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A GENERAL FRAMEWORK FOR GRAPH SPARSIFICATION\ast 

WAI-SHING FUNG\dagger , RAMESH HARIHARAN\ddagger , NICHOLAS J. A. HARVEY\S , AND

DEBMALYA PANIGRAHI\P 

Abstract. We present a general framework for constructing cut sparsifiers in undirected graphs---
weighted subgraphs for which every cut has the same weight as the original graph, up to a multi-
plicative factor of (1 \pm \epsilon ). Using this framework, we simplify, unify, and improve upon previous
sparsification results. As simple instantiations of this framework, we show that sparsifiers can be
constructed by sampling edges according to their strength (a result of Bencz\'ur and Karger [Ap-
proximating s-t minimum cuts in \~o(n2) time, in Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, ACM, New York, 1996, pp. 47--55], [SIAM J. Comput., 44
(2015), pp. 290--319]), effective resistance (a result of Spielman and Srivastava [SIAM J. Comput.,
40 (2011), pp. 1913--1926]), or edge connectivity. Sampling according to edge connectivity is the
most aggressive method, and the most challenging to analyze. Our proof that this method produces
sparsifiers resolves an open question of Bencz\'ur and Karger. While the above results are interesting
from a combinatorial standpoint, we also prove new algorithmic results. In particular, we give the
first (optimal) O(m)-time sparsification algorithm for unweighted graphs. Our algorithm has a run-
ning time of O(m)+ \~O(n/\epsilon 2) for weighted graphs, which is also linear unless the input graph is very
sparse itself. In both cases, this improves upon the previous best running times (due to Bencz\'ur
and Karger [Approximating s-t minimum cuts in \~o(n2) time, in Proceedings of the Twenty-Eighth
Annual ACM Symposium on Theory of Computing, ACM, New York, 1996, pp. 47--55], [SIAM J.
Comput., 44 (2015), pp. 290--319]) of O(m log2 n) (for the unweighted case) and O(m log3 n) (for the
weighted case), respectively. Our algorithm constructs sparsifiers that contain O(n logn/\epsilon 2) edges
in expectation. A key ingredient of our proofs is a natural generalization of Karger's bound on the
number of small cuts in an undirected graph. Given the numerous applications of Karger's bound,
we suspect that our generalization will also be of independent interest.
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1. Introduction. Sparsification is an important technique in the design of fast
graph algorithms. The goal of sparsification is to represent a dense graph using a
sparse graph so that important structural properties are approximately preserved.
Remarkably, this is possible, for various structural properties. For example, given any
undirected graph, there are sparse subgraphs that approximate all pairwise distances
up to a multiplicative and/or additive error (see [33] and subsequent research on
spanners and emulators), every cut to an arbitrarily small multiplicative error (called
cut sparsifiers, introduced by Bencz\'ur and Karger [7, 8]), or the entire Laplacian
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quadratic form up to an arbitrarily small multiplicative error (called spectral sparsi-
fiers, introduced by Spielman and Teng [36, 37]), and so on. Such approximations are
a cornerstone of numerous important results in theoretical computer science.

In this paper, we consider the problem of cut sparsification, i.e., approximating
every cut arbitrarily well. This problem was originally studied by Karger [20] and
Bencz\'ur and Karger [7, 8], motivated by the design of fast connectivity algorithms.
They proved that every undirected graph has cut sparsifiers and gave an efficient
algorithm for their construction. They also put forward a conjecture about cut spar-
sification using edge connectivities and predicted that their cut sparsification results
can be significantly simplified if the conjecture were true. We resolve this conjecture
in the affirmative as a simple corollary of a general cut sparsification framework that
we propose, and show that our framework can be used to simplify, unify, and improve
previous cut sparsification results. Our structural insights also lead to improved cut
sparsification algorithms, both for weighted and unweighted graphs. In particular,
we give a strictly linear-time algorithm for cut sparsification in unweighted graphs.
Since the introduction of cut sparsifiers, a stronger notion of sparsification---spectral
sparsification---has emerged. Our results are restricted to cut sparsifiers only and
the sparsifiers that we construct do not satisfy the stronger requirements of spectral
sparsification.

The cut sparsification problem. In this problem, the input comprises a
weighted, undirected graph G = (V,E) and an error parameter \epsilon . Throughout this
paper, we will assume that the edge weights are integral, allowing a multigraph rep-
resentation. This transformation does not impact our structural results, but it allows
us to use unweighted graphs, thereby simplifying notation. The efficiency of our spar-
sification algorithms, however, is sensitive to the presence of edge weights, and we
distinguish between unweighted and weighted graphs in algorithmic results.

The goal of the cut sparsification problem is to output a weighted graph G\epsilon =
(V, F ) such that the value of every cut in G\epsilon is within a multiplicative factor (1\pm \epsilon )
of the value of the corresponding cut in G. (Recall that the value of a cut is the
number of edges in the cut for unweighted graphs, and the sum of edge weights for
weighted graphs.) The graph G\epsilon is then called a cut sparsifier of G, which will often be
abbreviated as G\epsilon \in (1\pm \epsilon )G. Cut sparsification is frequently used as a preprocessing
step in connectivity algorithms so that the algorithms run on graphs containing fewer
edges and are therefore faster.

1.1. Connectivity parameters. In this paper, we will use several connectivity
parameters for undirected graphs, of which edge connectivity is perhaps the most
natural.

Definition 1.1. For any pair of vertices u and v, the edge connectivity between
u and v, denoted kuv, is defined as the minimum value of a cut that separates u and
v. The connectivity of edge e = (u, v), denoted ke, is defined as kuv.

