
Sparse Sums of Positive Semidefinite Matrices

Marcel K. de Carli Silva∗ Nicholas J. A. Harvey† Cristiane M. Sato‡

Abstract

Recently there has been much interest in “sparsifying” sums of rank one matrices: modifying the
coefficients such that only a few are nonzero, while approximately preserving the matrix that results
from the sum. Results of this sort have found applications in many different areas, including sparsifying
graphs. In this paper we consider the more general problem of sparsifying sums of positive semidefinite
matrices that have arbitrary rank.

We give several algorithms for solving this problem. The first algorithm is based on the method of
Batson, Spielman and Srivastava (2009). The second algorithm is based on the matrix multiplicative
weights update method of Arora and Kale (2007). We also highlight an interesting connection between
these two algorithms.

Our algorithms have numerous applications. We show how they can be used to construct graph
sparsifiers with auxiliary constraints, sparsifiers of hypergraphs, and sparse solutions to semidefinite
programs.

∗Department of Combinatorics and Optimization, University of Waterloo. mksilva@uwaterloo.ca. Partially supported
by an NSERC Discovery Grant of L. Tunçel.

†Department of Computer Science, University of British Columbia. nickhar@cs.ubc.ca. Supported by an NSERC Dis-
covery Grant.

‡Department of Combinatorics and Optimization, University of Waterloo. cmsato@uwaterloo.ca. Partially supported by
an NSERC Discovery Grant of N. Wormald.

1 Introduction

A sparsifier of a graph is a subgraph that approximately preserves some structural properties of the graph.
The original work in this area studied cut sparsifiers, which are weighted subgraphs that approximate every
cut arbitrarily well. The celebrated work of Benczúr and Karger [5, 6] proved that every undirected graph
with n vertices and m edges (and potentially non-negative weights on its edges) has a subgraph with only
O(n log n/ε2) edges (and new weights on those edges) such that, for every cut, the weight of the cut in
the original graph and its subgraph agree up to a multiplicative factor of (1 ± ε). Benczúr and Karger also
gave a randomized algorithm to construct a cut sparsifier in Õ(m/ε2) time. Recent work has extended and
improved their algorithm in various ways [10, 11, 12, 14, 15].

Spielman and Teng [39] introduced spectral sparsifiers, which are weighted subgraphs such that the
quadratic forms defined by the Laplacians of the graph and the sparsifier agree up to a multiplicative factor
of (1± ε). Spectral sparsifiers are also cut sparsifiers, as can be seen by evaluating these quadratic forms at
{0, 1}-vectors. They proved that every undirected graph with n vertices and m edges (and potentially non-
negative weights on its edges) has a spectral sparsifier with only npolylog(n)/ε2 edges (and new weights
on those edges). Spielman and Srivastava [38] reduce the graph sparsification problem to the following
abstract problem in matrix theory.

Problem 1. Let v1, . . . , vm ∈ Rn be vectors and let B =
∑

i viv
T
i . Given ε ∈ (0, 1), find a vector y ∈ Rm

with small support such that y ≥ 0 and

B ≼
∑
i

yiviv
T
i ≼ (1 + ε)B. (1)

(Here the notation X ≼ Y means that the matrix Y −X is positive semidefinite.)
Spielman and Srivastava [38] observe that Problem 1 can be solved using known concentration bounds

on operator-valued random variables, specifically Rudelson’s sampling lemma [32, 33]. This approach
yields a vector y with support size O(n logn/ε2), and therefore yields a construction of spectral sparsifiers
with O(n log n/ε2) edges. Their algorithm relies on the linear system solver of Spielman and Teng [39],
which was significantly simplified by Koutis, Miller and Peng [24]. Recent work [23] has improved the
space usage of Spielman and Srivastava’s algorithm.

In subsequent work, Batson, Spielman and Srivastava [4] give a deterministic algorithm that solves
Problem 1 and produces a vector y with support size O(n/ε2). Consequently they obtain improved spectral
sparsifiers with O(n/ε2) edges. This work led to important progress in metric embeddings [29, 34], convex
geometry [40] and Banach space theory [37].

In this paper, we focus on a more general problem.

Problem 2. Let B1, . . . , Bm be symmetric, positive semidefinite matrices of size n× n and let B =
∑

iBi.
Given ε ∈ (0, 1), find a vector y ∈ Rm with small support such that y ≥ 0 and

B ≼
∑
i

yiBi ≼ (1 + ε)B. (2)

This problem can also be solved by known concentration bounds: Ahlswede and Winter [1] give a
method for generalizing Chernoff-like bounds to operator-valued random variables, and one of their theo-
rems [1, Theorem 19] directly yields a solution to Problem 2. (Other expositions of these results also exist
[41, 16].) This approach yields a vector y with support size O(n logn/ε2). See Section 3 for more details.

This paper gives two improved solutions to Problem 2. Our interest in this topic is motivated by sev-
eral applications, such as constructing sparsifiers with certain auxiliary properties and sparsifiers for hyper-
graphs. We discuss these applications in Section 1.2.

1

1.1 Our Results

We give several efficient algorithms for solving Problem 2. Our strongest solution is:

Theorem 3. Let B1, . . . , Bm be symmetric, positive semidefinite matrices of size n× n and arbitrary rank.
Set B :=

∑
iBi. For any ε ∈ (0, 1), there is a deterministic algorithm to construct a vector y ∈ Rm with

O(n/ε2) nonzero entries such that y ≥ 0 and

B ≼
∑
i

yiBi ≼ (1 + ε)B.

The algorithm runs in O(mn3/ε2) time. Moreover, the result continues to hold if the input matrices
B1, . . . , Bm are Hermitian and positive semidefinite.

Our proof of Theorem 3 is quite simple and builds on results of Batson, Spielman and Srivastava [4].
We remark that the assumption that the Bi’s are positive semidefinite cannot be removed; see Appendix D.

We also give a second solution to Problem 2 which is quantitatively weaker, although it is based on
very general machinery which might prove useful in further applications or generalizations of Problem 2.
This second solution is based on the matrix multiplicative weights update method (MMWUM) of Arora and
Kale [3, 22]. By a black-box application of their theorems we obtain a deterministic algorithm to construct a
vector y with O(n log n/ε3) nonzero entries. By slightly refining their analysis we can improve the number
of nonzero entries to O(n log n/ε2). We remark that Orecchia and Vishnoi [30] have used MMWUM for
solving the balanced separator problem; this can be used as a subroutine in Spielman and Teng’s algorithm
for constructing spectral sparsifiers.

Another virtue of our second solution is that it illustrates that the surprising Batson-Spielman-Srivastava
(BSS) algorithm is actually closely related to MMWUM. In particular, the algorithms underlying our two
solutions are identical, except for the use of slightly different potential functions. We explain this connection
in Section 8.

1.2 Applications

In this section, we present several applications of Problem 2. Proofs are given in Appendix A.

Sparsifiers with costs.

Corollary 4. LetG = (V,E) be a graph, letw : E → R+ be a weight function, and let c1, . . . , ck : E → R+

be cost functions, with k = O(n). Let LG(w) denote the Laplacian matrix for graph G with weight function
w. For any real ε ∈ (0, 1), there is a deterministic polynomial-time algorithm to find a subgraph H of G
and a weight function wH : E(H) → R+ such that

LG(w) ≼ LH(wH) ≼ (1 + ε)LG(w),∑
e∈E

weci,e ≤
∑

e∈E(H)

wH,eci,e ≤ (1 + ε)
∑
e∈E

weci,e for all i

and |E(H)| = O(n/ε2).

The inequalities LG(w) ≼ LH(wH) ≼ (1 + ε)LG(w) are equivalent to the condition that the subgraph
H (with weights wH) is a spectral sparsifier of G (with weights w). We remark that existing methods for
producing sparsifiers have low probability of approximately satisfying even a single cost function (i.e., the
case k = 1).

One potentially interesting application of sparsifiers with costs is as follows.

2

Corollary 5 (Rainbow Sparsifiers). Let G = (V,E) be a graph and let w : E → R+ be a weight function.
Let E1, . . . , Ek be a partition of the edges, i.e., each edge is colored with one of k colors. For any real
ε ∈ (0, 1), there is a deterministic polynomial-time algorithm to find a subgraph H of G and a weight
function wH : E(H) → R+ such that

LG(w) ≼ LH(wH) ≼ (1 + ε)LG(w),

(1− ε)
∑
e∈Ei

we ≤
∑

e∈E(H)∩Ei

wH,e ≤ (1 + ε)
∑
e∈Ei

we for all i,

and |E(H)| = O((n+ k)/ε2).

Hypergraph sparsifiers. Let H = (V, E) be a hypergraph, and let w : E → R+. We follow the definition
of Laplacian for hypergraphs as in [31]. For each hyperedge E ∈ E , define its Laplacian LE as the graph
Laplacian of a graph on V whose edge set forms a clique on E. Define the Laplacian for the hypergraph H
with weight function w as the matrix LH(w) :=

∑
E∈E wELE .

Corollary 6 (Spectral sparsifiers for hypergraphs). For any real ε ∈ (0, 1), there is a deterministic polynomial-
time algorithm to find a sub-hypergraph G of H and a weight function wG : E(G) → R+ such that

LH(w) ≼ LG(wG) ≼ (1 + ε)LH(w),

and |E(G)| = O(n/ε2).

This corollary concerns spectral sparsifiers. It is also interesting to study sparsifiers that approximately
preserve all cuts. There are several ways to extend the definition of “the weight of a cut” from ordinary
graphs to hypergraphs. We consider the following two definitions, where S is any set of vertices in a
hypergraph H with edge weights w.

• w(δH(S)): This is the sum of the weights of all hyperedges that contain at least one vertex in S and
at least one vertex in S := V \ S.

• w∗(δH(S)): This is defined to be
∑

E∈E wE · |S ∩E| · |S ∩E|.

Obviously these definitions agree in ordinary graphs.

Corollary 7 (Cut sparsifiers for hypergraphs, second definition). For any real ε ∈ (0, 1), there is a deter-
ministic polynomial-time algorithm to find a sub-hypergraph G of H and a weight functionwG : E(G) → R+

such that
w∗(δH(S)) ≤ w∗

G(δG(S)) ≤ (1 + ε)w∗(δH(S)) for every S ⊆ V ,

and |E(G)| = O(n/ε2).

Corollary 8 (Cut sparsifiers for hypergraphs, first definition). Assume that H is an r-uniform hypergraph.
For any real ε ∈ (0, 1), there is a deterministic polynomial-time algorithm to find a sub-hypergraph G of H
and a weight function wG : E(G) → R+ such that

(r − 1)

r2/4
w(δH(S)) ≤ wG(δG(S)) ≤ (1 + ε)r2

4(r − 1)
w(δH(S)) ∀S ⊆ V,

and |E(G)| = O(n/ε2). In other words, the sparsified hypergraph G approximates the weight of the cuts in
the hypergraph H to within a factor Θ(r2).

