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ABSTRACT
We present a general framework for constructing cut sparsi-
fiers in undirected graphs — weighted subgraphs for which
every cut has the same weight as the original graph, up to a
multiplicative factor of(1 ± ǫ). Using this framework, we
simplify, unify and improve upon previous sparsification re-
sults. As simple instantiations of this framework, we show that
sparsifiers can be constructed by sampling edges according to
theirstrength(a result of Benczúr and Karger),effective resis-
tance(a result of Spielman and Srivastava),edge connectivity,
or by samplingrandom spanning trees. Sampling according to
edge connectivity is the most aggressive method, and the most
challenging to analyze. Our proof that this method produces
sparsifiers resolves an open question of Benczúr and Karger.

While the above results are interesting from a combinatorial
standpoint, we also prove new algorithmic results. In particu-
lar, we develop techniques that give the first (optimal)O(m)-
time sparsification algorithm for unweighted graphs. Our al-
gorithm has a running time ofO(m) + Õ(n/ǫ2) for weighted
graphs, which is also linear unless the input graph is very
sparse itself. In both cases, this improves upon the previous
best running times ofO(m log2 n) (for the unweighted case)
andO(m log3 n) (for the weighted case) respectively. Our al-
gorithm produces sparsifiers containingO(n log n/ǫ2) edges
in expectation; the only known construction of sparsifiers with
fewer edges is by a substantially slower algorithm running in
O(n3m/ǫ2) time.

A key ingredient of our proofs is a natural generalization of
Karger’s bound on the number of small cuts in an undirected
graph. Given the numerous applications of Karger’s bound,
we suspect that our generalization will also be of independent
interest.
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1. INTRODUCTION
Can any dense graph be approximated by a sparse graph?

Surprisingly, the answer is a resounding “yes”, under a variety
of notions of approximation. For example, given any undi-
rected graph,there are sparse subgraphs that approximateall
pairwise distances up to a multiplicative and/or additive error
(see [22] and subsequent research onspanners), everycut to
an arbitrarily small multiplicative error [3, 4] (calledcut spar-
sifiers), every eigenvalue to an arbitrarily small multiplicative
error [2, 25, 26, 27] (calledspectral sparsifiers), and so on.
Such approximations are a cornerstone of numerous important
results in theoretical computer science.

In this work, we consider the problem of approximating ev-
ery cut arbitrarily well; this problem was originally studied by
Karger [10, 11] and Benczúr and Karger [3, 4]. They proved
that every undirected graph withn vertices andm edges (and
potentially non-negative weights on its edges) has a subgraph
with onlyO(n log n/ǫ2) edges (and a different set of weights
on those edges) such that, for every cut, the weight of the cut in
the original graph and its subgraph agree up to a multiplicative
factor of(1± ǫ). Such a subgraph is called acut sparsifier, or
simply asparsifier. Benczúr and Karger also gave a random-
ized algorithm to construct a sparsifier inO(m log2 n) time
for unweighted graphs andO(m log3 n) time for weighted
graphs. Their result has now become a standard tool with
widespread use in the design of fast algorithms relating to cuts
and flows [3, 4, 5, 13, 15, 18, 24].

Spielman and Teng [27] realized that a stronger notion of
sparsification would be useful for efficiently solving systems
of linear equations defined by Laplacian matrices. They de-
fined aspectral sparsifierto be a weighted subgraph such that
the quadratic forms defined by the Laplacians of these two
graphs agree up to a multiplicative factor of(1 ± ǫ). Spectral



sparsifiers are also cut sparsifiers, as can be seen by evaluating
these quadratic forms at{0, 1}-vectors. An efficient algorithm
to construct a spectral sparsifier withO(n log n/ǫ2) edges in
expectation was given by Spielman and Srivastava [25]; using
later improvements to linear system solvers [16], this algo-
rithm runs inO(m log3 n) time. Furthermore, a spectral spar-
sifier with onlyO(n/ǫ2) edges can be computed inO(n3m/ǫ2)
time [2].

The Benczúr-Karger and Spielman-Srivastava sampling schemes
follow the same basic approach. First, they replace each edge
e of weightwe in the input graphG bywe parallel unweighted
edges.1 Now, each unweighted edge is sampled independently
with probability pe = min{ρ/λe, 1} for some parameters
ρ, λe; if chosen, the weight of edgee is increased in the spar-
sifierGǫ by 1/pe. Both algorithms chooseρ = Θ(log n/ǫ2),
but differ in their choice ofλe.

In order to describe their respective choice of parameters
λe, we require some definitions. For an edge(s, t), the (lo-
cal) edge connectivitybetweens and t, denotedkst, is de-
fined to be the minimum weight of a cut that separatess and
t. Theeffective conductanceof edge(s, t), denotedcst, is the
amount of current that flows when each edgee of weightwe
is viewed as a resistor of value1/we and a unit voltage differ-
ence is imposed betweens andt. Theeffective resistanceof
(s, t) is 1/cst. A k-strong componentof G is a maximalk-
edge-connected, vertex-induced subgraph ofG. Thestrength
of edge(s, t), denotedk′st, is the maximum value ofk such
that ak-strong component ofG contains boths andt. Infor-
mally, all three ofkst, cst andk′st measure the connectivity
betweens andt.

Benczúr and Karger requireλe ≤ k′e, whereas Spielman
and Srivastava requireλe ≤ ce. These hypotheses are incom-
parable sincek′st can beΩ(n) times larger thancst or vice
versa. Howeverkst ≥ max {cst, k′st} always holds.

Sampling by Edge Connectivities. The primary objective
of this paper is to consider the more aggressive regime of
sampling according to edge connectivities, i.e.,λe ≤ ke. In
fact, Benczúr and Karger [4] conjectured that such a sampling
scheme would also produce sparsifiers, and this would result
in a simpler analysis and simpler algorithms. Our work proves
this conjecture. Theorem 1.1 is a succinct corollary of our
main theorem; more general results are described in Section 2.

Theorem 1.1. LetGǫ be obtained from a weighted graphG
by independently sampling edgeewith probabilitype = ρ/λe,
whereρ = Θ(log2 n/ǫ2) andλe = ke. Then,Gǫ contains
O(n log2 n/ǫ2) edges in expectation, andGǫ ∈ (1 ± ǫ)G
whp.2 3

Sinceke ≥ max {ce, k′e}, our aggressive sampling scenario
subsumes the scenarios of Benczúr-Karger and of Spielman-
Srivastava, the main caveat being that Spielman and Srivas-
tava prove spectral sparsification whereas we do not. On top
of unifying these results, we also extend our technique to ob-
tain a general sparsification framework and set out sufficient
conditions for a sampling scheme to result in good sparsifiers.

1We assume throughout that all edge weights are integers.
2 Gǫ ∈ (1 ± ǫ)G will denote thatGǫ approximates every cut
in G to within a multiplicative factor of(1± ǫ).
3 A property is said to holdwith high probability(or whp) if it
does nothold with probability inverse polynomial inn.

This lets us show that some other natural sampling schemes
also yield sparsifiers.