Bencz\'ur and Karger introduced a new connectivity parameter called edge strength
and used it in their sparsification scheme.

Definition 1.2. A k-strong component of G is a maximal k-edge-connected,
vertex-induced subgraph of G. The strength of edge e = (u, v), denoted se or suv,
is the maximum value of k such that a k-strong component of G contains both u and
v.

As a third connectivity parameter, we define electrical resistances and conduc-
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tances of edges, which turns out to be useful for spectral sparsification.

Definition 1.3. The effective conductance of edge e = (u, v), denoted ce or cuv,
is the amount of current that flows when each edge e of weight we is viewed as a
resistor of resistance 1/we and a unit voltage difference is applied between u and v.
The effective resistance of an edge e is the reciprocal of its effective conductance.

Nagamochi and Ibaraki [32, 31] introduced a simple graph partitioning scheme for
estimating connectivities that leads to a new connectivity parameter called Nagamochi--
Ibaraki (NI) indices.

Definition 1.4. A sequence of edge-disjoint spanning forests1 T1, T2, . . . of a
graph G is said to be an NI forest packing if Ti is a spanning forest on the edges
left in G after removing those in T1, T2, . . . , Ti - 1. For weighted graphs, an edge with
weight we must appear in we contiguous forests. The NI index of edge e, denoted \ell e,
is the index of the (last, if weighted) NI forest in which e appears.

The parameters se, ce, and \ell e are mutually incomparable; however, the next
lemma shows that edge connectivity ke dominates all of these parameters.

Lemma 1.5. Suppose edge e in an undirected graph G has edge connectivity ke,
effective conductance ce, edge strength se, and NI index \ell e. Then,

ke \geq max(ce, se, \ell e).

Proof. ke \geq se follows from the fact that the strength of an edge is equal to its
connectivity in a subgraph.

Consider a cut C of weight ke separating the terminals of edge e. We contract
each side of this cut into a single vertex. In other words, we increase the conductance
of each edge, other than those in C, to \infty . By Rayleigh's monotonicity principle (see,
e.g., [11]), the effective conductance of e does not decrease due to this transformation.
Since the effective conductance of e after the transformation is ke, ce \leq ke in the
original graph.

Note that there are \ell e edge-disjoint paths connecting the end-points of edge e in
the first \ell e NI forests. It follows, by Menger's theorem (see, e.g., [10]), that ke \geq 
\ell e.

Further, there are known bounds on the sum of reciprocals of these connectivity
parameters. The bound on edge strengths is given in [7].

Lemma 1.6 (see Bencz\'ur and Karger [7]). Suppose G is an undirected graph
where edge e has weight we and strength se. Then,\sum 

e

we
se

\leq n - 1.

The bound on edge connectivities now follows from Lemma 1.5.

Corollary 1.7. Suppose G is an undirected graph where edge e has weight we
and connectivity ke. Then, \sum 

e

we
ke

\leq n - 1.

We now show similar bounds for conductances and NI indices. The bound for
conductance is well known.

1A spanning forest of a (not necessarily connected) graph is a collection of spanning trees, one
on each connected component of the graph.
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Lemma 1.8 (see Bollob\'as [9, Exercise IX.23]). Suppose G is an undirected graph
where edge e has weight we and conductance ce. Then,\sum 

e

we
ce

= n - 1.

On the other hand, the bound for NI indices is slighter weaker and follows from
a counting argument.

Lemma 1.9. Suppose G is an undirected graph and let T1, T2, . . . be an NI forest
packing where edge e has weight we and NI index \ell e. If W = maxe we, then\sum 

e

we
\ell e

= O(n log(nW )).

If particular, if all edge weights are polynomial in n, then\sum 
e

we
\ell e

= O(n log n).

Proof. Since the sum of edge weights
\sum 
e we \leq n2W , the number of NI forests in

any NI forest packing is also at most n2W . Now, since \ell e is the last index of a forest
that contains a copy of e, we can upper bound

\sum 
e
we

\ell e
by treating edge e as a set of we

distinct parallel edges, each having an NI index equal to the NI forest it belongs to.
Then, NI forest Ti contributes at most (n  - 1)/i to the sum, and the overall bound
follows by summing over all i.

1.2. Edge compression. A key idea in cut sparsification is that of edge com-
pression.

Definition 1.10. If the input graph is unweighted, then an edge e is said to be
compressed with probability pe if the edge is sampled with probability pe and if selected,
it is given a weight of 1/pe in the output. If the input graph is weighted and edge e
has weight we, then it is said to be compressed with probability pe if its weight in the
output graph is 1/pe times a binomial random variable with parameters we and pe.
Note that for integral we, this is equivalent to replacing the edge of weight we with we
parallel unweighted edges and applying the unweighted compression procedure to each
such edge independently.

Note that the expected weight of an edge after compression is equal to its weight
before compression. However, the variance of the edge weight after compression de-
pends on the probability pe.

1.3. Related work. For structural results in sparsification, we will describe the
results for unweighted (multi-)graphs. This is without loss of generality (w.l.o.g.)
for integer edge weights since an edge of weight w is equivalent to w parallel edges.
However, as mentioned earlier, such a transformation affects algorithmic performance;
hence, for algorithmic results, we will distinguish between weighted and unweighted
graphs. It is important to note that in either case, the output graph, i.e., the sparsifier,
is weighted due to edge compression.

The first result in cut sparsification was obtained by Karger [20] who proposed a
uniform compression of edges.

