniform spanning tree, and hence that∑
e pe = 1. Then, following the argument of Spielman

and Srivastava [43],∑
e∈E

pewew
T
e =

1

n− 1

∑
e∈E

xex
T
e

=
1

n− 1
L
+/2
G

(∑
e∈E

(eu−ev)(eu−ev)T
)
L
+/2
G

=
1

n− 1
IimLG

.

We view the vectors {we : e ∈ E } as (n−1)-dimensional
vectors in their linear span and apply Theorem 4.2. This
gives a set T ⊆ E of size n− 1 such that {we : e ∈ T }
is linearly independent and∑

e∈T
wew

T
e � O(log n/ log log n) · IimLG

.

The first two conditions imply that the edges in T
form a spanning tree on the vertex set V . Then since
Re = ‖xe‖2, we have∑

e∈T

xex
T
e

Re
� O(log n/ log log n) · IimLG

.

Equivalently,∑
uv∈T

(eu−ev)(eu−ev)T

Ruv
� O(log n/ log log n) · LG.

Since we assume that κ ≤ Ce = 1/Re for every edge e,
we obtain

LT =
∑
uv∈T

(eu−ev)(eu−ev)T � O
( log n

κ log log n

)
· LG.

So T is O
(

logn
κ log logn

)
-spectrally-thin. �

Proof of Corollary 4.13. By the nearly equal resistances
assumption, Re = O(n−1|E| ) for every edge e. On the

other hand, the connectivity k is at most the average
degree, which is 2|E|/n. Thus Re = O(1/k) for every
edge e. The result now follows from Theorem 4.11. �

B.2.1 Proof of Theorem 4.10 Assume n is a multi-
ple of 4. We define a graph that is related to an example
of Boyd and Pulleyblank [13, p. 180]. There are two
disjoint cycles, each of length n/2. Let us number the
vertices in the first cycle as 1, . . . , n/2 and the vertices
in the second cycle as n/2 + 1, . . . , n. Add a matching
where the ith edge connects the ith vertex in the first
cycle and the ith vertex in the second cycle. The edges in
the cycles each have weight wc := k/2 and the edges in
the matching each have weight wm := 2k/n. Obviously
this weighted graph has connectivity at least k.

Let T be any subtree of G, without any weights on
the edges of T . The first claim proves the theorem in
the case when T uses exactly one matching edge, and
the second claim handles the case when T uses several
matching edges.

Claim B.4. Suppose that T uses only a single matching
edge. There exists a vector z such that

zTLT z

zTLGz
= Ω

(√n
k

)
.

Proof. Without loss of generality, {n/4, 3n/4} be the
matching edge used by T . Let α = n−0.5 and c = 1− α.
Define the vector z where

zi =

{
c|n/4−i| (i ≤ n/2)

0 (i > n/2).

Numerator: The numerator is zTLT z =
∑
uv∈E(zu −

zv)
2 ≥ (zn/4 − z3n/4)2 = 1.

Denominator: To evaluate zTLGz, we separately con-
sider the cycle edges and matching edges. The contribu-
tion from the matching edges is

Cm := wm ·
n/2∑
i=1

(zi − zn/2+i)2

< 2wm ·
∑
i≥0

c2i

<
2wm
1− c

=
2wm
α

.



The contribution from the cycle edges is

Cc := wc

n/2∑
i=2

(zi−1 − zi)2 + wc(z1 − zn/2)2

< 2wc
∑
i≥1

(ci−1 − ci)2

= 2wc(1− c)2
∑
i≥0

c2i

= 2wc
(1− c)2

1− c2

< 2wc
(1− c)2

1− c
= 2wcα.

Since α = n−0.5, we get Cm = O(k/
√
n) and Cc =

O(k/
√
n), so zTLGz = O(k/

√
n). �

Claim B.5. Suppose that T uses m > 1 matching edges.
There exists a vector z such that

zTLT z

zTLGz
= Ω

(√n
k

)
.

Proof. Let the matching edges used by T be
{a1, b1} , {a2, b2} , . . . , {am, bm}. Define the vector z by

zi =

{
cminj∈[m] d1(i,aj) (i ≤ n/2)

0 (i > n/2)

where d1 denotes distance in the first cycle.

Numerator: As in Claim B.4, every matching edge used
by T contributes at least 1, so zTLT z ≥ m.