Sampling by Random Spanning Trees. Can we setρ =
o(log n) in the above sampling schemes? Unfortunately not.
To see this, consider a clique ofn vertices — ifρ = o(log n)
andλe = ke then with probability tending to1 the sampled
graph would be disconnected and hence not approximate the
original graph. Such examples also show that the Benczúr-
Karger and Spielman-Srivastava algorithms requireΩ(n log n)
edges.

One way to circumvent these examples is via dependent
sampling, such as sampling spanning trees. This idea was ex-
plored by Goyal et al. [7] and was the key approach in the
recent progress on ATSP [1]. Suppose we sampleρ uniformly
random spanning trees. Then the sampled graph is certainly
connected after choosing just one tree. Furthermore, sampling
uniformly random spanning trees is closely related to sampling
according to effective conductances, which leads to the follow-
ing theorem.

Theorem 1.2. Let G be a weighted graph. LetGǫ be the
union of ρ = Θ(log2 n/ǫ2) uniformly random trees where
each edge is assigned weightce/ρ. ThenGǫ hasO(n log2 n/ǫ2)
edges andGǫ ∈ (1± ǫ)G, whp.

Surprisingly, we cannot takeρ = o(log n) here either. For any
constantc ≥ 1, if we wish to approximate all cuts to within
a factorc, we show in section 6 that the sampling process of
Theorem 1.2 requiresρ = Ω(log n).

1.1 Sparsification Algorithms
Our framework yields sparsification algorithms that are not

only simpler, but also faster. By a slight modification of known
techniques [4], we can easily estimate the edge connectivities
ke and derive a linear-time algorithm that produces sparsifiers
with O(n log2 n/ǫ2) edges. This simple result is stated below
as Theorem 1.3. A stronger result is given by Theorem 1.4, in
which a more sophisticated approach is used to construct spar-
sifiers withO(n log n/ǫ2) edges inO(m) + Õ(n/ǫ2) time.

Sampling by Nagamochi-Ibaraki indices. Nagamochi and
Ibaraki devised a very simple method that finds good estimates
to all edge connectivities. Their method simply partitions the
graph into a sequence of maximal spanning forests. It can be
implemented inO(m)-time for unweighted graphs [21], and
O(m+ n log n)-time for weighted graphs [20].

More formally, a set of edge-disjoint spanning forests
T1, T2, . . . , Tk of a graphG is said to be aNagamochi-Ibaraki
(NI) forestpacking ifTi is a spanning forest on the edges left
in G after removing those inT1, T2, . . . , Ti−1. For weighted
graphs, an edge with weightwe must appear inwe contiguous
forests. TheNI indexof edgee, denotedℓe, is the index of
the last NI forest in whiche appears. We obtain the following
theorem as a simple instantiation of our general framework.

Theorem 1.3. LetGǫ be obtained from a weighted graphG
by independently sampling edgeewith probabilitype = ρ/λe,
whereρ = Θ(log n/ǫ2) and λe = ℓe. Then,Gǫ contains
O(n log2 n/ǫ2) edges in expectation, andGǫ ∈ (1 ± ǫ)G
whp. Moreover, this algorithm runs inO(m) time.

Linear-time Sparsification Algorithm. We improve the above
algorithm further in the next theorem.



Theorem 1.4. There is an algorithm that produces sparsifiers
containingO(n log n/ǫ2) edges in expectation, and runs in
O(m) time for unweighted graphs andO(m)+ Õ(n/ǫ2) time
for weighted graphs.

Note that this algorithm has optimal time complexity for un-
weighted graphs; for weighted graphs, the time complexity is
slightly sub-optimal if the input graph is already very sparse.
The previous best time complexity for an identical guarantee
on the size of the sparsifier wasO(m log2 n) for unweighted
graphs, andO(m log3 n) for weighted graphs [4]. On the
other hand, the only known algorithm that constructs sparsi-
fiers with fewer edges takesO(n3m/ǫ2) time [2], which is
substantially slower. Our sparsification algorithm improves
the running time for the numerous applications of sparsifiers
for dense input graphs (e.g. [13, 15, 18, 24]).

1.2 Cut counting
An important ingredient in our proofs is an extension of

Karger’s random contraction algorithm for computing global
minimum cuts [9, 14]. We give a variant of this algorithm that
interleaves random edge contractions with edgesplitting-off
operations. The main purpose is to prove a generalization of
the following cut counting theorem.

Theorem 1.5(Karger [9, 14]). For anyα ≥ 1, the number of
cuts of weight at mostαK in an undirected weighted graph is
at mostn2α, whereK is the minimum weight of a cut in the
graph.

To state our generalization, we need some definitions. An
edge is said to bek-heavyif the edge connectivity of its end-
points is at leastk; otherwise, it is said to bek-light. Thek-
projectionof a cut is the set ofk-heavy edges in it. Intuitively,
we show that the large number of cuts of sizeαK for large
α, as predicted by Karger’s theorem, arises frommanydistinct
k-projections of these cuts for small values ofk, while there
arefewdistinctk-projections of these cuts for large values of
k.

Theorem 1.6. Let G = (V,E) be a weighted, undirected
graph. For anyk and anyα ≥ 1, the number of distinctk-
projections in cuts of weight at mostαk is at mostn2α.

(Note that this theorem reduces to Karger’s cut counting the-
orem by settingk to the weight of a global minimum cut.)
Given the numerous applications of Karger’s theorem, e.g. [1,
6, 12, 23], we suspect our generalization may be of further
interest.

Roadmap.The next section contains an overview of the tech-
niques used in obtaining the various results outlined above.
Section 3 contains a proof of the cut counting theorem (Theo-
rem 1.6), which is used in the proofs of the general framework
presented in Section 4. We use the general framework to ob-
tain Theorem 1.1 in Section 4.1. We present the linear-time
sparsification algorithm in Section 5. Finally, some sampling
lower bounds are presented in Section 6.

2. OVERVIEW OF OUR TECHNIQUES
Our first goal is to demonstrate sampling using edge con-

nectivities, thereby proving Theorem 1.1. The basic intuition
behind sparsification is two-fold:

s t

…

s t

Figure 1: An example of a graph where Karger’s cut
counting theorem is not sufficient to prove that sampling
using edge connectivities yields a good sparsifier.

1. Edges that arewell-connected4 are less critical to main-
taining connectivity of the graph and can hence be sam-
pled at lower probabilities than those that are not well-
connected.

2. Most edges in a dense graph are well-connected; hence,
most edges can be sampled at low probabilities leading
to a sparse sample.

Now, suppose we want to sample edgee at probabilitype =
Θ(log n/ke) and give it a weight of1/pe in Gǫ if selected.
The next lemma formalizes (2).

Lemma 2.1. For any undirected, weighted graphG = (V,E)
wherewe and ke respectively represent the weight and con-
nectivity of edgee,

∑
e∈E

we
ke

≤ n− 1.