Theorem 1.11 (see Karger [20]). Let G\epsilon be obtained from an unweighted graph
G by independently compressing edge e with probability p = min(\rho /\lambda , 1), where

\rho = 3(d+ 2) lnn/\epsilon 2
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and \lambda is the value of a minimum cut in G. Then, G\epsilon contains O
\bigl( 
m logn
\lambda \epsilon 2

\bigr) 
edges in

expectation, and G\epsilon \in (1\pm \epsilon )G with probability at least 1 - n - d.

Karger also gave an O(m)-time implementation of this compression scheme for
weighted graphs. This theorem depends on the value of the minimum cut in G.
Bencz\'ur and Karger [7] removed this dependence by using nonuniform compression
of edges to show that that for every graph G, there exists a cut sparsifier containing
only O(n log n/\epsilon 2) edges.

Theorem 1.12 (see Bencz\'ur and Karger [7]). Let G\epsilon be obtained from an un-
weighted graph G by independently compressing edge e with probability pe = min(\rho /se, 1),
where

\rho = 16(d+ 2) lnn/\epsilon 2.

(Recall that se is the strength of edge e.) Then, G\epsilon contains O(n log n/\epsilon 2) edges in
expectation, and G\epsilon \in (1\pm \epsilon )G with probability at least 1 - n - d.

Bencz\'ur and Karger also gave an efficient randomized algorithm to construct a
cut sparsifier containing O(n log n/\epsilon 2) edges in expectation. This algorithm runs in
O(m log2 n) time if G is unweighted and O(m log3 n) time if G is weighted. They also
conjectured that replacing edge strengths by edge connectivity in their compression
scheme will also yield cut sparsifiers, and will lead to significant simplification in both
sparsification algorithms and their analysis.

As noted earlier, Spielman and Teng [37] introduced spectral sparsification as a
generalization of cut sparsification and proved that every graph has spectral sparsifiers
with O(n logc n/\epsilon 2) edges for a large constant c. This was improved by Spielman and
Srivastava [35] who obtained spectral sparsifiers containing O(n log n/\epsilon 2) edges.

Theorem 1.13 (see Spielman and Srivastava [35]). Let G\epsilon be obtained from
an unweighted graph G by independently compressing edge e with probability pe =
min(\rho /ce, 1), where

\rho = 6 lnn/\epsilon 2.

(Recall that ce is the conductance of edge e.) Then, G\epsilon contains O(n log n/\epsilon 2) edges
in expectation, and G\epsilon is a spectral sparsifier of G with constant probability.

Remark 1. Actually, the result proven by Spielman and Srivastava [35] is slightly
different: they construct the sparsifier by drawing exactly \rho (n  - 1) independently
and identically distributed (i.i.d.) samples, in which each edge e is sampled with
probability 1

ce(n - 1) and is assigned weight ce
\rho . One may modify their analysis to

obtain Theorem 1.13 by using the ``matrix Chernoff bound,"" e.g., Tropp [38]. On the
other hand, the analysis of our paper can easily be modified to use their i.i.d. sampling
process instead of our edge compression process. To do so, one simply modifies the
proof of Lemma 3.1 to use a different form of the Chernoff bound.

Spielman and Srivastava [35] also gave an efficient algorithm to construct a spec-
tral sparsifier with O(n log n/\epsilon 2) edges in expectation; using later improvements to
linear system solvers [25, 26, 24], the best algorithm for producing a spectral sparsifier
containing O(n log n/\epsilon 2) edges now runs in O(min(m log2 n,m log n+ n log5 n)) time
(ignoring log log n factors).

Further improvement in spectral sparsification was achieved by Batson, Spielman,
and Srivastava [6], who showed the existence of spectral sparsifiers containing O(n/\epsilon 2)
edges for every graph, which is optimal for spectral sparsifiers [6], and even for cut
sparsifiers [4]. Batson, Spielman, and Srivastava also gave a deterministic algorithm
for constructing such spectral sparsifiers in O(n3m) time.
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Subsequent work. Subsequent to our work, connections between spectral spar-
sifiers and graph spanners [18], and variants of spectral sparsification where spe-
cific subgraphs need to be retained [23] have been studied. Both cut sparsifica-
tion [1, 14, 2, 3, 15] and spectral sparsification [22] have also been studied recently
in the semi-streaming model. Furthermore, a series of efficient algorithms for spec-
tral sparsification have been proposed [40, 39, 27], the current best being an algo-

rithm with running time \~O
\bigl( 
qmn5/q

\epsilon 4+4/q

\bigr) 
for constructing a spectral sparsifier containing

O(qn/\epsilon 2) edges.

1.4. Our contributions. We now outline our main contributions.

1.4.1. A general sparsification framework. We propose a general sparsifi-
cation framework and set out sufficient conditions for a sampling scheme to result in
cut sparsifiers. In describing the framework, we will assume that the input graph G is
unweighted (allowing for parallel edges). Let G\epsilon be obtained from G by independently
compressing edge e with probability

pe = min

\biggl( 
112\gamma lnn

0.38\lambda e\epsilon 2
, 1

\biggr) 
,

where \gamma is independent of e and \lambda e is a parameter defined on edge e. We describe
below a sufficient condition on the \gamma and \lambda e values for G\epsilon to be a cut sparsifier.

To describe this sufficient condition, we partition the edges in G according to the
value of \lambda e into sets F0, F1, . . . , F\Lambda , where

\Lambda = \lfloor lgmax
e\in E

\{ \lambda e\} \rfloor 

and

Fi = \{ e : 2i \leq \lambda e \leq 2i+1  - 1\} .