Denominator: Obviously zTLGz is no more than m
times what it would be if T used exactly one matching
edge. That is, zTLGz ≤ O(mk/

√
n). �

C Proof of Theorem 3.11

The outline of this proof follows a proof of Lieb’s theorem
presented by Epstein [21]. Epstein’s proof proceeds via
complex analytic techniques, and in particular makes
use of some powerful results involving Herglotz functions
(see, e.g., [6, 24]). While an effort has been made to make
the treatment here accessible, a modicum of complex
analysis will be assumed; a standard reference is [42].

For a complex number z, let <z and =z respectively
denote the real and imaginary parts of z. Let C++ =
{z ∈ C | =z > 0} denote the open upper half-plane, and
C+ the closed upper half-plane. Define C−− and C− in
the obvious corresponding way.

Definition C.1. A function g : C++ → C is called a
Herglotz function (or Pick function) if it is analytic on
C++ and g(C++) ⊆ C++.

For example the map z 7→ az+b is Herglotz if a ∈ R+

and b ∈ C+. The maps z 7→ −1/z and z 7→ log z are
also Herglotz.

A key reason that Herglotz functions will be useful
is the following classical theorem (see, e.g., [6, Eq. V.42]
or [27, p. 542]).

Theorem C.2. (Herglotz-Nevanlinna-Riesz rep-
resentation theorem) For any Herglotz function g,
there exists a ∈ R, b ∈ R+ and a positive Borel measure
µ on R, with

∫
R

1
t2+1dµ(t) <∞, such that

(C.3)

g(z) = a+ bz+

∫
R

( 1

t− z
− t

1 + t2

)
dµ(t) ∀z ∈ C++.

Roughly speaking, this provides a description of a
Herglotz function through its boundary (the real line);
since the function may diverge as it approaches the real
line, the generality of a measure (which may have atoms)
is needed.

The relevance of this theorem to our purposes comes
from the following:

Lemma C.3. (Implicit in [21]) Let D be a domain2

in C containing C−− ∪ {0}. Suppose f : D → C is
analytic, its restriction to D ∩ R is real-valued, and
moreover the function g on C++ defined by g(z) =
zf(1/z) is a Herglotz function. Then the restriction
of f to D ∩ R is concave in some neighborhood of the
origin.

Proof. Since 0 ∈ D and D is open, there exists some
τ > 0 so that the interval [−τ, τ ] ⊂ D. Let D′ be the
image of D under the map z 7→ 1/z; so D′ contains
C++ ∪ [τ−1,∞) ∪ (−∞,−τ−1]. We may think of g
as being defined on all of D′. Let µ be the positive
Borel measure associated with g by Theorem C.2. This
measure can be thought of as the limit of =g(z) as z
approaches the real line, in the appropriate distributional
sense: this is known as the Stieltjes inversion formula;
see, e.g., [6, Thm. V.4.12], [24, Thm. 2.2]. We will use
only the following consequence:

If for some open interval I ⊆ R,

lim
ε↓0
=g(w + iε) = 0 for all w ∈ I,

then µ(I) = 0.

We deduce that µ is supported on [−τ−1, τ−1], since
limε↓0=g(w + iε) = =g(w) = 0 for all w ∈ D′ ∩ R.

2Recall that, in analysis, a domain is defined to be an open,
connected set.



Expressing f in terms of the Herglotz-Nevanlinna-
Riesz representation of g, we have that

f(z) = az + b+

∫ τ−1

−τ−1

z2

zt− 1
dµ(t).

(Note that the final term of (C.3) can be folded into the
constant a — since µ is Borel and has bounded support,
it is finite.) Now calculate the second derivative of f ,
considered as a real-valued function on D ∩ R:

f ′′(x) =

∫ τ−1

−τ−1

d2

dx2

(
x2

xt− 1

)
dµ(t)

=

∫ τ−1

−τ−1

2

(xt− 1)3
dµ(t).

So for all x ∈ (−τ, τ), f ′′(x) < 0, and so f (as a real-
valued function on D∩R) is concave in the neighborhood
of 0. �

We will apply Lemma C.3 with f as in the statement
of Theorem 3.11:

f(z) = tr exp
(
L+ log(C1 + zK1) + log(C2 − zK2)

)
.