3

For the special case r = 3, we can achieve (1 + ε)-approximate sparsification for all cuts, even under
the first definition.

Corollary 9 (Cut sparsifiers for 3-uniform hypergraphs). Assume that H is a 3-uniform hypergraph. For
any ε ∈ (0, 1), there is a deterministic polynomial-time algorithm to find a sub-hypergraph G of H and a
weight function wG : E(G) → R+ such that

w(δH(S)) ≤ wG(δG(S)) ≤ (1 + ε)w(δH(S)) ∀S ⊆ V,

and |E(G)| = O(n/ε2).

Sparse solutions to semidefinite programs.

Corollary 10. Let A1, . . . , Am be symmetric, positive semidefinite matrices of size n × n, and let B be a
symmetric matrix of size n× n. Let c ∈ Rm with c ≥ 0. Suppose that the semidefinite program (SDP)

min
{
cT z :

∑
i

ziAi ≽ B, z ∈ Rm, z ≥ 0
}

has a feasible solution z∗. Then, for any real ε ∈ (0, 1), it has a feasible solution z̄ with at most O(n/ε2)
nonzero entries and cT z̄ ≤ (1 + ε)cT z∗.

Several important SDPs can be cast as in Corollary 10; see, e.g., [19, 20]. Recently, Jain and Yao [21]
gave a parallel approximation algorithm for SDPs in this form with B positive semidefinite.

Lovász theta number. For a graph G = (V,E) on n nodes, let t′(G) denote the square of the minimum
radius of an Euclidean ball in Rn such that there is a map from V to points in the ball such that adjacent
vertices are mapped to points at distance at least 1. Also, let ϑ′(G) denote the variant of the Lovász theta
number introduced in [27] and [35].

Corollary 11. Let G = (V,E) be a graph. For any real ε ∈ (0, 1), there is a deterministic polynomial-time
algorithm to find a subgraph H of G such that

(1− ε)t′(G) ≤ t′(H) ≤ t′(G)

and |E(H)| = O(n/ε2).

Corollary 12. Let G = (V,E) be a graph. For any real ε ∈ (0, 1), there is a deterministic polynomial-time
algorithm to find a supergraph H of G such that

ϑ′(G)

1− ε+ εϑ′(G)
≤ ϑ′(H) ≤ ϑ′(G)

and |E(H)| =
(
n
2

)
−O(n/ε2).

Corollary 13. Let G be a graph such that ϑ′(G) = o(
√
n). For any real γ > 0, there is a supergraph H of

G such that
ϑ′(G)

1 + γ
≤ ϑ′(H) ≤ ϑ′(G)

and |E(H)| =
(
n
2

)
−O(nϑ(G)2/γ2).

Corollary 14. Let G be a graph such that ϑ′(G) = Ω(
√
n). For any real γ ≥ 1, there is a supergraph H of

G such that

ϑ′(H) = Ω(
√
n/γ)

and |E(H)| =
(
n
2

)
−O(n2/γ2).

4

Approximate Carathéodory theorems. One immediate application for Theorem 3 is an approximate
Carathéodory-type theorem. A classic result of this sort is:

Theorem 15 (Althöfer [2], Lipton-Young [25]). Let v1, . . . , vm ∈ [0, 1]n and let λ ∈ Rm satisfy λ ≥ 0 and∑
i λi = 1. Then there exists µ ∈ Rm with µ ≥ 0,

∑
i µi = 1 and only O(log n/ε2) nonzero entries such

that ∥
∑

i λivi −
∑

i µivi∥∞ ≤ ε.

This theorem follows from simple random sampling arguments, but it has several interesting conse-
quences, including the existence of sparse, low-regret solutions to zero-sum games. The following corollary
of Theorem 3 can be viewed as a matrix generalization of Theorem 15.

Corollary 16. Let B1, . . . , Bm be symmetric, positive semidefinite matrices of size n × n and let λ ∈ Rm

satisfy λ ≥ 0 and
∑

i λi = 1. Let B =
∑

i λiBi. For any ε ∈ (0, 1), there exists µ ≥ 0 with
∑

i µi = 1
such that µ has O(n/ε2) nonzero entries and

(1− ε)B ≼
∑
i

µiBi ≼ (1 + ε)B.

Although the support size in Theorem 15 is much smaller than in Corollary 16, the latter provides a
multiplicative error bound whereas the former only provides an additive error bound. Theorem 15 can be
modified to give multiplicative error bounds if we allow µ to have O(n log n/ε2) non-zero entries. However
such a result is not interesting as Carathéodory’s theorem provides a µ with only n+1 non-zero entries and
no error (i.e., ϵ = 0). In contrast, Carathéodory’s theorem is very weak in the scenario of Corollary 16 as it
only provides a µ with n(n+ 1)/2 + 1 nonzero entries.

Sparsifiers on subgraphs.

Corollary 17. Let G = (V,E) be a graph, let w : E → R+ be a weight function, and let F be a collection
of subgraphs of G such that

∑
F∈F |V (F)| = O(n). For any real ε ∈ (0, 1), there is a deterministic

polynomial-time algorithm to find a subgraph H of G and a weight function wH : E(H) → R+ such that
|E(H)| = O(n/ε2) and

LG(w) ≼ LH(wH) ≼ (1 + ε)LG(w),

LF (wF) ≼ LH∩F (wH�E(H∩F)) ≼ (1 + ε)LF (wF) for all F ∈ F ,

where wF := w�E(F) is the restriction of w to the coordinatesE(F) andH∩F =
(
V (F), E(F) ∩ E(H)

)
.

2 Preliminaries

For a non-negative integer n, we denote [n] := {1, . . . , n}. The non-negative reals are denoted by R+. The
set of n× n symmetric matrices is denoted by Sn. The set of symmetric, n× n positive semidefinite (resp.,
positive definite) matrices is denoted by Sn+ (resp., Sn++). Recall that X ∈ Sn is positive semidefinite if
vTXv ≥ 0 for all v ∈ Rn, and X is positive definite if X is positive semidefinite and vTXv = 0 implies
v = 0. Sometimes we denote X ∈ Sn+ by X ≽ 0 and the notation X ≽ Y means that X − Y ≽ 0. For
X ∈ Sn and a, b ∈ R, the notation X ∈ [a, b] means that aI ≼ X ≼ bI , where I is the identity matrix.

For X ∈ Sn, its trace is TrX :=
∑n

i=1Xii, its largest (resp., smallest) eigenvalue is denoted by
λmax(X) (resp., λmin(X)). The vector space Sn can be endowed with the trace inner product ⟨·, ·⟩ defined by
⟨X,Y ⟩ := Tr(XY) =

∑
i,j XijYij for every X,Y ∈ Sn. We shall repeatedly use that Tr(XY) = Tr(Y X)

for any matrices X,Y for which the products XY and Y X make sense.

5

LetG = (V,E) be a graph. The canonical basis vectors of RV are { ei : i ∈ V }, and the canonical basis
vectors of RE are { e{i,j} : {i, j} ∈ E}. The Laplacian of G is the linear transformation LG(·) : RE → SV

defined by LG(w) =
∑

{i,j}∈E w{i,j}(ei − ej)(ei − ej)
T .

When dealing with Problem 2, we may assume thatB = I . See [4, Proof of Theorem 1.1] for the details
of the reduction.

3 Solving Problem 2 by Ahlswede-Winter

As mentioned earlier, Spielman and Srivastava [38] explain how Problem 1 can be solved by Rudelson’s
sampling lemma. This lemma can be easily generalized to handle matrices of arbitrary rank using the
Ahlswede-Winter inequality, yielding a solution to Problem 2.

Let X be a random matrix such that X = Bi/TrBi with probability pi := TrBi/Tr I . Since Bi ≽ 0
and

∑
iBi = I , the pi’s define a probability distribution.

Theorem 18 ([1, Theorem 19]). Let X,X1, . . . , XT be i.i.d. random variables with values in Sn such that
Xi ∈ [0, 1] for every i and E(X) = µI with µ ∈ [0, 1]. Let ε ∈ (0, 1/2). Then

P

(
1

µT

T∑
i=1

Xi ̸∈ [1− ε, 1 + ε]

)
≤ 2n · exp

(
−T ε2µ

2 ln 2

)
.

In our case, E(X) = (1/n)I and X ∈ [0, 1]. So µ = 1/n. Thus, if T > (2 ln 2) · lnn+2 ln 2
ε2µ

=

O(n log n/ε2), then P
(

1
µT

∑T
i=1Xi ̸∈ [1− ε, 1 + ε]

)
< 1/2. Thus, with constant probability, we obtain a

solution y to Problem 2 where y has only O(n log n/ε2) non-zero entries.

4 Solving Problem 2 by BSS

In our modification of the BSS algorithm [4], we keep a matrix A of the form A =
∑

i yiBi with y ≥ 0,
starting with A = 0, and at each iteration we add another term αBj to A. We enforce the invariant that the
eigenvalues of A lie in [ℓ, u], where u and ℓ are parameters given by u = u0 + tδU and ℓ = ℓ0 + tδL after
t iterations. This procedure is presented in Algorithm 1. The step of the algorithm which finds Bj and α
can be done by exhaustive search on j and binary search on α. Instead of the binary search, one could also
compare the quantities UA(t−1)(Bj) and LA(t−1)(Bj) defined below.

In the original BSS algorithm, the matrices are rank one: Bj = vjv
T
j for some vector vj . Their Lem-

mas 3.3 and 3.4 give sufficient conditions on the new term αvjv
T
j so that the invariant on the eigenvalues is

maintained; Lemma 3.5 gives sufficient conditions on the remaining parameters so that a suitable new term
αvjv

T
j exists with α > 0. In this section we generalize those lemmas to allow Bi matrices of arbitrary rank.

Let A ∈ Sn. If u ∈ R with λmax(A) < u, define Φu(A) := Tr(uI −A)−1. If ℓ ∈ R with λmin(A) > ℓ,
define Φℓ(A) := Tr(A − ℓI)−1. Note that Φℓ(A) =

∑
i 1/(λi − ℓ) and Φu(A) =

∑
i 1/(u − λi), where

λ1, . . . , λn are the eigenvalues of A.

Lemma 19 (Analog of Lemma 3.3 in [4]). Let A ∈ Sn and X ∈ Sn+ with X ̸= 0. Let u ∈ R and δU > 0.
Suppose λmax(A) < u. Let u′ := u+ δU and M := u′I −A. If

1

α
≥ ⟨M−2, X⟩

Φu(A)− Φu′(A)
+ ⟨M−1, X⟩ =: UA(X),

then λmax(A+ αX) < u′ and Φu′
(A+ αX) ≤ Φu(A).