We will obtain concentration bounds for each Fi separately since edges in any Fi have
roughly the same sampling probability in the compression scheme. Ideally, we would
like to bound the error due to compression of edges in Fi by a multiplicative factor of
the size of Fi. Then, summing over all Fi's would immediately yield a concentration
bound on the entire graph since the Fi's are disjoint. However, it might so happen that
the number of edges in a particular Fi is small, yet these edges have a low sampling
probability. This is inconvenient since we cannot hope to bound the error due to such
an Fi by a multiplicative factor of the size of Fi. To overcome this problem, we define
a subgraph Gi of G (with edges replicated, if required) for each Fi such that edges
in Fi are well connected in Gi and, therefore, the error due to Fi can be bounded by
a multiplicative factor of the size of Gi. The goal then becomes one of choosing Gi's
such that no edge in G is replicated a large number of times across all the Gi's. This
ensures that the sum of the individual error bounds on the Fi's in terms of the Gi's
can be expressed as a multiplicative error on the entire graph G.

Formally, let \scrG = \{ Gi = (V,Ei) : 1 \leq i \leq \Lambda \} be a set of subgraphs of G such
that Ei \supseteq Fi for every i. (As mentioned above, we are allowed to make multiple
copies of the same edge in G in defining Gi. This flexibility will be crucial to us in
an application of the framework.) For a given set of parameters \Pi = (\pi 0, \pi 1, . . . , \pi \Lambda ),
the following properties will play a crucial role in our definition of \scrG :

\bullet (\Pi -connectivity.) The connectivity of any edge e \in Fi in graph Gi is at
least \pi i.
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\bullet (\gamma -overlap.) For any cut C,

\Lambda \sum 
i=0

e
(C)
i 2i - 1

\pi i
\leq \gamma \cdot e(C),

where e(C) and e
(C)
i denote the value of cut C in graphsG andGi, respectively.

(Recall that \gamma is a parameter in the edge compression probabilities.)
Theorem 1.14 describes the properties of such a sampling scheme, and is our central
theorem of the paper.

Theorem 1.14. Fix the parameters \gamma and \lambda e for each edge e. If there exists \scrG 
satisfying \Pi -connectivity and \gamma -overlap for some \Pi , then G\epsilon \in (1\pm \epsilon )G with probability
at least 1  - 4/n, where G\epsilon is obtained by edge compression using parameters \gamma and
\lambda e's. Furthermore, G\epsilon has O

\bigl( 
\gamma logn
\epsilon 2

\sum 
e\in E

1
\lambda e

\bigr) 
edges in expectation.

1.4.2. Applications of the sparsification framework. Our first application
of the sparsification framework is to show that compressing by edge connectivities
yields cut sparsifiers, thereby resolving the conjecture of Bencz\'ur and Karger.

Theorem 1.15. Let G\epsilon be obtained from an unweighted graph G by independently
compressing edge e with probability pe = min(\rho /\kappa e, 1), where

\rho = Cd ln2 n/\epsilon 2

for a large enough constant C and \kappa e \leq ke. Then, G\epsilon \in (1 \pm \epsilon )G with probability
at least 1  - n - d. Additionally, if \kappa e = ke, then G\epsilon contains O(n log2 n/\epsilon 2) edges in
expectation.

The next three corollaries of this theorem follow from Lemmas 1.5, 1.6, 1.8, and
1.9.

Corollary 1.16. Let G\epsilon be obtained from an unweighted graph G by indepen-
dently compressing edge e with probability pe = min(\rho /se, 1), where

\rho = Cd ln2 n/\epsilon 2

for a large enough constant C. Then, G\epsilon contains O(n log2 n/\epsilon 2) edges in expectation,
and G\epsilon \in (1\pm \epsilon )G with probability at least 1 - n - d.

Recall that the corresponding result of Bencz\'ur and Karger [7, Theorem 1.12] is
stronger than this result since it produces sparsifiers containing O(n log n/\epsilon 2) edges
in expectation. We show later that we can match the Bencz\'ur--Karger bound (up to
constant factors) by using our sparsification framework directly.

Corollary 1.17. Let G\epsilon be obtained from an unweighted graph G by indepen-
dently compressing edge e with probability pe = min(\rho /ce, 1), where

\rho = Cd ln2 n/\epsilon 2

for a large enough constant C. Then, G\epsilon contains O(n log2 n/\epsilon 2) edges in expectation,
and G\epsilon \in (1\pm \epsilon )G with probability at least 1 - n - d.

This is weaker than the result of Spielman and Srivastava stated earlier in The-
orem 1.13: they prove spectral sparsification, not just cut sparsification, and their
sparsifier only has O(n log n/\epsilon 2) edges.
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Corollary 1.18. Let G\epsilon be obtained from an unweighted graph G by indepen-
dently compressing edge e with probability pe = min(\rho /\ell e, 1), where

\rho = Cd ln2 n/\epsilon 2

for a large enough constant C. Then, G\epsilon contains O(n log2 n log(nW )/\epsilon 2) edges in
expectation, and G\epsilon \in (1 \pm \epsilon )G with probability at least 1  - n - d, where W is the
maximum weight of an edge in G.

Note that the additional factor of log(nW ) is due to this term in Lemma 1.9.
As in the case of edge strengths, we will show later that this result can be improved

by applying the sparsification framework directly to obtain the following theorem. We
state this theorem for weighted graphs since we will use this theorem for algorithmic
applications.

Theorem 1.19. Let G\epsilon be obtained from a weighted graph G by independently
compressing edge e with probability pe = min(\rho /\ell e, 1), where

\rho = Cd lnn/\epsilon 2

for a large enough constant C. Then, G\epsilon contains O(n log n log(nW )/\epsilon 2) edges in
expectation, and G\epsilon \in (1 \pm \epsilon )G with probability at least 1  - n - d, where W is the
maximum weight of an edge in G.