Formalizing (1) turns out to be more tricky. For example,
consider the complete graph onn vertices. Here, all edges
have connectivityn − 1, and therefore are sampled at proba-
bility Θ(log n/n). Now, consider a cut containing∆ edges.
Since edges are sampled independently, Chernoff bounds (see
e.g. [19]) ensure that thefailure probability for this cut (i.e.,
the probability that the sampled weight of the cut is not in
(1 ± ǫ)∆) is 1/nΩ(∆/n). If ∆ = Θ(n), this bound is inverse
polynomial inn. But there are exponentially many cuts; so a
naive union bound that multiplies this probability by the num-
ber of cuts will not work.

A slightly more refined analysis would observe that there
are onlynO(∆/n) cuts with∆ edges, either by a direct count-
ing argument or by applying Karger’s cut counting theorem
(Theorem 1.5). Since each such cut has failure probability
1/nΩ(∆/n), we can apply a union bound for each value of∆.
Summing over all values of∆ gives an overall failure proba-
bility that is inverse polynomial inn.

Unfortunately, this technique does not work for all graphs.
For example, consider the graph in Figure 1. Here, the con-
nectivity of each edge is two, except that of the(s, t) edge
is Θ(n). Now, consider any cut separatings and t in this
graph. The(s, t) edge has the lowest sampling probability
(= Θ(log n/n)), and therefore has high variance in the sam-
pled weight even though all the other edges have low vari-
ance. Unfortunately, the Chernoff bound does not recognize
this difference in variance between the edges and yields a fail-
ure probability inverse polynomial inn. This is too weak, for
4The exact definition ofwell-connectednessvaries from one
sparsification scheme to another.



we have to union bound over the exponentially many cuts sep-
aratings andt. The problem lies in the use of the Chernoff
bound — in spite of most edges in the cut being sampled at
a relatively high probability (thereby reducing the variance
of the sample), the Chernoff bound is very weak. To over-
come this problem, we partition the edges of a cut in doubling
ranges[2i−1, 2i − 1] of their connectivity, and apply Cher-
noff bounds on each of these sets separately. Since edges in
any such set (call the set of edges having connectivity in the
range[2i−1, 2i − 1] the i-segmentof the cut) are sampled at
roughly the same probability, the bounds obtained are tighter,
especially for small values ofi. We run into a technical hurdle
here. Consider the example in Figure 1. The(s, t) edge is in
a connectivity range on its own, and clearly one cannot obtain
tight concentration bounds for just one edge. However, ob-
serve that whether this single edge appears in the sample has
almost no bearing on the quality of the sample. To formalize
this intuition, we will use the following generalization of the
Chernoff bound.

Theorem 2.2. LetX1, X2, . . . , Xn ben random variables
such thatXi takes value1/pi with probabilitypi and 0 oth-
erwise. Then, for anyp such thatp ≤ pi for each i, any
ǫ ∈ (0, 1), and anyN ≥ n, the following bound holds:5

P

[∣∣∣∣∣
n∑

i=1

Xi − n

∣∣∣∣∣ > ǫN

]
< 2e−0.38ǫ2pN .

When we apply the above theorem to thei-segment of a cut
C, we setN to the weight of the cutwC , thereby obtaining a
meaningful tail bound. For example, in Figure 1, if a segment
comprises the solitary(s, t) edge, we define the failure event
as a deviation ofǫn from the expected value of one, thereby
ensuring that the (overwhelmingly probable) event of not in-
cluding the edge(s, t) in the sample isnotdefined as a failure
event. One deficiency of this approach is that the deviation
is ǫwC for each connectivity range, leading to an overall de-
viation of ǫwC log n. However, recall that the total deviation
needs to be at mostǫwC . So we can instead set the value ofN
towC/ log n and, to ensure that the probability bound remains
unchanged, increase the sampling probability by a factor of
log n. (We call this extralog n in the sampling probability
the overlap overhead). We now use Theorem 1.6 to bound
the failure probability overi-segments of all cuts of weight∆.
Finally, we union bound over all values ofk and∆ to obtain
Theorem 1.1.

As observed previously, Theorem 1.1 implies that sampling
using edge strengths (Benczúr-Karger [4]) and effective re-
sistances (Spielman-Srivastava [25]) yields sparsifiers. Since
every edgee has NI indexℓe ≤ ke, Theorem 1.1 also im-
plies that sampling using NI indices yields a sparsifier. How-
ever, since the sampling probability isΘ(log2 n/ǫ2λe) (for
λe = k′e, ce, ℓe respectively), the resulting sparsifiers have
O(n log2 n/ǫ2) edges, whereas the Benczúr-Karger sparsifiers
have onlyO(n log n/ǫ2) edges.

Next we describe our general framework which has sev-
eral applications, including constructing sparsifiers with only
O(n log n/ǫ2) edges under the sampling scheme of Benczúr
and Karger (we omit the details of this construction due to
space limitations), and proving Theorem 1.3.

5For any eventE , P[E ] represents the probability of eventE .

2.1 The General Framework
Consider the proof sketch for Theorem 1.1 outlined above.

As a first abstraction, note that our argument does not depend
on the exact value of the overlap overhead, i.e. the proof sketch
continues to hold withN = wC/α andpe = Θ(α log n/ǫ22i)
(wheree has connectivity in[2i−1, 2i − 1]) for any valueα of
the overlap overhead. Generalizing further, suppose we iden-
tify a subset of edgesCi (with weightwCi ) in every cutC
such that:

• Each edge in thei-segment of a cut is2i-heavy in a
graph containing only the edgesCi for all cutsC.

• Each edge appears inCi for at mostα different values
of i.

Then,N = wCi/α andpe = Θ(α log n/ǫ22i) are sufficient
for the above proof. Moreover, we do not need to definei-
segments by edge connectivities, rather we can define thei-
segment of cutC as the set of edges sampled with probability

pe ∈
[
α logn
ǫ22i

, α logn
ǫ2(2i+1−1)

]
. The proof sketch is valid provided

the above two properties are satisfied byi-segments defined in
this manner.

We now formalize the above intuition. LetG = (V,E)
be an undirected graph where edgee has weightwe. Con-
sider anyǫ ∈ (0, 1). We construct a sparse graphGǫ where
the weight of edgee is Re/pe, Re being an independent (of
other edges) binomial random variable with parameterswe
andpe.6 What values ofpe result in a sparseGǫ that satisfies

Gǫ ∈ (1 ± ǫ)G whp? Letpe = min
{

96α lnn
0.38λeǫ2

, 1
}

, where

α is independent ofe andλe is some parameter ofe satisfy-
ing λe ≤ 2n − 1. The exact choice of values forα and the
λe’s will vary from application to application. However, we
describe below a sufficient condition that characterizes agood
choice ofα andλe’s.

To describe this sufficient condition, partition the edges in
G according to the value ofλe into setsF0, F1, . . . , Fk where
k = ⌊lgmaxe∈E{λe}⌋ ≤ n − 1 ande ∈ Fj iff 2j ≤ λe ≤
2j+1−1. Now, letG = (G0, G1, G2, . . . , Gi, . . . , Gk) (where
Gi = (V,Ei)) be a set of subgraphs ofG (we allow edges of
G to be replicated multiple times in theGi’s) such thatFi ⊆
Ei for everyi. For a set of parametersπ = (π0, π1, . . . , πk),
G is said to be a(π, α)-certificatecorresponding to the above
choice ofα andλe’s if the following properties are satisfied:

• π-connectivity. For i ≥ 0, any edgee ∈ Fi is πi-heavy
in Gi.