In order to extend our definition of log beyond symmetric
matrices, we use (again following [21]) the Cauchy
integral description

logC =

∫ ∞
0

1

t+ 1
− (t+ C)−1 dt;

this is well-defined as long as C has no nonpositive
eigenvalues. As our domain D, we take C−− ∪ Bε,
where Bε is an open ball around the origin of radius
ε := 1

2 min{λmin(C1)‖K1‖−1, λmin(C2)‖K2‖−1}. This
ensures that

Lemma C.4. The function f is well-defined and analytic
on D.

For convenience, we withhold the proof until the end of
this section.

To deduce that f is concave by Lemma C.3, we must
show that g defined by g(z) = zf(1/z) is Herglotz. We
have

g(z) = z · f(1/z)

= z tr exp
(
L+ log(C1 +K1/z) + log(C2 −K2/z)

)
= tr exp

(
log(zI) + L+ log(C1 +K1/z)

+ log(C2 −K2/z)
)

= tr exp
(
L+ log(C1z +K1) + log(C2 + (−1/z)K2)

)
.

We will work with complex matrices for the remain-
der of this section, so let Mn(C) denote the space of n×n
complex matrices, and Hn the space of n× n Hermitian
matrices. We will make use of operator formalism on
occasion; in particular, the identity I will generally be
omitted, and so for a scalar w ∈ C, wI will be written
as simply w.

An arbitrary matrix C ∈ Mn(C) has a unique
decomposition C = P + iQ with P,Q ∈ Hn, by taking
P = 1

2 (C + C∗) and Q = 1
2i (C − C

∗), where ∗ denotes
adjoint (conjugate transpose). The standard terminology
[28, pp. 237] is that P is the “real part” of C, denoted by
<C, and that Q is the “imaginary part” of C, denoted
by =C. This terminology is consistent with the scalar
(n=1) case, and has nothing to do with the entry-wise
real and imaginary parts of the matrix.

This analogy to the scalar case provides a lot of
helpful intuition, and so at this point we will sketch a
version of the proof for n = 1. The full argument will
follow the same essential steps, though the generalization
is not completely straightforward. The scalar analog of a
Hermitian matrix is a real number, and the scalar analog
of a positive definite matrix is a positive number; so we
consider the function h : C→ C defined by

h(z) = exp
(
l + log(c1z + k1) + log(c2 + (−1/z)k2)

)
,

with real parameters l ∈ R, k1, k2 ≥ 0 and c1, c2 > 0.
Then

= log(c1z + k1) = arg(c1z + k1) ∈ (0, arg z].

Similarly,

= log(c2 + (−1/z)k2) =

arg(c2 + (−1/z)k2) ∈ [0, arg(−1/z)).

Since arg(−1/z) = π − arg z, we obtain

=(l + log(c1z + k1) + log(c2 + (−1/z)k2)) ∈ (0, π).

Since =ea+ib = ea sin b for a, b ∈ R, we deduce that
=h(z) > 0, as required.

We now resume the argument for the case n > 1.
Define

I++ = {C ∈Mn(C) : =C � 0 }
I+ = {C ∈Mn(C) : =C � 0 } .

Much of the argument revolves around noting that I++

is closed under various operations. For example, if
C,A ∈ I++ then clearly A+ C ∈ I++. The following is
less straightforward:

Lemma C.5. ([21, pp. 318–319]) For any C ∈ I++,



(i) −C−1 ∈ I++, and

(ii) 0 ≺ = logC ≺ π.

We refer to [21] for the proofs, but we again note the
intuition by analogy with the n = 1 case, where C is
just an element of C++. Then C = reiθ for some r > 0
and 0 < θ < π; so −C−1 = r−1ei(π−θ) ∈ C++ and
logC = log r + iθ.

A crucial lemma will be the following:

Lemma C.6. Let A,B ∈ Hn satisfy A,B � 0, where in
addition at least one of A and B are strictly positive
definite. Then for any z ∈ C++, log(A+Bz) is defined
and

0 � = log(A+Bz) � arg z.

Moreover, if A � 0, then the left inequality is strict, and
if B � 0, the right inequality is strict.

Proof. We first observe that the conditions imply that
A+Bz has no nonpositive real eigenvalues, and hence
that the logarithm is well defined. It suffices to show
that A+Bz is nonsingular, since we can apply the same
argument to A′ +Bz, where A′ = A+ t for any t ≥ 0.

If B � 0, then B1/2 exists and is positive definite.
Thus

A+Bz = B1/2(B−1/2AB−1/2︸ ︷︷ ︸
=:Q

+z)B1/2.