Note that for both Corollary 1.18 and Theorem 1.19, the log(nW ) factor is re-
placed by log n for input graphs with polynomial edge weights.2

1.4.3. Sparsification algorithms. Our framework yields sparsification algo-
rithms that are not only simpler, but also faster. For simplicity, we will state our
running times for these algorithms assuming that the edge weights in the input graph
are polynomial in n. For larger weights, the running time of the algorithm and size
of the sparsifier typically have a log(nW ) factor instead of a log n factor. We do not
state these more general results for the sake of brevity.

Nagamochi and Ibaraki showed that an NI forest packing can be constructed
in O(m)-time for unweighted graphs [32], and O(m + n log n)-time for weighted
graphs [31]. For weighted graphs, note that sampling an edge e involves the gen-
eration of a binomial random variable with parameters we and pe. This can be done
in O(wepe) time (see, e.g., [17]); therefore, O(

\sum 
e\in E wepe) time overall for all edges.

Recalling that pe = min(\rho /\ell e, 1), it follows from Lemma 1.9 that the time complexity
of sampling all edges is O(n log2(n)/\epsilon 2), which is O(m). (If m = O(n log2(n)/\epsilon 2) then
we can retain all edges; therefore, we assume w.l.o.g. that m = \Omega (n log2(n)/\epsilon 2).)
Coupled with Theorem 1.19, we get the following theorem.

Theorem 1.20. For any input graph G (with edge weights polynomial in n) and
any constants \epsilon \in (0, 1), d > 0, there is a randomized algorithm that runs in O(m)-
time and produces a graph G\epsilon containing O(n log2 n/\epsilon 2) edges in expectation, where
G\epsilon \in (1\pm \epsilon )G with probability at least 1 - n - d .

The cut sparsifier produced by this algorithm contains O(n log2 n/\epsilon 2) edges in ex-
pectation, which is a factor of log n greater than that produced by previous algorithms

2We remark that the log(nW ) factor can be replaced by log(n), even with arbitrarily large edge
weights, via a slightly more involved argument that appears in our technical report [13, Corollary
1.2]. However, this alternative argument is intended for the scenario that pe = min(\rho /ke, 1) and does
not use the general framework of this paper, so it leads to slightly worse algorithmic results and we
do not discuss it herein.
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of Bencz\'ur and Karger. However, the output of this algorithm can be postprocessed
using the previous algorithm for weighted graphs to obtain a cut sparsifier contain-
ing O(n log n/\epsilon 2) edges. Recall that the best previously known algorithm runs in
O(m log3 n) time for weighted graphs.

Corollary 1.21. For any input graph G (with edge weights polynomial in n)
and any constants \epsilon \in (0, 1), d > 0, there is a randomized algorithm that runs in
O(m + n log5 n)-time, and produces a graph G\epsilon containing O(n log n/\epsilon 2) edges in
expectation, where G\epsilon \in (1\pm \epsilon )G with probability at least 1 - n - d .

We give a new algorithm for unweighted, simple graphs that reduces the running
time to the optimal O(m) (in expectation) without increasing the number of edges in
the cut sparsifier. In the rest of the paper, when we talk of an unweighted graph, we
mean a simple graph with no parallel edges and no edge weights (alternatively, every
edge has unit weight).

Theorem 1.22. For any unweighted input graph G and any constants \epsilon \in (0, 1), d
> 0, there is a randomized algorithm with runtime O(m) in expectation that produces
a graph G\epsilon containing O(n log n/\epsilon 2) edges in expectation, where G\epsilon \in (1 \pm \epsilon )G with
probability at least 1 - n - d .

1.5. Roadmap. This paper is organized as follows. Section 2 gives proofs of a
cut counting theorem which is the main technical tool that we use to prove properties
of the sparsification framework (Theorem 1.14) in section 3. Applications of the
framework to various sampling schemes appear in section 4. Finally, we present
sparsification algorithms in section 5.

2. Counting cut projections. One of our main ingredients is a natural gener-
alization of the following cut counting theorem.

Theorem 2.1 (see Karger [19, 21]). For any \alpha \geq 1, the number of cuts of value
at most \alpha \lambda in a graph is at most n2\alpha , where \lambda is the minimum value of a cut in the
graph.

To state our generalization, we need some definitions.

Definition 2.2. An edge is said to be k-heavy if its connectivity is at least k;
otherwise, it is said to be k-light. The k-projection of a cut is the set of k-heavy edges
in it.

Intuitively, we show that for a larger value of \alpha , the large number of cuts of size
\alpha \lambda predicted by Karger's theorem arises from many distinct k-projections of these
cuts for small values of k, whereas there are few distinct k-projections of these cuts
for large values of k.

Theorem 2.3. For any k \geq \lambda and any \alpha \geq 1, the number of distinct k-projections
in cuts of value at most \alpha k in a graph is at most n2\alpha , where \lambda is the minimum value
of a cut in the graph.

Before proceeding further, we need to introduce the splitting-off operation.

Definition 2.4. The splitting-off operation replaces a pair of edges (u, v) and
(v, w) with the edge (u,w), and is said to be admissible if it does not change the edge
connectivity kst between any two vertices s, t \not = v.

A key technical tool in our proof of Theorem 2.3 is a theorem of Mader [28] on
the feasibility of the splitting-off operation, whose statement requires us to define cut
edges first.
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Definition 2.5. A cut edge is an edge whose removal separates a connected graph
into two disconnected components.

Theorem 2.6 (see Mader [28]). Let G = (V,E) be a connected graph where
v \in V is a vertex that has degree \not = 3 and is not incident to any cut edge. Then, there
is a pair of edges (u, v) and (v, w) such that their splitting-off is admissible.