• α-overlap. For any cutC of weightwC in G, let e(C)
i

be the weight of edges that crossC in Gi. Then, for all

cutsC,
∑k
i=0

e
(C)
i 2i−1

πi
≤ αwC .

Theorem 2.3 describes the sufficient condition. We gave the
intuition behind the theorem at the beginning of this section; a
formal proof appears in Section 4.

Theorem 2.3. If there exists a(π, α)-certificate for a particu-
lar choice ofα andλe’s, thenGǫ ∈ (1± ǫ)G with probability

6This is equivalent to takingwe unweighted copies ofe, sam-
pling each copy independently with probabilitype and adding
a weight of1/pe to edgee in Gǫ for each copy selected in the
sample.



at least1 − 4/n. FurthermoreGǫ hasO(α logn
ǫ2

∑
e∈E

we
λe

)
edges in expectation.

2.2 Sparsification Algorithms
Our first algorithmic application of the general framework is

to show that the expected size of the sparsifier obtained when
sampling by NI indices7 isO(n log2 n/ǫ2). This proves The-
orem 1.3. In this sampling scheme,λe is the NI index of
edgee. Our key observation is that any edge in NI forests
T2i , T2i+1, . . . , T2i+1−1 is2i−1-heavy in a graphGi = (V,Ei)
containing all edges inT2i−1 , T2i−1+1, . . . , T2i , . . . , T2i+1−1

(i.e., two successive doubling ranges of NI forests). This lets
us defineπi = 2i−1 andα = 2 since each edge is present in
at most twoEi’s. Since the graphsGi are a(π, α)-certificate
for this choice of parameters, we use Theorem 2.3 to conclude
that the expected size of the sparsifier isO(n log2 n/ǫ2).

Our goal now is to improve the size of the sparsifier to
O(n log n/ǫ2) while maintaining linear running time. To this
end, we abstractly view the NI index-based sampling scheme
as an iterative algorithm that finds a set of edgesEi in iteration
i (these are the edges in NI forestsT2i , T2i+1, . . . , T2i+1−1

and are sampled with probabilityΘ(log n/2i)) with the fol-
lowing properties:

• (P1)Each edge inEi has connectivity ofΘ(2i) inEi−1.

• (P2)The number of edges inEi is Θ(n · 2i).

Our first observation is that property(P1) can be weakened
— using the general framework, we show it is sufficient for
each edge inEi to have connectivity ofΘ(2i) in Gi−1 =
(V, Fi−1) whereFi−1 = Ei−1∪Ei∪. . .. Since we are aiming
for a sparser sample than in the previous algorithm, we also
need to make(P2) stricter. Our new requirement is that the
number of edges inEi−1 from any connected componentC
of Gi−1 isO(2i) times the number of components into which
C decompose inGi. It is not difficult to show that this stricter
condition ensures that the expected number of edges inGǫ
decreases toΘ(n log n/ǫ2).

To complete the description of the algorithm, we need to
give a linear-time construction ofEi’s satisfying the above
properties. Iterationi runs on each component ofGi sepa-
rately; we describe the algorithm for any one componentC.
First, (2i + 1) NI forestsT1, T2, . . . , T2i+1 are constructed
in C and all edges inT2i+1 are contracted; let the resulting
graph beGC = (VC, EC). If |EC| = O(|VC| · 2i), we add
the edges inEC to Ei and retain the remaining edges for it-
erationi + 1. Otherwise, we construct(2i + 1) NI forests on
GC, contract the edges in the(2i + 1)st NI forest, and up-
dateGC to this contracted graph. We repeat these steps until
|EC| = O(|VC| · 2i); then, we add the edges inEC to Ei
and retain the remaining edges for iterationi + 1. One may
verify that properties(P1) and (P2) are satisfied by theEi’s
constructed by this algorithm.

This algorithm, with a pre-processing step where the num-
ber of edges is reduced tõO(n) by sampling using NI in-
dices, runs inO(m) + Õ(n) time, and yields a sparsifier of
expected sizeO(n log n/ǫ2). This is already optimal for all

7 Supposing thatwe = nO(1), one would obtain a weaker
bound ofO(n log3 n/ǫ2) edges from a straightforward appli-
cation of Theorem 1.1 and the previously known fact [4] that∑
e we/ℓe = O(n log

∑
e we).

but very sparse input graphs. We need one additional idea to
turn this into a strictly linear-time algorithm for unweighted
graphs. Observe that we would ideally like to place as many
edges as we can in subsetsEi for large values ofi so as to ob-
tain a sparseGǫ. On the other hand, the fact that these edges
are retained till the later iterative stages implies that we pay
for them in our time complexity repeatedly. To overcome this
dilemma, we use the following trick: instead of sampling these
edges with probability1/2i in iterationi, we sample them with
probability 1/2 in each iterationj < i, and retain them in the
set of edges for the next iteration only if selected in the sam-
ple. Now, we are able to reduce the size of our edge set by a
factor of two (in expectation) in each iteration; therefore, im-
plementing a single iteration in linear time immediately yields
a linear time algorithm overall. However, this iterative sam-
pling scheme creates several technical hurdles since it intro-
duces dependencies between the sampling processes for dif-
ferent edges. Our key technical contribution is in showing that
these dependencies are mild enough for us to continue to use
the framework that we have developed above for independent
sampling of edges. We present the details of this algorithm
and its analysis in Section 5.

Weighted Graphs. Weighted graphs pose additional chal-
lenges. First, consider a graph with super-polynomial edge
weights. An immediate concern for such graphs is that the
number of doubling categories of sampling probabilities can
now be polynomial rather than logarithmic. For example, in
Theorem 1.1, the overlap overhead will now be polynomial
instead of logarithmic.

We have two techniques, each separately solving this prob-
lem. First, a more refined use of the Chernoff bound allows us
to, roughly speaking, show that onlylog n doubling categories
have substantial contribution to the sampled weight of the cut.
The analysis is intricate; so we omit the details from this ex-
tended abstract. Second, we can use thewindowing technique
due to Benczúr and Karger [4]. The basic idea is that if the
connectivity of an edgee is ke, then removing all edges with
weight at mostke/n3 and contracting all edges with weight
greater thanke does not significantly alter the connectivity of
e. This trick lets us deal with only a polynomial range of edge
weights at any point of time, thus alleviating the problem de-
scribed above. For algorithmic applications, we also need to
estimate the edge connectivities for making these alterations
to the input graph. The key observation (due to Benczúr and
Karger) is that amaximum spanning treecan be used to obtain
a polynomial approximation to the connectivity values, and
this is sufficient for our purpose.

Edge weights also introduce complications in the analysis
of running times. Can we sample a weighted edge inO(1)
time? Recall (from the general framework) that sampling an
edgee involves the generation of a binomial random variable
with parameterswe and pe. This can be done inO(wepe)
time for edgee (see e.g. [8]), and thereforeO(

∑
e∈E wepe)

time overall. It can be verified that this time complexity is
asymptotically identical to the bound on the size of the spar-
sifier obtained from Theorem 2.3 for the general framework,
and therefore can be ignored in the running time analysis.