But Q is Hermitian (as can be seen since B−1/2 and A
are Hermitian) and so it has real spectrum; thus since
=z > 0, 0 is not in the spectrum of Q+ z. Hence Q+ z
and so also A+Bz are invertible.

If instead A � 0, then

A+Bz = zA1/2(1/z +A−1/2BA−1/2)A1/2,

and similar reasoning applies.
Suppose first that B � 0. Then A + Bz ∈ I++,

and so by Lemma C.5 (ii) we immediately have that
= log(A + Bz) � 0. Now if B � 0 but is not positive
definite, then B + ε � 0 for any ε > 0, and so
= log(A + (B + ε)z) � 0. Since log(A + Bz) is well
defined, we have by continuity that

= log(A+Bz) = lim
ε↓0
= log(A+ (B + ε)z) � 0.

This completes the proof of the left inequality.
For the right inequality, suppose first that A � 0.

Since arg z = = log z, our goal is to show that

=(log z − log(A+Bz)) � 0,

or equivalently (using that A+Bz is nonsingular)

= log((A/z +B)−1) � 0.

Now since −1/z ∈ C++, it follows that =(−A/z) � 0.
Since =B = 0, we obtain that −A/z −B ∈ I++. Thus
(A/z+B)−1 ∈ I++ by Lemma C.5 (i), and so the result
follows by Lemma C.5 (ii). If A � 0 but A is not
positive definite, we apply a limiting argument as before
to deduce that = log(A+Bz) � 0. �

We will also need the following result:

Lemma C.7. ([21]) If 0 ≺ =C ≺ π, then tr expC ∈
C++.

We omit the proof, which proceeds by first showing
that the spectrum of C is contained in the strip
{ z ∈ C : 0 < =z < π }, and then using the spectral
mapping theorem to deduce that the spectrum of expC
lies in C++.

Lemma C.8. The function g is Herglotz.

Proof. Take any z ∈ C++. By Lemma C.6, we have that

0 � = log(C1z +K1) ≺ arg z

and 0 ≺ = log(C2 + (−1/z)K2) � arg(−1/z).

Since arg(−1/z) = π − arg z, we obtain that

0 ≺ =
(
L+ log(C1z +K1) + log(C2 + (−1/z)K2)

)
≺ π.

Thus by Lemma C.7, g(z) ∈ C++. Hence g is indeed
Herglotz. �

Applying Lemma C.3, and observing the proof of
Lemma C.4 below, Theorem 3.11 has been proved.

Proof of Lemma C.4. Firstly, if z /∈ R, then either
C1 + zK1 ∈ I++, or −(C1 + zK1) ∈ I++. Thus, as
observed by Epstein, log(C1 + zK1) is defined; indeed,
we already proved more in Lemma C.6. The same is
true for log(C2 − zK2).

Now suppose z ∈ (−ε, ε). Then

C1 + zK1 � C1 − ε‖K1‖ � C1 − 1
2λmin(C1) � 0.

Similarly C2 − zK2 � 0. �

D Weaker Proof of Theorem 3.11

In this appendix we prove Theorem 3.11, under the
additional hypothesis that Ci & Ki commute. This
suffices to prove Lemma 3.8. The argument builds on
Lieb’s original proof [30] of Theorem 3.10.

Theorem D.1. Let L ∈ Sn, C1, C2 ∈ Sn++ and
K1,K2 ∈ Sn+ be such that C1 & K1 commute, and that
C2 & K2 commute. Then
(D.4)

f(z) := tr exp
(
L+ log(C1 + zK1) + log(C2 − zK2)

)
is concave in a neighborhood of 0.



First we need some preliminary definitions. For
x, y ≥ 0, define the logarithmic mean and binomial
mean as follows:

LM(x, y) =

{
x−y

log x−log y (x 6= y)

x (otherwise)

BM(x, y) =
(x+ y

2
+
√
xy
)
/2 =

(√x+
√
y

2

)2
.

Theorem D.2. (Carlson [15], Bhatia [7]) For
x, y ≥ 0,

√
xy ≤ LM(x, y) ≤ BM(x, y) ≤ (x+ y)/2.

For any X ∈ Sn++, define the operators TX , RX :
Sn → Sn by

TX(Y ) :=

∫ ∞
0

(X + tI)−1Y (X + tI)−1dt

RX(Y ) := 2

∫ ∞
0

(X+tI)−1Y (X+tI)−1Y (X+tI)−1dt.