Since uniformly scaling edge weights does not affect the conditions of Theorem 2.3,
we may assume that G is Eulerian and does not have any cut edge. Therefore,
Theorem 2.6 applies to our graph. The operation of splitting-off of edges can also be
extended to vertices.

Definition 2.7. The splitting-off operation on an even-degree vertex v repeatedly
performs admissible splitting-off operations on the edges incident on v until v becomes
an isolated vertex.

Note that Theorem 2.6 implies that we can split-off any vertex in a Eulerian graph
with no cut edge.

Our proof strategy for Theorem 2.3 is to give an algorithm (Algorithm 1) with
the following property, which immediately implies Theorem 2.3. Here, q(F ) denotes
the minimum value of a cut whose k-projection is F .

Lemma 2.8. For any k-projection F with q(F ) \leq \alpha k, Algorithm 1 outputs F with
probability at least n - 2\alpha .

To describe Algorithm 1, we need an additional definition.

Definition 2.9. A vertex is said to be k-heavy if it is incident to a k-heavy edge;
otherwise, it is k-light.

As a preprocessing step, Algorithm 1 splits-off all k-light vertices in G. Since
Algorithm 1 preserves Eulerianness in G and does not introduce any cut edge, this
step (and subsequent splitting-off operations) is feasible. Next, it performs a set of
iterations, where in each iteration it contracts an edge selected uniformly at random
(where an edge e of weight we is replaced by we parallel edges), removes all self-
loops, and splits-off any vertices that may have become k-light as a result of the
contraction. The iterations terminate when at most \lceil 2\alpha \rceil vertices are left in the graph.
At this point, the algorithm outputs the k-projection of a cut selected uniformly at
random. Note that the algorithm adds new edges to G via the splitting-off process.
All new edges are treated as k-light irrespective of their connectivity. Therefore, the
k-projection of a cut that is output by the algorithm does not include any new edge.

When k = \lambda , there is no k-light vertex and Algorithm 1 reduces to a random
contraction algorithm which was used by Karger to prove Theorem 2.1. Our main
idea is that we can remove the k-light vertices while preserving the connectivities of
all k-heavy edges by using the splitting-off operation.

To prove Lemma 2.8, we fix a k-projection F with q(F ) \leq \alpha k. We will show that
the following invariants are maintained by Algorithm 1 with good probability:

\bullet (I1) F is a k-projection in the remaining graph,
\bullet (I2) q(F ) \leq \alpha k (where q(F ) now minimizes over cuts in the remaining graph),
and

\bullet (I3) every remaining edge that is k-heavy (with respect to the initial graph)
has connectivity at least k (in the remaining graph).
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Algorithm 1. An algorithm for proving bound on cut projections.

1: procedure Contract(G, k, \alpha ):
2: input: A graph G = (V,E), a parameter k \geq \lambda where \lambda is the weight of a

minimum cut in G, and an approximation factor \alpha 

3: RemoveLight(G, k)
4: while there are more than \lceil 2\alpha \rceil vertices remaining do
5: Pick an edge e uniformly at random
6: Contract e and remove any self-loops
7: RemoveLight(G, k)
8: end while
9: return the k-projection of a cut selected uniformly at random

10: function RemoveLight(G, k):
11: input: A graph G = (V,E), a parameter k

12: while there exists a k-light vertex v in G do
13: Perform admissible splitting-off at v until v becomes an isolated vertex
14: Remove v
15: end while
16: return G

In Algorithm 1, modifications to the graph are due to admissible splitting-offs,
contraction of edges, and removal of self-loops. Clearly, removing self-loops does not
affect the invariants. For the splitting-off operation, we note that

\bullet (I1) is preserved because we only split-off k-light edges,
\bullet (I2) is preserved because splitting-off never increases the size of any cut, and
\bullet (I3) is preserved because we only split-off at a light vertex and the splitting-
offs are admissible.

Finally, we consider edge contraction.

Lemma 2.10. Let the number of remaining vertices be r. Assuming that the in-
variants hold, they will continue to hold after the contraction operation with probability
at least 1 - 2\alpha /r.

Proof. For (I3), note that since contraction does not create new cuts, the edge
connectivity of an uncontracted edge cannot decrease. Now consider the graph before
the contraction. Since every remaining vertex v is k-heavy, the degree of each vertex
is at least k; thus the number of remaining edges is at least kr/2. Let C be a cut such
that F is the k-projection of C and q(F ) is the value of C. Note that (I1) and (I2)
are preserved if the contracted edge e is not in cut C. Since e is picked uniformly at

random, the probability that e is in C is at most q(F )
kr/2 \leq 2\alpha /r.

Let ri be the number of remaining vertices after the splitting-off operations in it-
eration i of Algorithm 1. Then, the probability that all the invariants hold throughout



A GENERAL FRAMEWORK FOR GRAPH SPARSIFICATION 1207

the execution of Algorithm 1, and F is the output, is at least\biggl( 
1 - 2\alpha 

r0

\biggr) \biggl( 
1 - 2\alpha 

r1

\biggr) 
. . .

\biggl( 
1 - 2\alpha 

\lceil 2\alpha \rceil + 1

\biggr) 
2 - (\lceil 2\alpha \rceil  - 1)

\geq 
\biggl( 
1 - 2\alpha 

n

\biggr) \biggl( 
1 - 2\alpha 

n - 1

\biggr) 
. . .

\biggl( 
1 - 2\alpha 

\lceil 2\alpha \rceil + 1

\biggr) 
2 - (\lceil 2\alpha \rceil  - 1)

\geq 
\biggl( 
1 - \lceil 2\alpha \rceil 

n

\biggr) \biggl( 
1 - \lceil 2\alpha \rceil 

n - 1

\biggr) 
. . .