6

Algorithm 1 A procedure for solving Problem 2 based on the BSS method.
procedure SparsifySumOfMatricesByBSS(B1, . . . , Bm, ε)
input: Matrices B1, . . . , Bm ∈ Sn+ such that

∑
iBi = I , and a parameter ε ∈ (0, 1).

output: A vector y with O(n/ε2) nonzero entries such that I ≼
∑

i yiBi ≼ (1 +O(ε))I .
Initially A(0) := 0 and y(0) := 0. Set parameters u0, ℓ0, δL, δU as in (5) and T := 4n/ε2.
Define the potential functions Φu(A) := Tr(uI −A)−1 and Φℓ(A) := Tr(A− ℓI)−1.
For t = 1, . . . , T

Set ut := ut−1 + δU and ℓt := ℓt−1 + δL.
Find a matrix Bj and a value α > 0 such that A(t− 1) + αBj ∈ [ℓt, ut], and

Φut(A(t− 1) + αBj) ≤ Φut−1(A(t− 1)) and Φℓt(A(t− 1) + αBj) ≤ Φℓt−1(A(t− 1)).

Set A(t) := A(t− 1) + αBj and y(t) := y(t− 1) + αej .
Return y(T)/λmin(A(T)).

Proof. Clearly M ≻ 0. Let V := X1/2. By the Sherman-Morrison-Woodbury formula [13],

Φu′
(A+ αX) = Tr(M − αV V T)−1 = Tr

(
M−1 + αM−1V (I − αV TM−1V)−1V TM−1

)
= Φu′

(A) + Tr
(
αM−1V (I − αV TM−1V)−1V TM−1

)
.

SinceM−1 ≻ 0,X ̸= 0 and Φu(A) > Φu′
(A), our hypotheses imply 1/α > ⟨M−1, X⟩ = Tr(V TM−1V) ≥

λmax(V
TM−1V) ≥ 0, so β := λmin(I − αV TM−1V) = 1 − αλmax(V

TM−1V) > 0 and by, e.g., [18,
Corollary 7.7.4],

0 ≺ βI ≼ I − αV TM−1V =⇒ 0 ≺ (I − αV TM−1V)−1 ≼ β−1I.

Thus,

Φu′
(A+ αX) ≤ Φu′

(A) + αβ−1Tr(V TM−2V)

= Φu(A)− (Φu(A)− Φu′
(A)) + αβ−1⟨M−2, X⟩

To prove that Φu′
(A + αX) ≤ Φu(A), it suffices to show that αβ−1⟨M−2, X⟩ ≤ Φu(A) − Φu′

(A).
This is equivalent to

⟨M−2, X⟩
1/α− λmax(V TM−1V)

≤ Φu(A)− Φu′
(A),

which follows from 1/α ≥ UA(X) since λmax(V
TM−1V) ≤ Tr(V TM−1V) = ⟨M−1, X⟩.

It remains to show that λmax(A+αX) < u′. Suppose not. Choose ε ∈ (0, δU) such that 1/ε > Φu(A).
By continuity, for some α′ ∈ (0, α) we have λmax(A + α′X) = u′ − ε. Since 1/α′ ≥ 1/α ≥ UA(X), we
get Φu′

(A+ α′X) ≥ 1/ε > Φu(A) ≥ Φu′
(A+ α′X), a contradiction.

Lemma 20 (Analog of Lemma 3.4 in [4]). Let A ∈ Sn and X ∈ Sn+, with n ≥ 2. Let ℓ ∈ R and δL > 0.
Suppose λmin(A) > ℓ and Φℓ(A) ≤ 1/δL. Let ℓ′ := ℓ+ δL and N := A− ℓ′I . If

0 <
1

α
≤ ⟨N−2, X⟩

Φℓ′(A)− Φℓ(A)
− ⟨N−1, X⟩ =: LA(X),

then λmin(A+ αX) > ℓ′ and Φℓ′(A+ αX) ≤ Φℓ(A). Moreover, N ≻ 0.

7

Proof. Note that λmin(A) > ℓ and Φℓ(A) ≤ 1/δL imply that N ≻ 0, and therefore λmin(A + αX) > ℓ′.
Let V := X1/2. By the Sherman-Morrison-Woodbury formula,

Φℓ′(A+ αX) = Tr(N + αV V T)−1 = Tr
(
N−1 − αN−1V (I + αV TN−1V)−1V TN−1

)
= Φℓ′(A)− Tr

(
αN−1V (I + αV TN−1V)−1V TN−1

)
.

For β := λmax(I + αV TN−1V), we have

0 ≺ I + αV TN−1V ≼ βI =⇒ 0 ≺ β−1I ≼ (I + αV TN−1V)−1.

Thus,

Φℓ′(A+ αX) ≤ Φℓ′(A)− αβ−1Tr(V TN−2V)

= Φℓ(A) + (Φℓ′(A)− Φℓ(A))− αβ−1⟨N−2, X⟩

We will be done if we show that αβ−1⟨N−2, X⟩ ≥ Φℓ′(A)− Φℓ(A). This is equivalent to

⟨N−2, X⟩
1/α+ λmax(V TN−1V)

≥ Φℓ′(A)− Φℓ(A)

which follows from 0 < 1/α ≤ LA(X), since Φℓ′(A) > Φℓ(A), N ≻ 0, and λmax(V
TN−1V) ≤

Tr(V TN−1V) = ⟨N−1, X⟩.

The next lemma can be proved by a syntactic modification of the proof of Lemma 3.5 in [4].

Lemma 21 (Analog of Lemma 3.5 in [4]). Let A ∈ Sn with n ≥ 2, and let u, ℓ ∈ R and εU , δU , εL, δL > 0
such that λmax(A) < u, λmin(A) > ℓ, Φu(A) ≤ εU , and Φℓ(A) ≤ εL. Let B1, . . . , Bm ∈ Sn such that∑

iBi = I . If

0 ≤ 1

δU
+ εU ≤ 1

δL
− εL (3)

then there exists j ∈ [m] and α > 0 for which LA(Bj) ≥ 1/α ≥ UA(Bj).

Proof. As in [4, Lemma 3.5], it suffices to show that
∑

i LA(Bi) ≥
∑

i UA(Bi). Let u′ := u + δU ,
M := u′I −A, ℓ′ := ℓ+ δL, and N := A− ℓ′I . It follows from the bilinearity of ⟨·, ·⟩ and the assumption∑

iBi = I that ∑
i

UA(Bi) =
TrM−2

Φu(A)− Φu′(A)
+ TrM−1 (4a)

∑
i

LA(Bi) =
TrN−2

Φℓ′(A)− Φℓ(A)
− TrN−1 (4b)

It is shown in [4, Lemma 3.5] that (4a) is at most (4b), completing the proof.

Now we set the parameters of Lemma 21 similarly as in [4]:

δL := 1 εL :=
ε

2
ℓ0 := − n

εL
δU :=

2 + ε

2− ε
εU :=

ε

2δU
u0 :=

n

εU
. (5)

So (3) holds with equality. If A is the matrix obtained after T = 4n/ε2 iterations, then

λmax(A)

λmin(A)
≤ u0 + TδU
ℓ0 + TδL

=

(
2 + ε

2− ε

)2

≤ 1 + ε

1− ε

soA′ := A/λmin(A) satisfies I ≼ A′ ≼ (1+ε)I/(1−ε) andA′ is a positive linear combination ofO(n/ε2)
of the matrices Bi.

It is easy to check that the previous lemmas also hold if we replace the set Sn of symmetric matrices of
size n× n by the set Hn of Hermitian matrices of size n× n.

8

4.1 Running Time

At each iteration, we must compute UA(Bj) and LA(Bj) for each j ∈ [m]. The functions UA(X) and
LA(X) are the inner products of X with certain matrices that can be obtained from A in time O(n3). Thus,
each iteration runs in timeO(n3+mn2) = O(mn2), and the total running time after T = 4n/ε2 iterations is
O(mn3/ε2). We remark that the reduction to the case B = I can be made in time O(mn3). This concludes
the proof of Theorem 3.

If the matrices Bi have O(1) nonzero entries, as in the graph sparsification problem, the algorithm can
be made to run in time O(n4/ε2+mn/ε2). We briefly sketch the details. To reduce the problem to the case
that B = I , we first compute (B+)1/2, where B+ is the Moore-Penrose pseudoinverse of B. Define the
function f(X) := (B+)1/2X(B+)1/2 on Sn.

The reduction now calls for replacing each input matrix Bi by f(Bi) and the matrix B by f(B). But
we shall not do this. Instead, we do some preprocessing at each iteration as follows. The function UA(X)
(as well as LA(X)) is the inner product of X with a certain matrix V . Hence, UA(f(Bj)) = ⟨V, f(Bj)⟩ =
⟨f(V), Bj⟩ for every j, since f is self-adjoint. Thus, to compute UA(f(Bj)) for each j, we first compute
the matrix f(V) in time O(n3), and now the inner product UA(f(Bj)) = ⟨f(V), Bj⟩ can be computed in
constant time for each j, since Bj has O(1) nonzero entries. Thus, each iteration runs in time O(n3 +m)
and the total running time is O(n4/ε2 +mn/ε2).

5 Solving Problem 2 by MMWUM

Observe that the set of all vectors y that are feasible for (2) is the feasible region of a semidefinite program
(SDP). So solving Problem 2 amounts to finding a sparse solution to this SDP. Here “sparse” means that
there are few non-zero entries in the solution y; this differs from other notions of “low-complexity” SDP
solutions, such as the low-rank solutions studied by So, Ye and Zhang [36].

It has long been known known that the multiplicative weight update method can be used to construct
sparse solutions for some linear programs. A prominent example is the construction of sparse, low-regret
solutions to zero-sum games [9, 43, 44]. (Another example is the work of Charikar et al. [7] on approxi-
mating metrics by few tree metrics.) Building on that idea, one might imagine that Arora and Kale’s matrix
multiplicative update method (MMWUM) [3] can construct sparse solutions to (2). In this section, we show
that this is indeed possible: we obtain a solution y to Problem 2 with O(n log n/ε3) nonzero entries.