Claim D.3. Let X ∈ Sn++ and Y ∈ Sn.

• (P1): If X and Y commute then
TX(Y ) = Y X−1 and RX(Y ) = Y 2X−2.

• (P2): The inverse of TX is the operator T−1X where

T−1X (Y ) =
∫ 1

0
XtY X1−t dt.

• (P3): In a basis in which X is diagonal, we have(
T−1X (Y )

)
i,j

= Yi,j · LM(Xi,i, Xj,j).

• (P4): TX is a positive map, i.e., TX(Y ) ∈ Sn+
whenever Y ∈ Sn+.

Proof. See Lieb [30] p. 277, and Ohya and Petz [33]
Eq. (3.7) and p. 49. �

Claim D.4. For any C ∈ Sn++, K ∈ Sn and x ∈ R,

log(C+xK) = logC+xTC(K)− 1

2
x2RC(K)+O(x3).

Proof. See Lieb [30] equations (3.6) and (3.9), and Ohya
and Petz [33, p. 53]. �

Claim D.5. Let L ∈ Sn, C1, C2 ∈ Sn++ and K1,K2 ∈

Sn. Define M = exp(L+ logC1 + logC2). Then

exp
(
L+ log(C1 + zK1) + log(C2 − zK2)

)
= M + z

∫ 1

0

M1−s
(
TC1(K1)− TC2(K2)

)
Ms ds

+ z2

(
− 1

2

∫ 1

0

M1−s
(
RC1(K1) +RC2(K2)

)
Ms ds

+

∫ 1

0

∫ s

0

M1−s
(
TC1(K1)− TC2(K2)

)
Ms−u

(
TC1(K1)− TC2(K2)

)
Mu du ds

)
+ O(z3).

Proof. Similar to Ohya and Petz [33, p. 53]. �

Proof of Theorem D.1. The theorem is equivalent to

0 ≤ d2f
dz2

∣∣
z=0

(assuming that this derivative exists). From
Claim D.5 we have

d2f

dz2

∣∣∣∣
z=0

(D.5)

= − trM
(
RC1

(K1) +RC2
(K2)

)
+

tr
∫ 1

0

(
TC1(K1)−TC2(K2)

)
My
(
TC1(K1)−TC2(K2)

)
M1−y dy

= − trM
(
RC1

(K1) +RC2
(K2)

)
+

tr
(
TC1

(K1)−TC2
(K2)

)
T−1M

(
TC1

(K1)−TC2
(K2)

)
.

From (P1) and the assumption that Ci and Ki commute
we have RCi

(Ki) = TCi
(Ki)

2. So the assertion of the
theorem is equivalent to

(D.6) trM TC1(K1)2 + trM TC2(K2)2 ≥

tr
(
TC1

(K1)− TC2
(K2)

)
T−1M

(
TC1

(K1)− TC2
(K2)

)
.

We will prove the more general statement that for all
M ∈ Sn++ and X,Y ∈ Sn+,
(D.7)
trMX2 + trMY 2 ≥ tr(X − Y )T−1M (X − Y ).

This implies (D.6) by our assumption that K1,K2 ∈ Sn+
and (P4).

The preceding discussion is basis-independent. It
is now convenient to fix a basis in which M is diagonal
and to view M , X and Y as matrices in that basis. Let
us denote the diagonal entries of M by λi = Mi,i; these
are positive since we assume M ∈ Sn++. By (P3), the
right-hand side of (D.7) is

tr(X − Y )T−1M (X − Y ) =
∑
i,j

LM(λi, λj)·(Xi,j − Yi,j
)2

≤
∑
i,j

BM(λi, λj)·(Xi,j − Yi,j
)2
,(D.8)



by Theorem D.2. We may rewrite the right-hand side as

(D.9)∑
i,j

(λi
4

+
λj
4

+

√
λiλj

2

)
((Xi,j)

2 + (Yi,j)
2−2Xi,jYi,j)

=
trMX2

2
+

trM1/2XM1/2X

2

+
trMY 2

2
+

trM1/2YM1/2Y

2

− trMXY − trM1/2XM1/2Y

by repeatedly using the observation∑
i,j

Di,iPi,jQi,jEj,j = trDPEQ = trEPDQ

for all D,E ∈ Dn, P,Q ∈ Sn.
Thus, combining (D.7), (D.8) and (D.9), it suffices

to prove

trMX2−trM1/2XM1/2X+trMY 2−trM1/2YM1/2Y

≥ − 2 trMXY − 2 trM1/2XM1/2Y

for every M,X, Y ∈ Sn+.
Since that inequality is invariant under choice of

orthonormal basis, and since trM1/2XM1/2Y ≥ 0, it
suffices to prove

trXD2X − trXDXD + trY D2Y − trY DY D

≥ −2 trXD2Y ∀D ∈ Dn, ∀X,Y ∈ Sn+.