\biggl( 
1 - \lceil 2\alpha \rceil 

\lceil 2\alpha \rceil + 1

\biggr) 
2 - (\lceil 2\alpha \rceil  - 1)

=
\lceil 2\alpha \rceil (\lceil 2\alpha \rceil  - 1) . . . 1

n(n - 1) . . . (n - \lceil 2\alpha \rceil + 1)
\cdot 2 - (\lceil 2\alpha \rceil  - 1)

\geq n - \lceil 2\alpha \rceil .

This proves the bound for half-integral \alpha . For extension to arbitrary \alpha , we need
to use generalized binomial coefficients. This generalization is exactly identical to
the corresponding generalization for Karger's cut counting theorem, and the reader is
referred to Corollary A.7 in [20] for the details.

This completes the proof of Lemma 2.8, which implies Theorem 2.3. Note that
this theorem reduces to Karger's cut counting theorem by setting k = \lambda . Given the
numerous applications of Karger's theorem (e.g., [5, 16, 20, 34]), we believe that our
generalization may be of independent interest.

3. The general sparsification framework. In this section, we will prove
Theorem 1.14. We reuse the notation defined in section 1.4.1. Recall that the \Pi -
connectivity property ensures that every edge in Fi has connectivity at least \pi i in the
subgraph Gi = (V,Ei). Also, the \gamma -overlap property ensures that for any cut C,

\Lambda \sum 
i=0

e
(C)
i 2i - 1

\pi i
\leq \gamma \cdot e(C),

where e(C) and e
(C)
i denote the value of cut C in graphs G and Gi, respectively.

We also introduce some additional notation. For any cut C, let

F
(C)
i = Fi \cap C and E

(C)
i = Ei \cap C;

correspondingly, let

f
(C)
i = | F (C)

i | and e
(C)
i = | E(C)

i | .

Also, let
\widehat 
f
(C)
i be the sum of weights of all edges in F

(C)
i that appear in the random

graph G\epsilon . Note that

\BbbE [\widehat f (C)
i ] = f

(C)
i .

We first prove a key lemma.

Lemma 3.1. For any fixed i, with probability at least 1 - 4/n3, every cut C in G
satisfies \bigm| \bigm| \bigm| \bigm| f (C)

i  - \widehat 
f
(C)
i

\bigm| \bigm| \bigm| \bigm| \leq \epsilon 

2
max

\Biggl( 
e
(C)
i \cdot 2i - 1

\pi i \cdot \gamma 
, f

(C)
i

\Biggr) 
.
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Proof. If f
(C)
i = 0, then

\widehat 
f
(C)
i = 0 and the lemma is trivial, so assume that

f
(C)
i > 0. Thus, C contains some edge e \in Fi, which must be \pi i-heavy in Gi due to
the \Pi -connectivity property. It follows that

e
(C)
i \geq \pi i.

Let \scrC ij be the set of all cuts C such that

\pi i \cdot 2j \leq e
(C)
i \leq \pi i \cdot 2j+1  - 1 for j \geq 0.

We will prove that with probability at least 1  - 2n - 3\cdot 2j , all cuts in \scrC ij satisfy the
property of the lemma. The lemma then follows by using the union bound over j
(keeping i fixed) since

2n - 3 + 2n - 6 + \cdot \cdot \cdot + 2n - 3\cdot 2j + \cdot \cdot \cdot \leq 4n - 3.

Suppose C \in \scrC ij . Let X(C)
i denote the set of edges in F

(C)
i that are sampled with

probability strictly less than one; correspondingly, let

x
(C)
i = | X(C)

i | ,

and let
\widehat 
x
(C)
i be the total weight of edges in X

(C)
i in the sampled graph G\epsilon . Since

edges in F
(C)
i  - X

(C)
i retain their weight exactly in G\epsilon , it is sufficient to show that

with probability at least 1 - 2n - 2j+1

,

| x(C)
i  - \widehat 

x
(C)
i | \leq 

\Bigl( \epsilon 
2

\Bigr) 
max

\Biggl( 
e
(C)
i \cdot 2i - 1

\pi i \cdot \gamma 
, x

(C)
i

\Biggr) 

for all cuts C \in \scrC ij . Since each edge e \in X
(C)
i has \lambda e < 2i+1, we can use Theorem A.1

with the lower bound on probabilities

p =
112\gamma lnn

0.38 \cdot 2i+1\epsilon 2
.

There are two cases. The first case is that

x
(C)
i \leq e

(C)
i \cdot 2i - 1

\pi i \cdot \gamma 
.

Then, for any X
(C)
i where C \in \scrC ij , by Theorem A.1, we have

\BbbP 

\Biggl[ \bigm| \bigm| \bigm| \bigm| x(C)
i  - \widehat 

x
(C)
i

\bigm| \bigm| \bigm| \bigm| > \Bigl( \epsilon 2\Bigr) e
(C)
i \cdot 2i - 1

\pi i \cdot \gamma 

\Biggr] 
< 2 exp

\Biggl( 
 - 0.38\epsilon 2

4

\biggl( 
112\gamma lnn

0.38 \cdot 2i+1\epsilon 2

\biggr) 
e
(C)
i \cdot 2i - 1

\pi i \cdot \gamma 

\Biggr) 

\leq 2 exp
\Bigl( 
 - 7 \cdot e(C)

i lnn

\pi i

\Bigr) 
\leq 2 exp( - 7 \cdot 2j lnn),

since e
(C)
i \geq \pi i \cdot 2j for any C \in \scrC ij . The second case is that