5.1 Overview of MMWUM

The MMWUM is an algorithm that helps us approximately solve an SDP feasibility problem. The gist of (a
slight modification of) the method is contained in the following result (its proof can be found in Appendix B):

Theorem 22. Let T,K, n1, . . . , nK be positive integers. Let Ck, A1,k, . . . , Am,k ∈ Snk for k ∈ [K]. For
each k ∈ [K], let ηk > 0 and 0 < βk ≤ 1/2. Given X1, . . . , XK ∈ Sn, consider the system

m∑
i=1

yi⟨Ai,k, Xk⟩ ≥ ⟨Ck, Xk⟩ − ηk TrXk, ∀k ∈ [K], and y ∈ Rm
+ . (6)

For each k ∈ [K], let {Pk,Nk} be a partition of [T], let 0 < ℓk ≤ ρk, and let W (t)
k ∈ Sn and ℓ(t)k ∈ R for

t ∈ [T + 1]. Let y(t) ∈ Rm for t ∈ [T]. Suppose the following properties hold:

W
(t+1)
k = exp

(
− βk
ℓk + ρk

t∑
τ=1

[m∑
i=1

y
(τ)
i Ai,k − Ck + ℓ

(τ)
k I

])
, ∀t ∈ {0, . . . , T}, ∀k ∈ [K],

9

y = y(t) is a solution for (6) with Xk =W
(t)
k , ∀k ∈ [K], ∀t ∈ [T],

m∑
i=1

y
(t)
i Ai,k − Ck ∈

{
[−ℓk, ρk], if t ∈ Pk,

[−ρk, ℓk], if t ∈ Nk,
∀t ∈ [T], k ∈ [K],

ℓ
(t)
k = ℓk, ∀t ∈ Pk, ∀k ∈ [K], and ℓ

(t)
k = −ℓk, ∀t ∈ Nk, ∀k ∈ [K].

Define ȳ := 1
T

∑T
t=1 y

(t). Then,

m∑
i=1

ȳiAi,k − Ck ≽ −
[
βkℓk +

(ρk + ℓk) lnn

Tβk
+ (1 + βk)ηk

]
I, ∀k ∈ [K]. (7)

Take K = 2, set C1 := I and C2 := −I , and put Ai,1 := Bi and Ai,2 := −Bi for each i ∈ [m]. Then
Theorem 22 shows that finding a solution for (2) reduces to constructing an oracle that solves linear systems
of the form (6) with a few extra technical properties involving the parameters ℓk and ρk, and adjusting the
other parameters so that the error term on the right-hand side of (7) is ≤ ε.

To obtain a feasible solution for (2) that is also sparse, the idea is to design an implementation of the
oracle that returns a vector y(t) with only one nonzero entry at each iteration t of MMWUM, and to adjust the
parameters so that, after T = O(n log n/ε3) iterations, the smallest and largest eigenvalues of

∑m
i=1 ȳiBi

are ε-close to 1. Since ȳ is the average of the y(t)’s, the resulting ȳ will have at most T nonzero entries.
We set the remaining parameters as follows:

β := β1 := β2 :=
ε

4
, T :=

2(ρ+ ℓ) lnn

βε
, η := η1 := η2 :=

ε

8
,

ℓ := ℓ1 := ℓ2 := 1, ρ := ρ1 := ρ2 :=
1 + η

η
n, P1 := N2 := [T], N1 := P2 := ∅.

Then the error term on the right-hand side of (7) is

βℓ+
(ρ+ ℓ) lnn

Tβ
+ (1 + β)η =

ε

4
+
ε

2
+
(
1 +

ε

4

) ε
8

=
7ε

8
+
ε2

32
≤ ε. (8)

Thus, (2) follows from (7) and (8). Moreover, T = O(n logn/ε3), as desired.

5.2 The Oracle

It remains to implement the oracle. Consider an iteration t, and let X1 := W
(t)
1 and X2 := W

(t)
2 be given.

We must find y := y(t) ∈ Rm
+ with at most one nonzero entry such that

m∑
i=1

yi⟨X1, Bi⟩ ≥ (1− η)TrX1,
m∑
i=1

yi⟨X2, Bi⟩ ≤ (1 + η)TrX2, and
m∑
i=1

yiBi ∈ [0, ρ].

Since y should have only one nonzero entry, it suffices to find j ∈ [m] and α ∈ R+ such that

α⟨X1, Bj⟩ ≥ (1− η)TrX1,

α⟨X2, Bj⟩ ≤ (1 + η)TrX2,

αTrBj ≤ ρ.

(9)

Here we are using the fact that λmax(Bj) ≤ TrBj since Bj ≽ 0. We will show that such j and α exist. Due
to the definition of W1 and W2, the oracle can assume that X1 is a scalar multiple of X−1

2 , although we will
not make use of that fact.

10

Proposition 23. Let B1, . . . , Bm ∈ Sn+ such that
∑m

i=1Bi = I . Let η > 0 and X1, X2 ∈ Sn++. Then, for
ρ := (1 + η)n/η, there exist j ∈ [m] and α ≥ 0 such that (9) holds.

Proof. By possibly dropping some Bi’s, we may assume that Bi ̸= 0 for every i ∈ [m]. Define pi :=
⟨X1, Bi⟩/TrX1 > 0 for every i ∈ [m]. Consider the probability space on [m] where j is sampled from [m]
with probability pj . The fact that

∑m
j=1 pj = 1 follows from

∑m
i=1Bi = I . Then Ej [p

−1
j TrBj] =∑m

i=1TrBi = Tr I = n. By Markov’s inequality,

P

(
p−1
j TrBj ≤

(1 + η)

η
n

)
= 1−P

(
p−1
j TrBj >

(1 + η)

η
n

)
> 1− η

1 + η
=

1

1 + η
. (10)

Next note that Ej [p
−1
j ⟨X2, Bj⟩] =

∑m
i=1⟨X2, Bi⟩ = ⟨X2, I⟩ = TrX2. Together with Markov’s in-

equality, this yields

P

(
p−1
j ⟨X2, Bj⟩ ≤ (1 + η)TrX2

)
= 1−P

(
p−1
j ⟨X2, Bj⟩ > (1 + η)TrX2

)
> 1− 1

1 + η
. (11)

It follows from (10) and (11) that there exists j ∈ [m] satisfying

p−1
j ⟨X2, Bj⟩ ≤ (1 + η)TrX2, and p−1

j TrBj ≤
1 + η

η
n = ρ.

Set α := p−1
j and note that

α⟨X1, Bj⟩ = p−1
j ⟨X1, Bj⟩ = TrX1 ≥ (1− η)TrX1.

Hence, j and α satisfy (9).

The following proposition, proven in Appendix C, shows that the parameters achieved by Proposition 23
is essentially optimal.

Proposition 24. Any oracle for satisfying (9) must have ρ = Ω(n/η), even if theBi matrices have rank one,
and even if X1 is a scalar multiple of X−1

2 .

We also point out that a naive application of MMWUM as stated by Kale in [22] does not work. In
his description of MMWUM, the parameter K is fixed as 1. So we must correspondingly adjust our input
matrices to be block-diagonal, e.g., C has two blocks: I and −I . However, applying Theorem 22 in this
manner would lead to a sparsifier with Ω(n2) edges. The reason is that the parameter ρ needs to be Ω(n),
and we must choose ℓ = ρ since the spectrum of

∑m
i=1 yiAi −C is symmetric around zero for any y. Thus,

to get the error term on the right-hand side of (7) to be ≤ ε, we would need to take T = Ω(n2).

6 Solving Problem 2 by a Width-Free MMWUM

The algorithm of Section 5 solves Problem 2 with only O(n log n/ε3) nonzero entries, which is slightly
worse than the O(n log n/ε2) nonzero entries achieved by the Ahlswede-Winter method discussed in Sec-
tion 3. The main reason for this discrepancy is that MMWUM requires us to bound the “width” of the oracle
using the parameter ρ; formally, the oracle must the inequality αTrBj ≤ ρ in (9). In order to satisfy this
width constraint, the oracle loses an extra factor ofO(1/ε), and this is necessary as shown in Proposition 24.

In this section, we slightly refine MMWUM to avoid its dependence on the width. This allows us to
simplify our oracle and avoid losing the extra factor of O(1/ε). We obtain a solution to Problem 2 with only

11

onlyO(n log n/ε2) nonzero entries, matching the sparsity of the solutions obtained by the Ahlswede-Winter
inequality.

The following theorem is our width-free variant of MMWUM. We remark that the method described
in this theorem is geared towards solving Problem 2 and is not necessarily useful for all applications of
MMWUM.

Theorem 25. Let T be a positive integer. Let B1, . . . , Bm ∈ Sn+ be nonzero. Let γ, η, δL, δU > 0. For any
given XL, XU ∈ Sn, consider the system

δU ≥ exp(γαTrBj)− 1

TrBj
⟨XU , Bj⟩,

δL ≤ 1− exp(−γαTrBj)

TrBj
⟨XL, Bj⟩,

α ∈ R+, j ∈ [m].

(12)

For each t ∈ {0, . . . , T + 1}, let A(t),WL(t),WU (t) ∈ Sn, let α(t) ∈ R+, and let j(t) ∈ [m]. Suppose the
following properties hold:

A(t) =
t∑

τ=1

α(τ)Bj(τ), ∀t ∈ {0, . . . , T},

WU (t+ 1) = exp(γA(t)) and WL(t+ 1) = exp(−γA(t)), ∀t ∈ {0, . . . , T},

(α,Bj) = (α(t), Bj(t)) is a solution for (12) with (XU , XL) =

(
WU (t)

TrWU (t)
,
WL(t)

TrWL(t)

)
, ∀t ∈ [T].

Then
A(T)

T
∈
[
log(1− δL)

−1

γ
− log n

Tγ
,
log(1 + δU)

γ
+

log n

Tγ

]
. (13)

Proof. We will use Golden-Thompson inequality:

Tr(exp(A+B)) ≤ Tr(exp(A) exp(B)), ∀A,B ∈ Sn. (14)

We will also make use of the following facts. First,

exp(cx) ≤ 1 +
exp(c · b)− 1

b
x ∀c ∈ R, b > 0, x ∈ [0, b].

For X ∈ Sn+, we have λmax(X) ≤ TrX , so X ∈ [0,TrX], and

exp(cX) ≼ I +
exp(c · TrX)− 1

TrX
X. (15)

For each t ∈ [T + 1], define ΦL(t) := TrWL(t) and ΦU (t) = TrWU (t). For each t ∈ [T],

ΦU (t+ 1) = Tr
(
exp(γA(t))

)
= Tr

(
exp(γA(t− 1) + γαBj)

)
(14)
≤ Tr

(
exp(γA(t− 1)) exp(γαBj)

)
(15)
≤ Tr

(
exp(γA(t− 1))

(exp(γαTrBj)− 1

TrBj
Bj + I

))
=

exp(γαTrBj)− 1

TrBj
Tr(exp(γA(t− 1))Bj) + Tr(exp(γA(t− 1)))

=
exp(γαTrBj)− 1

TrBj
⟨WU (t), Bj⟩+ΦU (t)

(12)
≤ (1 + δU)ΦU (t),

(16)

12

where we abbreviated j := j(t) and α := α(t).
Since A(0) = 0, we have that ΦU (1) = Tr I = n. Using (16), after T iterations,

ΦU (T + 1) ≤ (1 + δU)
Tn.