(D.10)

Denote the diagonal entries of D by di = Di,i. Then

trXD2X − trXDXD

=
1

2

∑
i,j

X2
i,j(d

2
i + d2j )−

∑
i,j

X2
i,jdidj

=
1

2

∑
i,j

X2
i,j(di − dj)2.

So the left-hand side of (D.10) equals

∑
i,j

X2
i,j + Y 2

i,j

2
(di − dj)2 ≥

∑
i,j

|Xi,jYi,j | · (di − dj)2,

by the arithmetic-mean geometric-mean (AM-GM) in-
equality. The right-hand side of (D.10) is

−2 tr(XD2Y ) = − tr(XD2Y )− tr(D2XY )

= −
∑
i,j

Xi,jYi,j(d
2
i + d2j ).

So, to prove (D.10), it suffices to prove that
(D.11)∑
i,j

|Xi,jYi,j | · (di − dj)2 ≥ −
∑
i,j

Xi,jYi,j(d
2
i + d2j ).

We will prove the more general inequality

(D.12)
∑
i,j

|Zi,j | · (di − dj)2 ≥ −
∑
i,j

Zi,j(d
2
i + d2j )

∀d ∈ Rn, ∀Z ∈ Sn+.

This implies (D.11) by letting Z = X ◦Y (the Hadamard
product of X and Y ), which is positive semidefinite by
the Schur product theorem [6, p. 23]. Rearranging,
(D.12) becomes

(D.13)
1

2

∑
i,j

(|Zi,j |+ Zi,j)(d
2
i + d2j ) ≥

∑
i,j

|Zi,j | didj .

Since |Zi,j |+ Zi,j ≥ 0, the AM-GM inequality implies
that the left-hand side is at least∑

i,j

(|Zi,j |+ Zi,j)didj =
∑
i,j

|Zi,j | didj + dTZd.

Since Z ∈ Sn+, this implies (D.13). �

E Connections to the Kadison-Singer Problen

The Kadison-Singer problem, which dates back to 1959,
is an important, and until very recently unsolved,
question in operator theory. The importance of this
question has become increasingly apparent in recent
years as it is now known to be equivalent, or closely
related, to numerous conjectures in disparate areas
of mathematics [16]. In a very recent breakthrough,
Marcus, Spielman and Srivastava [32] positively resolved
the Kadison-Singer problem. More precisely, they proved
the following strong form of Weaver’s conjecture [52,
Conjecture KS2 and Theorem 2]:

Theorem E.1. (Marcus et al. [32]) Let ε > 0, and
u1, . . . , um ∈ Cn be such that ‖ui‖ ≤ ε for all i, and∑
i uiu

T
i = I. Then there exists a partition of [m] into

S1, S2 such that for each j ∈ {1, 2},

(E.14)
∑
i∈Sj

uiu
T
i ≤ 1

2 (1 +
√

2ε)2.

It is well-known that, given a strong discrepancy
result such as (E.14), an iterative argument yields a
“well-conditioned” sparse object. Such an argument was
used by Rudelson [40], for example. For the sake of
completeness, we include here a detailed argument that
Theorem E.1 implies the existence of O(1/κ)-spectrally-
thin trees.

First, the following corollary of Theorem E.1 will be
convenient for induction purposes.



Corollary E.2. There exists a constant C ≥ 1 such
that the following is true. Let v1, . . . , vm ∈ Rn be such
that αI �

∑
i viv

T
i � βI and ‖vi‖2 = δ := n/m for all

i. Suppose that α ∈ [1/2, 1] and β ∈ [1, 2]. Then there
exists S ⊆ [m] satisfying

(E.15) (α− C
√
δ)I � 2

∑
i∈S

viv
T
i � (β + C

√
δ)I.