Finally, we note that the linear-time sparsification algorithm
for unweighted graphs takesO(m) + O(n log3.5 n) time on
weighted graphs (details omitted due to space limitations).



Algorithm 1 An algorithm for finding a smallk-projection by
splitting off light vertices.

procedureContract(G, k, α)
input: A graphG = (V,E), a parameterk ≥ K where
K is the weight of a minimum cut inG, and an approxi-
mation factorα
output: ak-projection
While there exists ak-light vertexv

Perform admissible splitting-off atv until v becomes
an isolated vertex
Removev

While there are more than⌈2α⌉ vertices remaining
Pick an edgee uniformly at random
Contracte and remove any self loops
While there exists ak-light vertexv

Perform admissible splitting-off atv until v be-
comes an isolated vertex
Removev

Output thek-projection of a cut selected uniformly at ran-
dom

3. CUT COUNTING
In this section,8 we will prove Theorem 1.6. Our proof

strategy, as outlined in the introduction, is to give an algo-
rithm (Algorithm 1) with the following property, which imme-
diately implies Theorem 1.6. Here,q(F ) denotes the mini-
mum weight of a cut whosek-projection isF .

Theorem 3.1. For anyk-heavy set of edgesF with q(F ) ≤
αk, Algorithm 1 outputsF with probability at leastn−2α.

To describe Algorithm 1, we need some additional defini-
tions. A vertex is said to bek-heavy if it is incident to a
k-heavy edge; otherwise, it isk-light. The algorithm adds
new edges toG; for notational convenience, we will call these
edgesk-light irrespective of their connectivity. Therefore, the
k-projection of a cut does not include any of these edges.

Note that whenk is the minimum weight of a cut inG,
there is nok-light vertex and Algorithm 1 reduces to Karger’s
random contraction algorithm. The main idea is that we can
remove thek-light vertices while preserving the connectivities
of all k-heavy edges by using thesplitting-offoperation. This
operation replaces a pair of edges(u, v) and(v, w) with the
edge(u,w), and is said to beadmissibleif it does not change
the edge connectivity between any two verticess, t 6= v. A
deep theorem of Mader [17] asserts that admissible splitting-
off exists under mild assumptions.

Theorem 3.2(Mader [17]). LetG = (V,E) be a connected
graph wherev ∈ V is a vertex which has degree6= 3 and is
not incident to any cut edge.9 Then, there is a pair of edges
(u, v) and(v, w) such that their splitting-off is admissible.

Since uniformly scaling edge weights does not affect the con-
ditions of Theorem 3.1, we may assume thatG is Eulerian

8In the next two sections, an edge of weightw is replaced by
w unweighted parallel edges.
9A cut edgeis an edge whose removal separates a connected
graph into two disconnected components.

and 2-edge-connected. Moreover these conditions are main-
tained in our algorithm. Therefore the inner while loop of Al-
gorithm 1 is feasible.

To prove Theorem 3.1, we fix ak-projectionF with q(F ) ≤
αk. It is sufficient to show that, with good probability, the
algorithm maintains the following invariants.

(I1): F is ak-projection in the remaining graph,

(I2): q(F ) ≤ αk (whereq(F ) now minimizes over cuts
in the remaining graph), and

(I3): every remainingk-heavy edgee has connectivity at
leastk.

The only modifications to the graph made by Algorithm 1 are
admissible splitting-offs, contraction of edges, and removal of
self-loops. Clearly removing self-loops does not affect the
invariants. Now consider the splitting-off operation.(I1) is
preserved because we only split-offk-light edges;(I2) is pre-
served because splitting-off never increases the size of any cut;
(I3) is preserved because we only split-off at a light vertex and
the splitting-offs are admissible.

Lemma 3.3. Let the number of remaining vertices ber. As-
suming that the invariants hold, they will continue to hold after
the contraction operation with probability at least1− 2α/r.

Proof. For (I3), note that since contraction does not create
new cuts, the edge connectivity of an uncontracted edge can-
not decrease. Now consider the graph before the contraction.
Since every remaining vertexv is k-heavy, the degree of each
vertex is at leastk; thus the number of remaining edges is at
leastkr/2. LetC be a cut such thatF is thek-projection ofC
andwC = q(F ). Note that(I1) and(I2) are preserved if the
contracted edgee /∈ C. Sincee is picked uniformly at random,
the probability thate ∈ C is P[e ∈ C] ≤ q(F )/(kr/2) =
2q(F )/kr ≤ 2α/r. �

Let the number of remaining vertices after the splitting-off op-
erations of iterationi in Algorithm 1 beri. Then, the proba-
bility that all the invariants hold throughout Algorithm 1, and
F is the output is at least
(
1− 2α

r0

)(
1− 2α

r1

)
. . .

(
1− 2α

⌈2α⌉+ 1

)
2−(⌈2α⌉−1) ≥ n−2α.

4. THE GENERAL FRAMEWORK
We will now use Theorem 1.6 to prove Theorem 2.3. We

re-use the notation defined in section 2.1, and introduce some
additional notation. For any cutC, let F (C)

i = Fi ∩ C and
E

(C)
i = Ei ∩ C for 0 ≤ i ≤ k;10 let f (C)

i = |F (C)
i | and

e
(C)
i = |E(C)

i |. Also, let f̂ (C)
i be the total weight of all edges

in F (C)
i in the sampled graphGǫ. Note that the expected value

E[f̂
(C)
i ] = f

(C)
i . We first prove a key lemma.

Lemma 4.1. For any fixedi, with probability at least1 −
4/n2, every cutC in G satisfies

∣∣∣∣f
(C)
i − f̂

(C)
i

∣∣∣∣ ≤
ǫ

2
max

{
e
(C)
i · 2i−1

πi · α
, f

(C)
i

}

10For any cutC and any set of edgesZ, Z ∩ C denotes the set
of edges inZ that cross cutC.



Proof. By theπ-connectivity property described in section 2.1,
any edgee ∈ Fi is πi-heavy inGi for any i ≥ 0. Therefore,
e
(C)
i ≥ πi. Let Cij be the set of all cutsC such thatπi · 2j ≤
e
(C)
i ≤ πi · 2j+1 − 1, j ≥ 0. We will prove that with proba-

bility at least1− 2n−2j+1

, all cuts inCij satisfy the property
of the lemma. The lemma follows by the union bound overj
(keepingi fixed) since2n−2 + 2n−4 + . . .+ 2n−2j + . . . ≤
4n−2.