Thus,

exp(γλmax(A(T))) ≤
n∑

i=1

exp(γλi) = TrWU (T + 1) = ΦU (T + 1) ≤ (1 + δU)
Tn,

where λ1, . . . , λn are the eigenvalues of A(T). And so γλmax(A(T)) ≤ T log(1 + δU) + log n, which
implies the upper bound in (13). The proof of the lower bound is analogous.

Next we establish conditions under which we can construct an oracle for solving the system (12). The
proof consists of algebraic manipulations and an averaging argument analogous to the proof of Lemma 3.5
in [4].

Theorem 26. Let B1, . . . , Bm ∈ Sn+ be nonzero such that
∑m

i=1Bi = I . Let δU , δL > 0 be such that

1

δL
− n ≥ 1

δU
. (17)

Then, for any XL, XU ∈ Sn++ with trace one, the system (12) has a solution.

Proof. The first inequality in (12) is equivalent to

TrBj

exp(γαTrBj)− 1
≥ ⟨XU , Bj⟩

δU
. (18)

Using the identity 1
1−1/x = 1 + 1

x−1 , the second inequality in (12) is equivalent to

TrBj

exp(γαTrBj)− 1
≤ ⟨XL, Bj⟩

δL
− TrBj . (19)

We will choose j ∈ [m] so that

⟨XL, Bj⟩
δL

− TrBj ≥
⟨XU , Bj⟩

δU
(20)

and set α so that (18) holds with equality. Then both (18) and (19) will hold. Note that α ≥ 0 since
eγαTrBj = 1 + δU TrBj/⟨XU , Bj⟩ > 1 and γ TrBj > 0.

To see that there exists j ∈ [m] satisfying (20), note that, by (17) and
∑m

i=1Bi = I ,

m∑
i=1

[
⟨XL, Bi⟩

δL
− TrBi

]
=

TrXL

δL
− n =

1

δL
− n ≥ 1

δU
=

TrXU

δU
=

m∑
i=1

⟨XU , Bi⟩
δU

.

This concludes the proof.

Finally, let us show how to set the parameters to get a sparsifier. Given ε ∈ (0, 1), set

η := ε/2, δU :=
η

n
, δL :=

η

(1 + η)n
, T :=

n log n

η2
. (21)

13

By our choice of δL and δU , we have 1/δL − n = (1 + η)n/η − n = n/η = 1/δU , so (17) holds with
equality. After we run the modified version of MMWUM given by Theorem 25, we obtain a matrix A(T).
Set Ā := A(T)/T . By Theorem 25,

λmax(Ā) ≤
log(1 + δU)

γ
+

log n

Tγ
≤
(
δU +

η2

n

)
/γ =

1 + η

nγ/η
.

We will use that − log(1− x) ≥ x for x < 1. Thus,

λmin(Ā) ≥
log(1− δL)

−1

γ
− log n

Tγ
≥
(
δL − η2

n

)
/γ =

1/(1 + η)− η

nγ/η
≥ 1− 2η

nγ/η
.

So if we choose γ = η/n then (1− ε)I ≼ Ā ≼ (1 + ε)I and Ā is of the form
∑

i yiBi with y ≥ 0 and has
at most T = O(n log n/ε2) nonzero entries.

Remark. The choice of γ is actually irrelevant here. We could choose γ > 0 arbitrarily, then define
Ā = A(T) · (nγ/ηT) and the desired conclusion would hold.

7 Solving Problem 2 by Pessimistic Estimators

An anonymous reviewer for a preliminary draft of this paper raised the possibility of designing another
deterministic solution to Problem 2. The proposal was to use the pessimistic estimators of Wigderson and
Xiao [42] to derandomize the random sampling approach of Section 3. In this section we show that this pro-
posal indeed works. We remark that pessimistic estimators were also used by Hofmeister and Lefmann [17]
to derandomize the proof of Theorem 15.

It is known that there is a close relationship between pessimistic estimators and multiplicative weight
update methods. (See, for example, the work of Young [44].) However, the two methods are not identical,
and in particular the algorithm presented in this section is not identical to either of our algorithms based on
MMWUM. To illustrate one difference, notice that the algorithm in Section 3 has the property that its output
vector y has every component yi equal to an integer multiple of n/(T ·TrBi). The algorithm of this section
also has that property as it is a derandomization of the algorithm in Section 3. However, the algorithms in
Sections 4, 5 and 6 do not have that property.

Definition 27 (Definition 3.1 in [42]). Let X⃗ = (X1, . . . , XT) be random variables distributed over [m].
Let S be an event with P(X⃗ ∈ S) > 0. We say that ϕ0, . . . , ϕT , ϕi : [m]i → [0, 1], are pessimistic
estimators for S if the following hold.

1. For any i and any fixed x1, . . . , xi ∈ [m], we have that

PXi+1,...,XT

(
(x1, . . . , xi, Xi+1, . . . , XT) ̸∈ S

)
≤ ϕi(x1, . . . , xi).

2. For any i and any fixed x1, ..., xi ∈ [n]:

EXi+1(ϕi+1(x1, . . . , xi, Xi+1)) ≤ ϕi(x1, . . . , xi).

Note that the function ϕ0 depends on no variables and is therefore just a scalar in [0, 1]. A nice prop-
erty of this definition is that it allows compositions very easily. That is, if we have pessimistic estimators
ϕ0, . . . , ϕT and ψ0, . . . , ψT for events S and S′, resp., then ϕ0+ψ0, . . . , ϕT +ψT are pessimistic estimators
for the event S ∩ S′ (see Lemma 3.3 in [42]).

14

The key point of this method is that, if there are pessimistic estimators ϕ0, . . . , ϕT , such that ϕ0 < 1 and
each ϕi can be computed efficiently, then one can find (x1, . . . , xT) ∈ S efficiently.

LetX1, . . . , XT be be i.i.d. random variables with same distribution as the random variableX as defined
in Section 3. Wigderson and Xiao [42] considered the event

S≥ = {X⃗ :
1

T

T∑
i=1

Xi ≽ (1− ε)µI}

and obtained1 the following pessimistic estimators:

ϕ0 = netT (1−ε)µ
∥∥EX

(
exp(−tX)

)∥∥T ≤ n exp(−Tε2µ/(2 ln 2));

ϕi(x1, . . . , xi) := etT (1−ε)µTr
(
exp(−

j∑
i=1

txi)
)
·
∥∥EX

(
exp(−tX)

)∥∥T−i
,

where t = log
(

1−(1−ε)µ
(1−µ)(1−ε)

)
. Similarly, for the event S≤ = {X⃗ : 1

T

∑T
i=1Xi ≼ (1 + ε)µI}, one can find

the following pessimistic estimators

ψ0 = ne−t′T (1+ε)µ
∥∥EX

(
exp(t′X)

)∥∥T ≤ n exp(−Tε2µ/(2 ln 2));

ψi(x1, . . . , xi) := e−t′T (1+ε)µTr
(
exp(

i∑
j=1

t′xj)
)
·
∥∥EX

(
exp(t′X)

)∥∥T−i
,

where t′ = log
(
(1+ε)(1−µ)
1−(1+ε)µ

)
. If we choose T > (2 ln 2) ln(2n)/(ε2µ) = (2 ln 2)n ln(2n)/ε2, then ϕ0 +

ψ0 < 1. Each ϕi, ψi can be computed efficiently and so one can find in polynomial time (x1, . . . , xT) ∈
S≥ ∩ S≤.

8 Comparing BSS and MMWUM

In this section we show a striking similarity between the algorithms presented in Sections 4 and 6. The proof
of Theorem 25 defines two potential functions for each iteration t.

ΦU (t) := TrWU (t) = Tr exp(γA(t))

ΦL(t) := TrWL(t) = Tr exp(−γA(t))

The proof shows that, for the algorithm of Section 6, the potentials must change as follows:

ΦU (t+ 1) ≤ (1 + δU)ΦU (t) ∀t ∈ {0, . . . , T − 1}
ΦL(t+ 1) ≤ (1− δL)ΦL(t) ∀t ∈ {0, . . . , T − 1}.

(22)

Instead of requiring these potentials to grow and shrink in this way, we could instead parameterize the
potential functions by the iteration number t and then simply require that the potential do not grow from
iteration to iteration. To formalize this alternative approach, let us define the new potential functions

Ψu(A) := Tr exp(−uI + γA),

Ψℓ(A) := Tr exp(ℓI − γA)

and define the parameters ∆U = ln(1 + δU) and ∆L = ln
(
(1− δL)

−1
)
.

1There was an factor of n in the ϕi that can be removed.

15

Algorithm 2 A procedure for solving Problem 2 based on the Width-Free MMWUM method.
procedure SparsifySumOfMatricesByMMWUM(B1, . . . , Bm, ε)
input: Matrices B1, . . . , Bm ∈ Sn+ such that

∑
iBi = I , and a parameter ε ∈ (0, 1).

output: A vector y with O(n log n/ε2) nonzero entries such that I ≼
∑

i yiBi ≼ (1 +O(ε))I .
Initially A(0) := 0, and y(0) := 0. Set parameters

u0 := 0, ℓ0 := 0, ∆U := ln(1 + δU), ∆L := ln
(
(1− δL)

−1
)
,

where δU , δL and T are as defined in (21).
Define the potential functions Ψu(A) := Tr exp(−uI + γA) and Ψℓ(A) := Tr exp(ℓI − γA).
For t = 1, . . . , T

Set ut := ut−1 +∆U and ℓt := ℓt−1 +∆L.
Find a matrix Bj and a value α > 0 such that

Ψut(A(t− 1) + αBj) ≤ Ψut−1(A(t− 1)) and Ψℓt(A(t− 1) + αBj) ≤ Ψℓt−1(A(t− 1)).

Set A(t) := A(t− 1) + αBj and y(t) := y(t− 1) + αej .
Return y(T)/λmin(A(T)).

Proposition 28. The inequalities in (22) governing the algorithm’s change in potentials are equivalent to
inequalities in (23).

Ψ(t+1)∆U (A(t) + αBj) ≤ Ψt∆U (A(t))

Ψ(t+1)∆L
(A(t) + αBj) ≤ Ψt∆L

(A(t))
(23)

Proof. Obviously (22) is equivalent to

(1 + δU)
−(t+1) · ΦU (t+ 1) ≤ (1 + δU)

−t · ΦU (t) ∀t ∈ {0, . . . , T − 1},
(1− δL)

−(t+1) · ΦL(t+ 1) ≤ (1− δL)
−t · ΦL(t) ∀t ∈ {0, . . . , T − 1}.

By the definition of ΦU and ΦL, and by properties of the exponential function, these inequalities are equiv-
alent to

Tr exp(−(t+ 1)∆UI + γA(t+ 1)) ≤ Tr exp(−t∆UI + γA(t)),

Tr exp((t+ 1)∆LI − γA(t+ 1)) ≤ Tr exp(t∆LI − γA(t)).
(24)

Writing A(t+ 1) = A(t) + αBj , these inequalities in (24) are equivalent to (23).