Proof. Let α, β, δ, v1, . . . , vm be as in the statement of
Corollary E.2. Note that δ ≤ 1, since m ≥ n. Letting
M =

∑
i viv

T
i , we see that

∥∥M−1∥∥ ≤ α−1. Define

ui = M−1/2vi. Then∑
i

uiu
T
i = M−1/2

(∑
i

viv
T
i

)
M−1/2 = I

and

‖ui‖2 ≤
∥∥M−1∥∥ ‖vi‖2 ≤ α−1δ =: ε.

Applying Theorem E.1 of Marcus et al. [32], we deduce
(E.14), and hence (since ε ≤ 2)

2
∑
i∈Sj

uiu
T
i � 1 + 4

√
2ε for j ∈ {1, 2}.

Consequently,

2
∑
i∈S1

viv
T
i � (1+4

√
2ε)M � (1+4

√
2ε)β � β+16

√
δ

by the hypotheses α ∈ [1/2, 1] and β ∈ [1, 2].
Observing that

2
∑
i∈S1

uiu
T
i = 2I − 2

∑
i∈S2

uiu
T
i � 1− 4

√
2ε,

we similarly obtain

2
∑
i∈S1

viv
T
i � (1−4

√
2ε)M � (1−4

√
2ε)α � α−4

√
2δ.

Thus taking S = S1, we see that (E.15) holds with
C = 16. �

Claim E.3. Let w1, . . . , wm ∈ Rn satisfy ‖wi‖ = 1 for
all i. Suppose that

∑
i wiw

T
i /m = I/n. For any ε ≤ 1/3,

there exists y ∈ {0, 1}m with

• (1− ε)I � Θ(ε2)
∑
i yiwiw

T
i � (1 + ε)I,

• |supp(y)| = Θ(n/ε2).

Proof. Define vi =
√
n/m · wi, so that ‖vi‖2 = n/m =:

δ0 for all i. We will iteratively construct sets St ⊆ [m],

with S0 = [m]. Let C be as in Corollary E.2. Define
α0 = β0 = m, and then inductively

αt+1 = αt − C(2tn)1/2(βt)
1/2

βt+1 = βt + C(2tn)1/2(βt)
1/2.

Let

T = max
{
t : C

t−1∑
j=0

(2jn/m)1/2 ≤ ε/2
}
.

This choice of T is motivated by the following:

Claim E.4. For all t ≤ T , βt ≤ m(1 + ε) and αt ≥
m(1− ε).

Proof. For 0 ≤ t < T ,

βt+1 = βt(1 +C(2tn/βt)
1/2) ≤ βt(1 +C(2tn/m)1/2).

So

βt ≤ m

t−1∏
j=0

(
1 + C(2jn/m)1/2

)

≤ m exp
(
C

t−1∑
j=0

(2jn/m)1/2
)

≤ m exp(ε/2)

≤ m(1 + ε).

Note that
α0 − αt = βt − β0

and so since βt ≤ m(1 + ε), αt ≥ m(1− ε). �

Note that since
∑T−1
j=0 (2jn/m)c = Θ((2Tn/m)1/2), we

have that

(E.16) 2T = Θ
(m
n
ε2
)
.

Our first goal will be to show inductively that for
all t ≤ T , there exists a set St ⊆ [m] so that

(E.17) αt � m2t
∑
i∈St

viv
T
i � βt.

Note that this is true for t = 0 by assumption.
It will be convenient to define γt = 2t|St|. Suppose

(E.17) holds for some particular t < T . Define

v
(t)
i = vi ·

√
m2t/γt,

so that ‖v(t)i ‖2 = n
|St| =: δt for all t. Then just by scaling,

αt/γt �
∑
i∈St

v
(t)
i (v

(t)
i )T � βt/γt.



Taking a trace yields nαt/γt ≤ n ≤ nβt/γt, i.e.,

(E.18) αt ≤ γt ≤ βt.

By (E.18) and Claim E.4, we have

1/2 ≤ 1− ε
1 + ε

≤ αt
βt
≤ αt

γt
≤ 1

1 ≤ βt
γt
≤ βt

αt
≤ 1 + ε

1− ε
≤ 2.

Now apply Corollary E.2 with St instead of [m], v
(t)
i

instead of vi, αt/γt instead of α, βt/γt instead of β, and
δt instead of δ. The hypotheses of Corollary E.2 are
satisfied, so it follows that there is a set St+1 ⊆ St with

αt/γt − Cδ1/2t � 2
∑
i∈St+1

v
(t)
i (v

(t)
i )T � βt/γt + Cδ

1/2
t .