We now prove the above claim for cutsC ∈ Cij . LetX(C)
i

denote the set of edges inF (C)
i that are sampled with probabil-

ity strictly less than one; correspondingly, letx(C)
i = |X(C)

i |
and letx̂(C)

i be the total weight of edges inX(C)
i in the sam-

pled graphGǫ. Since edges inF (C)
i \X(C)

i retain their weight
exactly inGǫ, it is sufficient to show that with probability at

least1− 2n−2j+1

,

|x(C)
i − x̂

(C)
i | ≤

( ǫ
2

)
max

{
e
(C)
i · 2i−1

πi · α
, x

(C)
i

}

for all cutsC ∈ Cij . Since each edgee ∈ X
(C)
i hasλe <

2i+1, we can use Theorem 2.2 with the lower bound on prob-
abilities p = 96α lnn

0.38·2i+1ǫ2
. There are two cases. In the first

case, supposex(C)
i ≤ e

(C)
i ·2i−1

πi·α
. Then, for anyX(C)

i where
C ∈ Cij , by Theorem 2.2, we have

P

[∣∣∣∣x
(C)
i − x̂

(C)
i

∣∣∣∣ >
( ǫ
2

) e(C)
i · 2i−1

πi · α

]

< 2e
−0.38 ǫ2

4

(

96α lnn
0.38·2i+1ǫ2

) e
(C)
i

·2i−1

πi·α ≤ 2e−6·2j lnn,

sincee(C)
i ≥ πi · 2j for anyC ∈ Cij . In the second case,

x
(C)
i >

e
(C)
i ·2i−1

πi·α
. Then, for anyX(C)

i whereC ∈ Cij , by
Theorem 2.2, we have

P

[∣∣∣∣x
(C)
i − x̂

(C)
i

∣∣∣∣ >
( ǫ
2

)
x
(C)
i

]

< 2e
−0.38 ǫ2

4

(

96α lnn
0.38·2i+1ǫ2

)

x
(C)
i < 2e−6·2j lnn,

sincex(C)
i >

e
(C)
i ·2i−1

πi·α
≥ 2i+j−1

α
for anyC ∈ Cij . Thus, we

have proved that

P

[∣∣∣∣x
(C)
i − x̂

(C)
i

∣∣∣∣ >
( ǫ
2

)
max

{
e
(C)
i · 2i−1

πi · α
, x

(C)
i

}]

< 2e−6·2j lnn = 2n−6·2j

for any cutC ∈ Cij . Now, by theπ-connectivity property,
we know that edges inF (C)

i , and therefore those inX(C)
i , are

πi-heavy inGi. Therefore, by Theorem 1.6, the number of

distinctX(C)
i sets for cutsC ∈ Cij is at mostn

2

(

πi·2
j+1

πi

)

=

n4·2j . Using the union bound over these distinctX
(C)
i edge

sets, we conclude that with probability at least1 − 2n−2j+1

,
all cuts inCij satisfy the property of the lemma. �

We now use the above lemma to prove Theorem 2.3.
Proof (of Theorem 2.3). Lemma 4.1 bounds the sampling
error for a fixedi. In this theorem we bound the total error by
summing fromi = 0, . . . , k. Recall thatk ≤ n− 1.

LetwC andŵC be the weight of edges crossing a cutC in
G andGǫ respectively. By a union bound, the conclusion of
Lemma 4.1 holds for every value ofi with probability at least
1− 4/n. Therefore

k∑

i=0

|f̂ (C)
i − f

(C)
i | ≤

k∑

i=0

( ǫ
2

)
max

{
e
(C)
i · 2i−1

πi · α
, f

(C)
i

}

for all cutsC. Then, with probability at least1− 4/n,

|ŵC − wC | =
∣∣∣∣∣
k∑

i=0

f̂
(C)
i −

k∑

i=0

f
(C)
i

∣∣∣∣∣ ≤
k∑

i=0

|f̂ (C)
i − f

(C)
i |

≤ ǫ

2

(
k∑

i=0

e
(C)
i · 2i−1

πi · α
+

k∑

i=0

f
(C)
i

)
≤ ǫwC ,

since
∑k
i=0

e
(C)
i ·2i−1

πi·α
≤ wC by theα-overlap property and

∑k
i=0 f

(C)
i ≤ wC sinceF (C)

i ’s form a partition of the edges
in C.

We now prove the bound on the expected number of edges
in Gǫ. The expected number of distinct edges inGǫ is

∑

e∈E

(1− (1− pe)
we) ≤

∑

e

wepe.

The bound follows by substituting the value ofpe. �

4.1 Sampling using Edge Connectivities
We now use the general framework to prove Theorem 1.1.

For any edgee = (u, v), setλe to the connectivityke of e;
also setα = 3 + lg n andπi = 2i−1. Fi is defined as the
set of all edgese with 2i ≤ λe ≤ 2i+1 − 1 for any i ≥ 0.
For anyi ≥ 1 + lg n, let Gi contain all edges in NI forests
T2i−1−lg n , T2i−1−log n+1, . . . , T2i+1−1 and all edges inFi.
For i ≤ lg n, Gi contains all edges inT1, T2, . . . , Ti and all
edges inFi. For anyi ≥ 0, let Yi denote the set of edges
in Gi but not inFi. For anyi 6= j, Fi ∩ Fj = ∅ and each
edge appears inYi for at most2 + log n different values of
i; this provesα-overlap. To proveπ-connectivity, we note
that for any pair of verticesu, v with connectivity11 k(u, v)
and for anyi ≥ 1, u, v are at leastmin{k(u, v), i}-connected
in the first i NI forests, i.e. inT1 ∪ T2 ∪ . . . ∪ Ti. Thus,
any edgee ∈ Fi is at least2i-heavy in the (union of) the
NI forestsT1, T2, . . . , T2i+1−1. Since there are at most2i−1

edges overall inT1, T2, . . . , T2i−1−lg n−1, any edgee ∈ Fi is
2i−1-heavy inGi. This provesπ-connectivity. Theorem 1.1
now follows directly from Theorem 2.3 and Lemma 2.1.

5. LINEAR-TIME ALGORITHM
The algorithm has three phases. The first phase has the fol-

lowing steps:

• If m ≤ 2ρn, whereρ = 1014 lnn
0.38ǫ2

, thenGǫ = G.

• Otherwise, we construct a set of NI forests ofG and all
edges in the first2ρ NI forests are included inGǫ with
weight one. We call these edgesF0. The edge setY0 is
then defined asE \ F0.

11The connectivity of a pair of vertices is the minimum weight
of a cut separating them.



The second phase is iterative. The input to iterationi is a graph
(V, Yi−1), which is a subgraph of the input graph to iteration
i − 1 (i.e. Yi−1 ⊆ Yi−2). Iterationi comprises the following
steps:

• If the number of edges inYi−1 is at most2ρn, we take
all those edges inGǫ with weight2i−1 each, and termi-
nate the algorithm.

• Otherwise, all edges inYi are sampled with probability
1/2; call the sampleXi and letGi = (V,Xi).

• We identify a set of edges inXi (call this setFi) that
has the following properties:

– The number of edges inFi is at most2ki|Vc|, where
ki = ρ · 2i+1, andVc is the set of components in
(V, Yi), whereYi = Xi \ Fi.

– Each edge inYi is ki-heavy inGi.

• We give a sampling probabilitypi = min
{

3
169·22i−9 , 1

}

to all edges inFi.

The final phase consists of replacing each edge inFi (for each
i) with 2i parallel edges, and then sampling each parallel edge
independently with probabilitypi. If an edge is selected in the
sample, it is added toGǫ with weight1/pi.