Algorithm 2 gives pseudocode for the algorithm of Section 6, using the functions Ψu and Ψℓ to control
the change in potentials.

The main point of this section is to observe that Algorithms 1 and 2 are identical with the exception
of different parameters and different potential functions. We believe that this similarity between these two
algorithms is intriguing, especially since the BSS algorithm has been called “highly original” by Naor [28].
In retrospect, it would have been perhaps more natural to develop the BSS algorithm by the following logical
progression of ideas: first observe that MMWUM is useful for giving sparse solutions to SDPs, then design
Algorithm 2, then later realize that a clever refinement of it leads to Algorithm 1 and its improved analy-
sis. It is remarkable that Batson, Spielman and Srivastava developed their algorithm from first principles,
apparently without knowing this connection to established algorithmic techniques.

16

With the advantage of hindsight (i.e., the knowledge that the BSS algorithm exists), we now explain how
one might be tempted to refine Algorithm 2. It is quite tempting to modify the potential functions to more
strongly penalize eigenvalues which deviate from the desired range. The natural approach to do this would
be to increase the derivatives of the potential function by increasing the parameter γ. However, as remarked
at the end of Section 6, the algorithm is actually unaffected by varying γ! Thus, to improve Algorithm 2,
one must seek a more substantially different potential function.

Focusing on the upper potential, we consider the question: is there a function f : R → R with steeper
derivatives than exp(u − x) and such that, for any matrices A and B, Tr f(A + B) can be easily related
to Tr f(A)? The natural candidates to try are f(x) = − log(u − x) and f(x) = (u − x)−1 since, in both
cases, Tr f(A + B) can be related to Tr f(A) by the Sherman-Morrison-Woodbury formula. We do not
know whether the choice f(x) = − log(u−x) can be made to work. However, choosing f(x) = (u−x)−1,
one arrives at Algorithm 1, our generalization of the BSS algorithm. Of course, even after arriving at this
algorithm, one must also analyze it, and this requires the delicate calculations that were accomplished by
Batson, Spielman and Srivastava.

Acknowledgements

We thank Satyen Kale for helpful discussions.

References

[1] Rudolf Ahlswede and Andreas Winter. Strong converse for identification via quantum channels. IEEE
Transactions on Information Theory, 48(3):569–579, March 2002.

[2] Ingo Althöfer. On sparse approximations to randomized strategies and convex combinations. Linear
Algebra and Applications, 199:339–355, 1994.

[3] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite programs. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), 2007.

[4] Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers. In Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing (STOC), 2009. To appear in SIAM
Journal on Scientific Computing.

[5] András A. Benczúr and David R. Karger. Approximate s-t min-cuts in Õ(n2) time. In Proceedings of
the 28th Annual ACM Symposium on Theory of Computing (STOC), 1996.

[6] András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts and flows in
capacitated graphs, 2002. http://arxiv.org/abs/cs/0207078.

[7] Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge A. Plotkin. Approximating
a finite metric by a small number of tree metrics. In Proceedings of the 39th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 1998.

[8] Marcel de Carli Silva and Levent Tunçel. Min-max theorems related to geometric representations of
graphs and their SDPs, August 2011. http://arxiv.org/abs/1010.6036.

[9] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29:79–103, 1999.

17

[10] Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A general
framework for graph sparsification. In Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing (STOC), 2011.

[11] Wai Shing Fung and Nicholas J. A. Harvey. Graph sparsification by edge-connectivity and random
spanning trees, May 2010. http://arxiv.org/abs/1005.0265.

[12] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Graph sparsification via refinement sampling,
April 2010. http://arxiv.org/abs/1004.4915.

[13] William W. Hager. Updating the inverse of a matrix. SIAM Review, 31(2):221–239, 1989.

[14] Ramesh Hariharan and Debmalya Panigrahi. A general framework for graph sparsification, April 2010.
http://arxiv.org/abs/1004.4080.

[15] Ramesh Hariharan and Debmalya Panigrahi. A linear-time algorithm for sparsification of unweighted
graphs, May 2010. http://arxiv.org/abs/1005.0670.

[16] Nicholas J. A. Harvey. Lecture notes for C&O 750: Randomized algorithms, 2011.
http://www.math.uwaterloo.ca/˜harvey/W11/Lecture11Notes.pdf.

[17] Thomas Hofmeister and Hanno Lefmann. Computing sparse approximations deterministically. Linear
Algebra and its Applications, 240:9–19, 1996.

[18] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University Press, Cambridge,
1990. Corrected reprint of the 1985 original.

[19] Garud Iyengar, David J. Phillips, and Clifford Stein. Approximation algorithms for semidefinite pack-
ing problems with applications to maxcut and graph coloring. In Michael Jünger and Volker Kaibel,
editors, Integer Programming and Combinatorial Optimization, volume 3509 of Lecture Notes in Com-
puter Science, pages 77–90. Springer Berlin / Heidelberg, 2005.

[20] Garud Iyengar, David J. Phillips, and Clifford Stein. Approximating semidefinite packing programs.
SIAM Journal on Optimization, 21(1):231–268, 2011.

[21] Rahul Jain and Penghui Yao. A parallel approximation algorithm for positive semidefinite program-
ming. In The 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2011), 2011.
(to appear).

[22] Satyen Kale. Efficient Algorithms using the Multiplicative Weights Update Method. PhD thesis, Prince-
ton University, 2007. Princeton Tech Report TR-804-07.

[23] Jonathan A. Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting. In Proceed-
ings of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS), pages
440–451, 2011.

[24] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD systems.
In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2010.

[25] Richard J. Lipton and Neal E. Young. Simple strategies for large zero-sum games with applications
to complexity theory. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing
(STOC), 1994.

18

[26] L. Lovász. Semidefinite programs and combinatorial optimization.

[27] R. J. McEliece, E. R. Rodemich, and H. C. Rumsey, Jr. The Lovász bound and some generalizations.
J. Combin. Inform. System Sci., 3(3):134–152, 1978.

[28] Assaf Naor. Sparse quadratic forms and their geometric applications (after batson, spielman and sri-
vastava). In Séminaire Bourbaki, 2011. Exposé no. 1033.

[29] Ilan Newman and Yuri Rabinovich. Finite volume spaces and sparsification, 2010.
http://arxiv.org/abs/1002.3541.

[30] Lorenzo Orecchia and Nisheeth K. Vishnoi. Towards an SDP-based approach to spectral methods: A
nearly-linear time algorithm for graph partitioning and decomposition. In Proceedings of the 22nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 532–545, 2011.

[31] Juan A. Rodrı́guez. On the Laplacian eigenvalues and metric parameters of hypergraphs. Linear
Multilinear Algebra, 50(1):1–14, 2002.

[32] Mark Rudelson. Random vectors in the isotropic position. J. of Functional Analysis, 164(1):60–72,
1999.

[33] Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach through geometric
functional analysis. Journal of the ACM, 54(4), 2007.

[34] Gideon Schechtman. Tight embedding of subspaces of Lp in ℓnp for even p. Proceedings of the AMS.
To appear.

[35] A. Schrijver. A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inform. Theory,
25(4):425–429, 1979.

[36] Anthony Man-Cho So, Yinyu Ye, and Jiawei Zhang. A unified theorem on SDP rank reduction. Math-
ematics of Operations Research, 33(4):910–920, 2008.

[37] Daniel A. Spielman and Nikhil Srivastava. An elementary proof of the restricted invertibility theorem.
Israel J. Math. To appear.

[38] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In Proceedings
of the 40th Annual ACM Symposium on Theory of Computing (STOC), pages 563–568, 2008.

[39] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM Symposium on
Theory of Computing (STOC), pages 81–90, 2004.

[40] Nikhil Srivastava. On contact points of convex bodies, 2009.
http://www.cs.yale.edu/homes/srivastava/papers/contact.pdf.

[41] Roman Vershynin. A note on sums of independent random matrices after Ahlswede-Winter, 2008.
http://www-personal.umich.edu/˜romanv/teaching/reading-group/ahlswede-winter.pdf.

[42] Avi Wigderson and David Xiao. Derandomizing the Ahlswede-Winter matrix-valued chernoff bound
using pessimistic estimators and applications. Theory of Computing, 4(3), 2008.

[43] Neal Young. Greedy algorithms by derandomizing unknown distributions. Technical Report 1087,
Department of ORIE, Cornell University, March 1994. http://hdl.handle.net/1813/8971.

19

[44] Neal Young. Randomized rounding without solving the linear program. In Proceedings of the 6th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 170–178, 1995.

20

A Proofs of the Applications

Corollary 4. Let G = (V,E) be a graph, let w : E → R+ be a weight function, and let c1, . . . , ck : E →
R+ be cost functions, with k = O(n). Let LG(w) denote the Laplacian matrix for graph G with weight
function w. For any real ε ∈ (0, 1), there is a deterministic polynomial-time algorithm to find a subgraph
H of G and a weight function wH : E(H) → R+ such that

LG(w) ≼ LH(wH) ≼ (1 + ε)LG(w),∑
e∈E

weci,e ≤
∑

e∈E(H)

wH,eci,e ≤ (1 + ε)
∑
e∈E

weci,e for all i

and |E(H)| = O(n/ε2).

Proof. For every edge e = ij ∈ E, let Be be the direct sum wij

[
(ei − ej)(ei − ej)

T ⊕ c1,e ⊕ · · · ⊕ ck,e
]
.

Let B := LG(w) ⊕ wT c1 ⊕ · · · ⊕ wT ck. The result follows immediately by applying Theorem 3 to these
matrices.

Corollary 5. Let G = (V,E) be a graph and let w : E → R+ be a weight function. Let E1, . . . , Ek be
a partition of the edges, i.e., each edge is colored with one of k colors. For any real ε ∈ (0, 1), there is a
deterministic polynomial-time algorithm to find a subgraph H of G and a weight function wH : E(H) →
R+ such that

LG(w) ≼ LH(wH) ≼ (1 + ε)LG(w),

(1− ε)
∑
e∈Ei

we ≤
∑

e∈E(H)∩Ei

wH,e ≤ (1 + ε)
∑
e∈Ei

we for all i,

and |E(H)| = O((n+ k)/ε2).

Proof. For each i, let ci : E → R be the characteristic vector of Ei. Now apply Corollary 4.

Corollary 6 (Spectral sparsifiers for hypergraphs). For any real ε ∈ (0, 1), there is a deterministic
polynomial-time algorithm to find a sub-hypergraph G of H and a weight function wG : E(G) → R+ such
that

LH(w) ≼ LG(wG) ≼ (1 + ε)LH(w),

and |E(G)| = O(n/ε2).