Rewriting in terms of the original vi’s, we obtain

αt − Cγtδ1/2t � 2t+1m
∑
i∈St+1

viv
T
i � βt + Cγtδ

1/2
t .

Now

γtδ
1/2
t = γt(n/|St|)1/2

= (2tn)1/2(γt)
1/2

≤ (2tn)1/2(βt)
1/2.

Hence

αt+1 � 2t+1m
∑
i∈St+1

viv
T
i � βt+1,

and the inductive step is achieved.

From the definition of vi, Claim E.4 and (E.17) for
t = T , we deduce that

m(1− ε) � 2Tn
∑
i∈ST

wiw
T
i � m(1 + ε).

Recalling (E.16), we see that

(1− ε)I � Θ(ε2)
∑
i∈ST

wiw
T
i � (1 + ε)I.

Taking the trace of these inequalities shows that |ST | =
Θ(n/ε2). The proof is completed by taking y to be the
characteristic vector of ST . �

Corollary E.5. Let w1, . . . , wm ∈ Rn satisfy ‖wi‖ =
1 for all i. Let p1, . . . , pm be a probability distribution
on these vectors such that the covariance matrix is∑
i piwiw

T
i = I/n. For any ε ≤ 1/3, there exists z ∈ Zm+

with

• (1− ε)I � Θ(ε2)
∑
i ziwiw

T
i � (1 + ε)I,

•
∑
i zi = Θ(n/ε2)

Proof. We may assume that p1, . . . , pm are rational
numbers of the form qi/M where q1, . . . , qm,M are
nonnegative integers. (If p1, . . . , pm are not rational, we
may approximate them by rationals while introducing
vanishing error.) Replace each wi with qi copies of itself.
The uniform distribution on the resulting multiset of
vectors still has covariance matrix I/n. Apply Claim E.3
to this multiset of vectors, yielding a vector y. Let z be
the vector obtained in the obvious way from y to take
multiplicities into account. �

This easily implies a proof of Theorem 4.3.

Proof of Theorem 4.3. Apply Corollary E.5 with
ε = 1/3. Then Θ(1/ε2)I �

∑
i ziwiwi, implying that

{wi : i ∈ supp(z) } spans Rn. Choose S ⊆ supp(z)
arbitrarily so that {wi : i ∈ S } is a basis of Rn. Then∑

i∈S
wiw

T
i �

∑
i

ziwiw
T
i � Θ(1/ε2)I

as required. �

Corollary E.5 implies that every graph has a spectral
sparsifier with a linear number of edges. Let G = (V,E)
be a connected, unweighted graph with n vertices. As
before, let LG denote its Laplacian matrix, let Ruv
denote the effective resistance between u and v, and
let Cuv = 1/Ruv.

Corollary E.6. For any ε ≤ 1/3, there exists z ∈ ZE+
with

∑
e∈E ze = Θ(n/ε2) and

(E.19) (1− ε)LG � Θ(ε2)L′ � (1 + ε)LG,

where

L′ =
∑
uv∈E

zuvCuv(eu − ev)(eu − ev)T.

Proof. As in the proof of Theorem 4.11, for e = uv ∈ E,

let xe = L
+/2
G (eu − ev) and we = xe/ ‖xe‖. Then

pe = Re/(n− 1) is a probability distribution on e and∑
e pewew

T
e = IimLG

/(n − 1). Applying Corollary E.5,
we obtain a vector z ∈ ZE+ with

∑
e ze = Θ(n/ε2) and

(1− ε)IimLG
� Θ(ε2)

∑
e∈E

zewew
T
e � (1 + ε)IimLG

.

Multiply these inequalities on both sides by L
1/2
G and

use the identity 1/ ‖xe‖2 = Ce to obtain the desired
conclusion. �



Either Theorem 4.3 or Corollary E.6 can now be
used to obtain a proof of Theorem 4.12.

Proof of Theorem 4.12. Apply Corollary E.6 with
ε = 1/3. The left-hand inequality of (E.19) implies
that supp(z) forms a connected graph. Pick an arbitrary
spanning tree T from supp(z). Then∑

uv∈T
Cuv(eu − ev)(eu − ev)T

�
∑
uv∈E

zuvCuv(eu − ev)(eu − ev)T

� Θ(1/ε2)LG.

As κ ≤ Ce for all edges e, we have
∑
uv∈T (eu− ev)(eu−

ev)
T � Θ(1/κ)LG. �
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