We now give a short description of the sub-routine that con-
structs the setFi in the second phase of the algorithm. This
sub-routine is iterative itself: we start withVc = V andEc =
Xi, and letGc = (Vc, Ec). We repeatedly constructki+1 NI
forests forGc whereki = ρ · 2i+1 and contract all edges in
the(ki +1)st forest to obtain a newGc, until |Ec| ≤ 2ki|Vc|.
The set of edgesEc that finally achieves this property forms
Fi.

The complete algorithm is given in Algorithm 2.

Cut Preservation. We use the following notation throughout:
for any set of unweighted edgesZ, cZ denotes these edges
with a weight ofc given to each edge. Our goal is to prove the
following theorem.

Theorem 5.1. Gǫ ∈ (1 ± ǫ)G with probability at least1 −
8/n.

Let K be the maximum value ofi for which Fi 6= ∅; let
S =

(
∪Ki=02

iFi
)
∪ 2KYK andGS = (V, S). Then, we prove

the following two theorems, which together yield Theorem 5.1
using the union bound.12

Theorem 5.2. GS ∈ (1 ± ǫ/3)G with probability at least
1− 4/n.

Theorem 5.3. Gǫ ∈ (1 ± ǫ/3)GS with probability at least
1− 4/n.

The following property is key to proving both theorems.

Lemma 5.4. For any i ≥ 0, any edgee ∈ Yi is ki-heavy in
Gi = (V,Xi), whereki = ρ · 2i+1.

Proof. Since all edges inY0 are in NI forestsT2ρ+1, T2ρ+2, . . .
of G0 = G, the lemma holds fori = 0.

12Observe that sinceǫ ≤ 1, (1+ǫ/3)2 ≤ 1+ǫ and(1−ǫ/3)2 ≥
1− ǫ.

Algorithm 2 The linear-time sparsification algorithm.

procedureSparsify(G)
input: An undirected unweighted graphG = (V,E), a
parameterǫ ∈ (0, 1)

output: An undirected weighted graphGǫ = (V,Eǫ)

Setρ = 1014 lnn
0.38ǫ2

.
If m ≤ 2ρn, thenGǫ = G and terminate; else, continue.
Construct NI forestsT1, T2, . . . for G.
Seti = 0; X0 = E; F0 = ∪1≤j≤2ρTj ; Y0 = X0 \ F0.
Add each edge inF0 toGǫ with weight 1.
OuterLoop: If |Yi| ≤ 2ρn, then add each edge inYi to
Gǫ with weight2i−1 and terminate; else, continue.
Sample each edge inYi with probability 1/2 to construct
Xi+1.
Incrementi by 1; setEc = Xi; Vc = V ; ki = ρ · 2i+1.
InnerLoop: If |Ec| ≤ 2ki|Vc|, then

SetFi = Ec; Yi = Xi \ Ec.
For each edgee ∈ Fi, setλe = ρ · 4i.
Go toOuterLoop.

Else,
Construct NI forestsT1, T2, . . . , Tki+1 for graph
Gc = (Vc, Ec).
UpdateGc by contracting all edges inTki+1.
Go toInnerLoop .

For eachi, for each edgee ∈ Fi,

Setpe = min
{

9216 lnn
0.38λeǫ2

, 1
}
= min

{
3

169·22i−9 , 1
}

.

Generatere from Binomial(2i, pe).
If re > 0, add edgee toGǫ with weightre/pe.

We now prove the lemma fori ≥ 1. LetGe = (Ve, Ee) be
the component ofGi containinge. We will show thate is ki-
heavy inGe; sinceGe is a subgraph ofGi, the lemma follows.
In the execution of the else block ofInnerLoop onGe, there
are multiple contraction operations, each comprising the con-
traction of a set of edges. We show that any such contracted
edge iski-heavy inGe; it follows thate is ki-heavy inGe.

LetGe havet contraction phases and let the graph produced
after contraction phaser beGe,r. We now prove that all edges
contracted in phaser must beki-heavy inGe by induction on
r. For r = 1, sincee appears in the(ki + 1)st NI forest of
phase 1,e is ki-heavy inGe. For the inductive step, assume
that the property holds for phases1, 2, . . . , r. Any edge that is
contracted in phaser + 1 appears in the(ki + 1)st NI forest
of phaser + 1; therefore,e is ki-connected inGe,r. By the
inductive hypothesis, all edges ofGe contracted in previous
phases areki-heavy inGe; therefore, an edge that iski-heavy
in Ge,r must have beenki-heavy inGe. �

Proof of Theorem 5.2.The next lemma (proof omitted due to
space limitations) follows from the general framework.

Lemma 5.5. With probability at least1 − 4/n2, for every
cut C in Gi, |2x(C)

i+1 + f
(C)
i − x

(C)
i | ≤ ǫ/13

2i/2
· x(C)

i , where

x
(C)
i , x

(C)
i+1 and f (C)

i respectively denote the weight ofXi ∩
C,Xi+1 ∩ C andFi ∩ C.



We use the above lemma to prove the following lemma, of
which Theorem 5.2 is a corollary forj = 0.

Lemma 5.6. Let Sj =
(
∪Ki=j2i−jFi

)
∪ 2K−jYK for any

j ≥ 0. Then,Sj ∈ (1 ± (ǫ/3)2−j/2)Gj with probability at
least1− 4/n, whereGj = (V,Xj).

Proof. To prove this lemma, we need to use the following fact
(proof omitted due to space limitations).

Fact 5.1. Let x ∈ (0, 1] and ri = 13 · 2i/2. Then, for any
k ≥ 0,

∏k
i=0(1 + x/ri) ≤ 1 + x/3 and

∏k
i=0(1 − x/ri) ≥

1− x/3.

For any cutC in G, let the edges crossingC in Sj beS(C)
j ,

and let their total weight bes(C)
j . Also, letX(C)

i , Y (C)
i and

F
(C)
i be the set of edges crossing cutC in Xi, Yi andFi re-

spectively, and let their weights bex(C)
i , y(C)

i andf (C)
i .

SinceK ≤ n−1, we can use the union bound on Lemma 5.5
to conclude that with probability at least1 − 4/n, for every
0 ≤ i ≤ K and for all cutsC,

2x
(C)
i+1 + f

(C)
i ≤ (1 + ǫ/ri)x

(C)
i

2x
(C)
i+1 + f

(C)
i ≥ (1− ǫ/ri)x

(C)
i ,

whereri = 13 · 2i/2. Then,

sCj = 2K−jy
(C)
K + 2K−jf

(C)
K + 2K−1−jf

(C)
K−1 + . . .+ f

(C)
j

= 2K−jx
(C)
K + 2K−1−jf

(C)
K−1 + . . .+ f

(C)
j

since y
(C)
K + f

(C)
K = x

(C)
K

= 2K−1−j(2x
(C)
K + f

(C)
K−1) + (2K−2−jf

(C)
K−2 + . . .)

≤ (1 + ǫ/rK−1)2
K−1−jx

(C)
K−1 + (2K−2−jf

(C)
K−2 + . . .)