Proof. The result follows directly by applying Theorem 3 to the matrices wELE .

Corollary 7 (Cut sparsifiers for hypergraphs, second definition). For any real ε ∈ (0, 1), there is a deter-
ministic polynomial-time algorithm to find a sub-hypergraph G of H and a weight functionwG : E(G) → R+

such that
w∗(δH(S)) ≤ w∗

G(δG(S)) ≤ (1 + ε)w∗(δH(S)) for every S ⊆ V ,

and |E(G)| = O(n/ε2).

Proof. Note that w∗(δH(S)) is obtained by evaluating the quadratic form xTLH(w)x, where x is the char-
acteristic vector of S. Thus the sparsifier produced by Corollary 6 satisfies the desired inequalities.

21

Corollary 8 (Cut sparsifiers for hypergraphs, first definition). Assume that H is an r-uniform hypergraph.
For any real ε ∈ (0, 1), there is a deterministic polynomial-time algorithm to find a sub-hypergraph G of H
and a weight function wG : E(G) → R+ such that

(r − 1)

r2/4
w(δH(S)) ≤ wG(δG(S)) ≤ (1 + ε)r2

4(r − 1)
w(δH(S)) ∀S ⊆ V,

and |E(G)| = O(n/ε2). In other words, the sparsified hypergraph G approximates the weight of the cuts in
the hypergraph H to within a factor Θ(r2).

Proof. For any r-uniform hypergraph H, it is easy to see that

(r − 1)w(δH(S)) ≤ w∗(δH(S)) ≤ ⌊r/2⌋⌈r/2⌉w(δH(S)) ∀S ⊆ V. (25)

Thus the sparsifier produced by Corollary 6 satisfies the desired inequalities.

Corollary 9 (Cut sparsifiers for 3-uniform hypergraphs). Assume that H is a 3-uniform hypergraph. For
any ε ∈ (0, 1), there is a deterministic polynomial-time algorithm to find a sub-hypergraph G of H and a
weight function wG : E(G) → R+ such that

w(δH(S)) ≤ wG(δG(S)) ≤ (1 + ε)w(δH(S)) ∀S ⊆ V,

and |E(G)| = O(n/ε2).

Proof. Since r = 3, a consequence of (25) is that w∗(δH(S)) = 2w(δH(S)) for every S. Thus the sparsifier
produced by Corollary 6 satisfies the desired inequalities.

Corollary 10. Let A1, . . . , Am be symmetric, positive semidefinite matrices of size n × n, and let B be a
symmetric matrix of size n× n. Let c ∈ Rm with c ≥ 0. Suppose that the semidefinite program (SDP)

min
{
cT z :

∑
i

ziAi ≽ B, z ∈ Rm, z ≥ 0
}

has a feasible solution z∗. Then, for any real ε ∈ (0, 1), it has a feasible solution z̄ with at most O(n/ε2)
nonzero entries and cT z̄ ≤ (1 + ε)cT z∗.

Proof. Let B′
i :=

[
z∗iAi 0
0 ciz

∗
i

]
for every i ∈ [m] and B′ :=

[
D 0
0 cT z∗

]
, where D :=

∑
i z

∗
iAi ≽ B.

Then B′
i ≽ 0 and B′ =

∑
iB

′
i. By applying Theorem 3, we obtain y ∈ Rm with y ≥ 0 and O(n/ε2)

nonzero entries such that
∑

i yiz
∗
iAi ≽ D ≽ B and

∑
i ciyiz

∗
i ≤ (1 + ε)cT z∗. Thus, we can take z̄i = yiz

∗
i

for every i ∈ [m].

Corollary 11. Let G = (V,E) be a graph. For any real ε ∈ (0, 1), there is a deterministic polynomial-time
algorithm to find a subgraph H of G such that

(1− ε)t′(G) ≤ t′(H) ≤ t′(G)

and |E(H)| = O(n/ε2).

22

Proof. It is straightforward to formulate t′(G) as an SDP (see, e.g., [26]) so that its dual has an optimal
solution and there is no duality gap. The dual can be written as:

max
∑

e∈E ze
Diag(y∗) ≽ LG(z)∑

v∈V yv = 1
z ≥ 0

(26)

The proof is now almost identical to the proof of Corollary 10. Let (z∗, y∗) be an optimal solution. Using
Theorem 3, we obtain z̄ ∈ RE with z̄ ≥ 0 and O(n/ε2) nonzero entries such that (y∗, z̄) is feasible
in (26) and has objective value

∑
e∈E(H) z̄e ≥ (1 − ε)t(G), where H = (V,E(H)) and E(H) is the

support of z̄. Then z̄ is also feasible for the SDP defined using H instead of G, which shows that t′(H) ≥
(1− ε)t′(G).

Corollary 12. Let G = (V,E) be a graph. For any real ε ∈ (0, 1), there is a deterministic polynomial-time
algorithm to find a supergraph H of G such that

ϑ′(G)

1− ε+ εϑ′(G)
≤ ϑ′(H) ≤ ϑ′(G)

and |E(H)| =
(
n
2

)
−O(n/ε2).

Proof. For a graph G = (V,E), define t(G) as the square of the minimum radius of a hypersphere on
Rn such that there is a map from V to the hypersphere such that adjacent vertices are mapped to points at
distance exactly 1. Lovász [26] noted that t(G) is related to the Lovász theta number ϑ(G) of the comple-
ment G of G by the formula 2t(G) + 1/ϑ(G) = 1; see [8] for a proof. By repeating the same proof for
t′(G), one finds that 2t′(G)+1/ϑ′(G) = 1. The result now follows from Corollary 11 via this formula.

Corollary 13. Let G be a graph such that ϑ′(G) = o(
√
n). For any real γ > 0, there is a supergraph H of

G such that

ϑ′(G)

1 + γ
≤ ϑ′(H) ≤ ϑ′(G)

and |E(H)| =
(
n
2

)
−O(nϑ(G)2/γ2).

Proof. Apply Corollary 12 with ε := γ/ϑ′(G).

Corollary 14. Let G be a graph such that ϑ′(G) = Ω(
√
n). For any real γ ≥ 1, there is a supergraph H

of G such that

ϑ′(H) = Ω(
√
n/γ)

and |E(H)| =
(
n
2

)
−O(n2/γ2).

Proof. Apply Corollary 12 with ε := γ/
√
n.

Corollary 16. Let B1, . . . , Bm be symmetric, positive semidefinite matrices of size n× n and let λ ∈ Rm

satisfy λ ≥ 0 and
∑

i λi = 1. Let B =
∑

i λiBi. For any ε ∈ (0, 1), there exists µ ≥ 0 with
∑

i µi = 1
such that µ has O(n/ε2) nonzero entries and

(1− ε)B ≼
∑
i

µiBi ≼ (1 + ε)B.

23

Proof. Let B′
i :=

[
λiBi 0
0 λi

]
for every i ∈ [m] and B′ :=

[
B 0
0 1

]
, so that B′

i ≽ 0 and B′ =
∑

iB
′
i. By

applying Theorem 3, we obtain y ∈ Rm with y ≥ 0 andO(n/ε2) nonzero entries such thatB′ ≼
∑

i yiB
′
i ≼

(1 + ε)B′ or, equivalently, B ≼
∑

y yiλiBi ≼ (1 + ε)B and 1 ≤
∑

i yiλi ≤ 1 + ε. Let µ ∈ Rm be defined
by µi := yiλi/(

∑
i yiλi). Then µ ≥ 0 and

∑
i µi = 1, and

(1− ε)B ≼ B

1 + ε
≼ B∑

i yiλi
≼
∑
i

µiBi ≼
1 + ε∑
i yiλi

B ≼ (1 + ε)B.

This completes the proof.

Corollary 17. Let G = (V,E) be a graph, let w : E → R+ be a weight function, and let F be a collection
of subgraphs of G such that

∑
F∈F |V (F)| = O(n). For any real ε ∈ (0, 1), there is a deterministic

polynomial-time algorithm to find a subgraph H of G and a weight function wH : E(H) → R+ such that
|E(H)| = O(n/ε2) and

LG(w) ≼ LH(wH) ≼ (1 + ε)LG(w),

LF (wF) ≼ LH∩F (wH�E(H∩F)) ≼ (1 + ε)LF (wF) for all F ∈ F ,

wherewF := w�E(F) is the restriction ofw to the coordinatesE(F) andH∩F =
(
V (F), E(F) ∩ E(H)

)
.

Proof. For each edge e ∈ E, define Be := we

[
LG(χ

e)⊕
⊕

F∈F LF (χ
e�E(F))

]
, where χe denotes the

characteristic vector of {e} as a subset of E. Now apply Theorem 3.

B The MMWUM

In this section we provide some proofs about the MMWUM. These proofs are due to Kale [22]. Our set up
and conclusions are slightly different and we modified the proofs accordingly. We reproduce the proofs here
for the sake of completeness.

Theorem 22 can be viewed as a block-friendly version of MMWUM. First we show the version with
only one block. It is basically the same as [22, Theorem 13 in Chapter 4].

Theorem 29. Let T be a positive integer. Let C,A1, . . . , Am ∈ Sn. Let η > 0 and 0 < β ≤ 1/2. For any
given X ∈ Sn, consider the system

m∑
i=1

yi⟨Ai, X⟩ ≥ ⟨C,X⟩ − ηTrX, and y ∈ Rm
+ . (27)

Let {P,N} be a partition of [T], let 0 < ℓ ≤ ρ, and let W (t) ∈ Sn and ℓ(t) ∈ R for t ∈ [T + 1]. Let
y(t) ∈ Rm for t ∈ [T]. Suppose the following properties hold:

W (t+1) = exp

(
− β

ℓ+ ρ

t∑
τ=1

[m∑
i=1

y
(τ)
i Ai − C + ℓ(τ)I

])
, ∀t ∈ {0, . . . , T},

y = y(t) is a solution for (27) with X =W (t), ∀t ∈ [T],
m∑
i=1

y
(t)
i Ai − C ∈

{
[−ℓ, ρ], if t ∈ P,
[−ρ, ℓ], if t ∈ N ,

∀t ∈ [T],

ℓ(t) = ℓ, ∀t ∈ P, and ℓ(t) = −ℓ, ∀t ∈ N .

24

Define ȳ := 1
T

∑T
t=1 y

(t). Then

m∑
i=1

ȳiAi − C ≽ −
[
βℓ+

(ρ+ ℓ) lnn

Tβ
+ (1 + β)η

]
I. (28)

The main tool for the proof of Theorem 29 is the following result:

Theorem 30 (Kale [22, Corollary 3 in Chapter 3]). Let 0 < β ≤ 1/2. Let T be a positive integer. Let
{P,N} be a partition of [T], and let M (t) ∈ Sn for t ∈ [T] and W (t) ∈ Sn for t ∈ [T + 1] with the
following properties:

W (t+1) = exp

(
−β

t∑
τ=1

M (τ)

)
∀t = 0, . . . , T,

0 ≼M (t) ≼ I, ∀t ∈ P, and − I ≼M (t) ≼ 0, ∀t ∈ N ,

Let
P (t) :=

1

TrW (t)
W (t), ∀t ∈ [T].

Then

(1− β)
∑
t∈P

⟨M (t), P (t)⟩+ (1 + β)
∑
t∈N

⟨M (t), P (t)⟩ ≤ λmin

(T∑
t=1

M (t)

)
+

lnn

β
. (29)

Proof. Set Φ(t) := Tr(W (t)) for t ∈ [T + 1]. Put β1 := 1− e−β and β2 := eβ − 1. Then, for any t ∈ [T],

Φ(t+1) = Tr(W (t+1)) = Tr

(
exp

(
−β

t∑
τ=1

M (τ)

))

≤ Tr

(
exp

(
−β

t−1∑
τ=1

M (τ)

)
exp

(
−βM (t)

))
= Tr

(
W (t) exp(−βM (t))

)
= ⟨W (t), exp(−βM (t))⟩,

where we have used Golden-Thompson’s inequality (14).
Using the fact that ex is convex, one can prove that

0 ≼ A ≼ I =⇒ exp(−βA) ≼ I − β1A,

−I ≼ A ≼ 0 =⇒ exp(−βA) ≼ I − β2A.

Suppose that t ∈ P . Then exp(−βM (t)) ≼ I − β1M
(t), and since W (t) ≽ 0, we get

Φ(t+1) ≤ ⟨W (t), exp(−βM (t))⟩ ≤ ⟨W (t), I − β1M
(t)⟩

= Tr(W (t))− β1⟨W (t),M (t)⟩
= Tr(W (t))− Tr(W (t))β1⟨P (t),M (t)⟩

= Tr(W (t))
[
1− β1⟨P (t),M (t)⟩

]
= Φ(t)

[
1− β1⟨P (t),M (t)⟩

]
≤ Φ(t) exp(−β1⟨P (t),M (t)⟩).

25

Similarly, if t ∈ N , then
Φ(t+1) ≤ Φ(t) exp(−β2⟨P (t),M (t)⟩).

By induction on t, and using Φ(1) = Tr(I) = n, we get

Φ(t+1) ≤ n exp

(
−β1

∑
τ∈P∩[t]

⟨M (τ), P (τ)⟩ − β2
∑

τ∈N∩[t]

⟨M (τ), P (τ)⟩
)
, ∀t ∈ [T].

For every A ∈ Sn, we have Tr(exp(A)) =
∑n

i=1 e
λi ≥ eλj for any j ∈ [n], where λ1, . . . , λn are the

eigenvalues of A. Thus,

Φ(T+1) = Tr(W (T+1)) = Tr

(
exp

(
−β

T∑
t=1

M (t)

))

≥ exp

(
λmax

(
−β

T∑
t=1

M (t)

))
= exp

(
−βλmin

(T∑
t=1

M (t)

))
.

Thus,

exp

[
−βλmin

(T∑
t=1

M (t)

)]
≤ n exp

[
−β1

∑
t∈P

⟨M (t), P (t)⟩ − β2
∑
t∈N

⟨M (t), P (t)⟩
]
.

By taking ln(·) on both sides, we get

−βλmin

(T∑
t=1

M (t)

)
≤ lnn−

[
β1
∑
t∈P

⟨M (t), P (t)⟩+ β2
∑
t∈N

⟨M (t), P (t)⟩
]
,

so

β1
∑
t∈P

⟨M (t), P (t)⟩+ β2
∑
t∈N

⟨M (t), P (t)⟩ ≤ βλmin

(T∑
t=1

M (t)

)
+ lnn,

and
β1
β

∑
t∈P

⟨M (t), P (t)⟩+ β2
β

∑
t∈N

⟨M (t), P (t)⟩ ≤ λmin

(T∑
t=1

M (t)

)
+

lnn

β
.

Since
∑

t∈P⟨M (t), P (t)⟩ ≥ 0 and
∑

t∈N ⟨M (t), P (t)⟩ ≤ 0, to prove (29) it suffices to show that 1−β ≤
β1/β and 1 + β ≥ β2/β. It is not hard to prove that

1− e−x ≥ x(1− x), ∀x ∈ [0,+∞) and ex − 1 ≤ x(1 + x), ∀x ∈ [0, 12]

So our choice of β1 and β2 ensures that 1− β ≤ β1/β and 1 + β ≥ β2/β.

We can now show the proof of Theorem 29.

Proof of Theorem 29. Let M (t) := 1
ℓ+ρ

[∑m
i=1 y

(t)
i Ai − C + ℓ(t)I

]
and P (t) := W (t)/TrW (t) for every t.

For every t ≤ T , using (27),

⟨M (t), P (t)⟩ = 1

ℓ+ ρ

[m∑
i=1

y
(t)
i ⟨Ai, P

(t)⟩ − ⟨C,P (t)⟩+ ℓ(t)⟨I, P (t)⟩
]

=
1

(ℓ+ ρ) TrW (t)

[m∑
i=1

y
(t)
i ⟨Ai,W

(t)⟩ − ⟨C,W (t)⟩
]
+

ℓ(t)

ℓ+ ρ
≥ − η

ℓ+ ρ
+

ℓ(t)

ℓ+ ρ
,

26

since y(t) is a solution for (27) with X :=W (t). Thus, by (29),

∑
t∈P

(1− β)(ℓ(t) − η)

ℓ+ ρ
+
∑
t∈N

(1 + β)(ℓ(t) − η)

ℓ+ ρ

≤ 1

ρ+ ℓ
λmin

(
T∑
t=1

[(m∑
i=1

y
(t)
i Ai

)
− C + ℓ(t)I

])
+

lnn

β
.

Multiply through by ℓ+ ρ and move ℓ(t)I out of λmin(·):∑
t∈P

(1− β)ℓ(t) +
∑
t∈N

(1 + β)ℓ(t) − T (1 + β)η

≤ λmin

(
T∑
t=1

[(m∑
i=1

y
(t)
i Ai

)
− C

])
+

(T∑
t=1

ℓ(t)
)
+

(ρ+ ℓ) lnn

β
.

Thus,

∑
t∈P

−βℓ(t) +
∑
t∈N

βℓ(t) ≤ λmin

(
T∑
t=1

[(m∑
i=1

y
(t)
i Ai

)
− C

])
+

(ρ+ ℓ) lnn

β
+ T (1 + β)η.

Next note that
∑

t∈P −ℓ(t) +
∑

t∈N ℓ(t) =
∑

t∈P −ℓ+
∑

t∈N −ℓ = −Tℓ, so

0 ≤ λmin

(
T∑
t=1

[(m∑
i=1

y
(t)
i Ai

)
− C

])
+ βTℓ+

(ρ+ ℓ) lnn

β
+ T (1 + β)η.

and

0 ≤ λmin

(
1

T

T∑
t=1

[(m∑
i=1

y
(t)
i Ai

)
− C

])
+ βℓ+

(ρ+ ℓ) lnn

Tβ
+ (1 + β)η.

Thus,
m∑
i=1

ȳiAi − C =
1

T

T∑
t=1

[(m∑
i=1

y
(t)
i Ai

)
− C

]
≽ −

[
βℓ+

(ρ+ ℓ) lnn

Tβ
+ (1 + β)η

]
I.

Theorem 22 can be easily proved from Theorem 29. First, we apply Theorem 29 separately for each
block. In each iteration, y(t) is a solution for (27) for all blocks simultaneously, and so the conclusion
in (28) holds for all blocks with same ȳ. This new algorithm can be seen as equivalent to running K copies
of MMWUM, each with different input data, with the caveat that all copies run for the same number of
iterations and the vector y(t) returned from the oracle is the same for all copies at each iteration t.

C Optimality of MMWUM Oracle

Proposition 24. Any oracle for satisfying (9) must have ρ = Ω(n/η), even if the Bi matrices have rank
one, and even if X1 is a scalar multiple of X−1

2 .

27

Proof. Let k = n/3, let Ik be the identity of size k × k, and let ej ∈ Rk be the jth standard basis vector.
Let ζ = 3η and define

X1 = diag(1, ζ3, ζ)⊗ Ik, X2 = diag(1, 1/ζ3, 1/ζ)⊗ Ik,

where ⊗ denotes tensor product. For j = 1, . . . , k, define

v1,j = [1/
√
2,−1/

√
2, 0]⊗ ej , v2,j = [1/

√
2, 1/

√
2, 0]⊗ ej , v3,j = [0, 0, 1]⊗ ej .

Let Bi,j = vi,jv
T
i,j . Note that

∑
i,j Bi,j = I .

The oracle cannot choose a matrixBi,j with i ∈ {1, 2}, since satisfying (9) would lead to a contradiction:

⟨X2, Bi⟩
Tr(X2)(1 + η)

≤ 1

α
≤ ⟨X1, Bi⟩

Tr(X1)(1− η)

=⇒ 1 + 3η = 1 + ζ <
⟨X2, Bi⟩/TrX2

⟨X1, Bi⟩/TrX1
≤ 1 + η

1− η
< 1 + 3η,

for sufficiently small η.
So the oracle must choose a matrix Bi,j with i = 3. In this case,

TrBi,j

ρ
≤ 1

α
≤ ⟨X1, Bi,j⟩

Tr(X1)(1− η)

=⇒ n

9η
=

n

3ζ
≤ (1 + ζ3 + ζ)k

ζ
=

Tr(Bi,j)Tr(X1)

⟨X1, Bi,j⟩
≤ ρ

1− η
.

This shows that ρ = Ω(n/η).

D The positive semidefiniteness assumption

Proposition 31. For every positive integer n, there exist matrices B1, . . . , Bm ∈ Sn with m = Ω(n2) such
that B :=

∑
iBi is positive definite and with the following property: for every ε ∈ (0, 1) and y ∈ Rm such

that (1− ε)B ≼
∑

i yiBi, all entries of y are nonzero.

Proof. Let P := { (i, j) : i, j ∈ [n], i < j}. For (i, j) ∈ P , let Eij := eie
T
j + eje

T
i . Let J denote the

matrix of all ones. Then 2I +
∑

(i,j)∈P Eij = I + J =: B ≻ 0. Let ε ∈ (0, 1) and suppose that
(1−ε)B ≼ 2tI+

∑
(i,j)∈P zijEij for some t ∈ R and z ∈ RP . By taking the inner product withEab on both

sides, we see that 0 < 2(1−ε) ≤ zab for every (a, b) ∈ P . Similarly, we find that 0 < 2n(1−ε) ≤ 2nt.

28