≤ (1 + ǫ/rK−1)(2
K−1−jx

(C)
K−1 + 2K−2−jf

(C)
K−2 + . . .)

. . .

≤ (1 + ǫ/rK−1)(1 + ǫ/rK−2) . . . (1 + ǫ/rj)x
(C)
j

≤ (1 + (ǫ2−j/2)/rK−1−j)(1 + (ǫ2−j/2)/rK−2−j) . . .

. . . (1 + (ǫ2−j/2)/r0)x
(C)
j since rj+i = ri · 2j/2

≤ (1 + (ǫ/3)2−j/2)x
(C)
j by Fact 5.1.

Similarly, we can show thatsCj ≥ (1− (ǫ/3)2−j/2)x
(C)
j . �

Proof of Theorem 5.3.First, observe that edgesF0 ∪ 2KYK
are identical inGS andGǫ. Therefore, we do not consider
these edges in the analysis below. For anyi ≥ 1, let ψ(i)
be such that2ψ(i) ≤ ρ · 4i ≤ 2ψ(i)+1 − 1. Note that for
any j, ψ(i) = j for at most one value ofi. Then, for any
j ≥ 1, Rj = Fi if j = ψ(i) andRj = ∅ if there is noi
such thatj = ψ(i). We setα = 32/3; πj = ρ · 4K ; for any
j ≥ 1, Qj = (V,Wj) whereWj = ∪i−1≤r≤K4K−r+12rFr
if Rj 6= ∅ andj = ψ(i), andWj = ∅ if Rj = ∅.

The following lemma ensuresπ-connectivity (proof omitted
due to space limitations).

Lemma 5.7. With probability at least1 − 4/n, every edge
e ∈ Fi = Rψ(i) for eachi ≥ 1 is ρ · 4K -heavy inQψ(i).

We now prove theα-overlap property. For any cutC, let
f
(C)
i andw(C)

i respectively denote the total weight of edges

crossing cutC in Fi andWψ(i) respectively for anyi ≥ 0.
Further, let the number of edges crossing cutC in ∪Ki=02

iFi
bef (C). Then,

K∑

i=1

w
(C)
i 2ψ(i)−1

π
=

K∑

i=1

K∑

r=i−1

f
(C)
r · 2r · 4K−r+1

2 · 4K−i

=
K∑

r=0

f
(C)
r

2r

r+1∑

i=1

22i+1 =
32

3

K∑

r=0

2rf (C)
r =

32

3
f (C).

Using Theorem 2.3, we conclude the proof of Theorem 5.3.

Size ofGǫ. We now prove that the expected number of edges
in Gǫ isO(n log n/ǫ2). For i ≥ 1, defineDi to be the set of
connected components in the graphGi = (V,Xi); letD0 be
the single connected component inG. For anyi ≥ 1, if any
connected component inDi remains intact inDi+1, then there
is no edge from that connected component inFi. On the other
hand, if a component inDi splits intoη components inDi+1,
then the algorithm explicitly ensures that

∑
e∈Fi

we
λe

13 from

that connected component is
∑
e∈Fi

2i

ρ·4i
≤
(
ρ·2i+2·2i

ρ·4i

)
η =

4η ≤ 8(η − 1). Therefore, ifdi = |Di|, then

K∑

i=1

∑

e∈Fi

we
λe

≤
K∑

i=1

8(di+1 − di) ≤ 8n,

since we can have at mostn singleton components. It follows
from Theorem 2.3 that the expected number of edges added to
Gǫ by the sampling isO(n log n/ǫ2).

Time complexity. If m ≤ 2ρn, the algorithm terminates after
the first step which takesO(m) time. Otherwise, we prove
that the expected running time of the algorithm isO(m +
n log n/ǫ2) = O(m) sinceρ = Θ(log n/ǫ2). First, ob-
serve that phase 1 takesO(m + n log n) time. In iteration
i of phase 2, the first step takes|Yi−1| time. Using arguments
similar to [4], we can show that all the remaining steps take
O(|Xi| + n log n) time. SinceXi ⊆ Yi−1 and the steps are
executed only ifYi−1 = Ω(n log n/ǫ2), it follows that the
total time complexity of iterationi of phase 2 isO(|Yi−1|).
SinceYi ⊂ Xi andE[|Xi|] = E[|Xi−1|]/2, and |Y0| ≤
m, it follows that the expected overall time complexity of
phase 2 isO(m). Finally, the time complexity of phase 3 is
O(m+ n log n/ǫ2) (see e.g. [8]).

6. LOWER BOUNDS
We have already noted that independent sampling of edges

cannot produce sparsifiers containingo(n log n) edges. A pos-
sible alternative is to sample spanning trees uniformly at ran-
dom, and Theorem 1.2 asserts that this sampling technique in-
deed produces cut sparsifiers. We now give a lower bound for
the tradeoff between the number of trees (i.e., the valueρ) and
the quality of sparsification in Theorem 1.2.

Lemma 6.1. For any constantc ≥ 1, there is a graph such
that ρ = Ω(log n) spanning trees have to be sampled uni-
formly at random to approximate all cuts within a factorc
with constant probability.

13we is the number of parallel copies ofe in the Binomial sam-
pling step.



Proof. Let G be a graph defined as follows. Its vertices are
{u1, . . . , un} ∪ {v1, . . . , vn+1}. For everyi = 1, . . . , n, add
k parallel edgesviv

(1)
i+1, . . . , viv

(k)
i+1, and a single length-two

pathvi-ui-vi+1. The edgesviv
(j)
i+1 are calledheavy, and the

edgesviui anduivi+1 are calledlight. Note that the heavy
edges each have effective conductance exactly(2k + 1)/2.
The light edges each have effective conductance exactly(2k+
1)/(k + 1) < 2.

A uniform random spanning tree in this graph can be con-
structed by repeating the following experiment independently
for eachi = 1, . . . , n. With probability2k/(2k + 1), add a
uniformly selected heavy edgeviv

(j)
i+1 to the tree, and add a

uniformly selected light edgeviui or uivi+1 to the tree. In
this case we say that the tree is “heavy in positioni”. Other-
wise, with probability1/(2k + 1), add both light edgesviui
anduivi+1 to the tree but no heavy edges. In this case we say
that the tree is “light in positioni”.

Our sampling procedure produces a sparsifier that is the
union of ρ trees, where every edgee in the sparsifier is as-
signed weightce/ρ. Suppose there is ani such that all sampled
trees are light in positioni. Then the cut defined by vertices
{v1, u1, v2, u2, . . . , vi} has weight exactly(2k+1)/(k+1) <
2 in the sparsifier, whereas the true value of the cut isk + 1.

The probability that at least one tree is heavy in positioni is
1−(2k+1)−ρ. The probability that there exists ani such that
every tree is light in positioni is p = 1− (1− (2k+ 1)−ρ)n.
Supposeρ = lnn/ ln(2k + 1). Thenlimn→∞ p = 1 − 1/e.
So with constant probability, there is ani such that every tree
is light in positioni, and so the sparsifier does not approximate
the original graph better than a factork+1

2
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