(3.1) x
(C)
i >

e
(C)
i \cdot 2i - 1

\pi i \cdot \gamma 
.
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Then, for any X
(C)
i where C \in \scrC ij , by Theorem A.1, we have

\BbbP 
\biggl[ \bigm| \bigm| \bigm| \bigm| x(C)

i  - \widehat 
x
(C)
i

\bigm| \bigm| \bigm| \bigm| > \Bigl( \epsilon 2\Bigr) x(C)
i

\biggr] 
< 2 exp

\Biggl( 
 - 0.38\epsilon 2

4

\biggl( 
112\gamma lnn

0.38 \cdot 2i+1\epsilon 2

\biggr) 
x
(C)
i

\Biggr) 

< 2 exp
\Bigl( 
 - 7 \cdot e(C)

i lnn

\pi i

\Bigr) 
(by (3.1))

\leq 2 exp( - 7 \cdot 2j lnn),

since e
(C)
i \geq 2j\pi i by the assumption that C \in \scrC ij . Thus, we have proved that

\BbbP 

\Biggl[ \bigm| \bigm| \bigm| \bigm| x(C)
i  - \widehat 

x
(C)
i

\bigm| \bigm| \bigm| \bigm| > \Bigl( \epsilon 2\Bigr) max

\biggl( 
e
(C)
i \cdot 2i - 1

\pi i \cdot \gamma 
, x

(C)
i

\biggr) \Biggr] 
< 2e - 7\cdot 2j lnn

= 2n - 7\cdot 2j

for any cut C \in \scrC ij . Now, by the \Pi -connectivity property, we know that edges in

F
(C)
i , and therefore those in X

(C)
i , are \pi i-heavy in Gi. Therefore, by Theorem 2.3

applied to graph Gi with k = \pi i and \alpha k = \pi i \cdot 2j+1  - 1, the number of distinct X
(C)
i

sets for cuts C \in \scrC ij is at most

n2\alpha k/k < n4\cdot 2
j

.

Using the union bound over these distinct X
(C)
i edge sets, we conclude that with

probability at least 1 - 2n - 3\cdot 2j , all cuts in \scrC ij satisfy the property of the lemma.

We now use the above lemma to prove Theorem 1.14. Lemma 3.1 bounds the
sampling error for a fixed i. Applying a na\"{\i}ve union bound would incur an error
probability that depends on \Lambda = \lfloor lgmaxe\in E\{ \lambda e\} \rfloor . However, we observe that since
there are at most n2 distinct edges in G, the number of nonempty sets Fi is also at
most n2. This allows us to use the union bound over these values of i only, and bound
the overall error probability to at most 4/n.

Let e(C) and \widehat e(C) be the weight of edges crossing a cut C in G and G\epsilon , respectively.
As we just argued, the conclusion of Lemma 3.1 holds for every value of i with
probability at least 1 - 4/n. Therefore,

\Lambda \sum 
i=0

| \widehat f (C)
i  - f

(C)
i | \leq 

\Lambda \sum 
i=0

\Bigl( \epsilon 
2

\Bigr) 
max

\Biggl( 
e
(C)
i \cdot 2i - 1

\pi i \cdot \gamma 
, f

(C)
i

\Biggr) 
for all cuts C. Then, with probability at least 1 - 4/n,

| \widehat e(C)  - e(C)| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Lambda \sum 
i=0

\widehat 
f
(C)
i  - 

\Lambda \sum 
i=0

f
(C)
i

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\Lambda \sum 
i=0

| \widehat f (C)
i  - f

(C)
i | 

\leq \epsilon 

2

\Lambda \sum 
i=0

max

\Biggl( 
e
(C)
i \cdot 2i - 1

\pi i \cdot \gamma 
, f

(C)
i

\Biggr) 

\leq \epsilon 

2

\Biggl( 
\Lambda \sum 
i=0

e
(C)
i \cdot 2i - 1

\pi i \cdot \gamma 
+

\Lambda \sum 
i=0

f
(C)
i

\Biggr) 
\leq \epsilon \cdot e(C),
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since
\Lambda \sum 
i=0

e
(C)
i \cdot 2i - 1

\pi i \cdot \gamma 
\leq e(C)

by the \gamma -overlap property and
\Lambda \sum 
i=0

f
(C)
i = e(C)

since F
(C)
i 's form a partition of the edges in C.

We now prove the bound on the expected number of edges in G\epsilon . The expected
number of distinct edges in G\epsilon is\sum 

e\in E
(1 - (1 - pe)

we) \leq 
\sum 
e

wepe,

where we is the multiplicity of edge e in G. The bound follows by substituting the
value of pe.

This completes the proof of Theorem 1.14.

4. Sparsification by edge compression. In this section, we present edge com-
pression schemes using various connectivity parameters and apply the sparsification
framework to show that they yield cut sparsifiers.

4.1. Compression using edge connectivities. First, we use the sparsifica-
tion framework to show Theorem 1.15. Although the theorem statement makes no
reference to NI forests, our proof will use them since they allow for a convenient ap-
plication of the general framework. Is it also possible to use a direct proof that avoids
NI forests and instead certifies connectivity of edges using the entire graph, but we
omit the details for the sake of brevity.

For any edge e = (u, v), set \lambda e to the value \kappa e \leq ke. Let

\gamma = 3 + lg n and \pi i = 2i - 1.

Recall that Fi is defined as the set of all edges e with

2i \leq \lambda e \leq 2i+1  - 1.

For any i \geq 1 + lg n, let Gi contain all edges in NI forests T2i - 1 - lg n , T2i - 1 - lg n+1, . . . ,
T2i+1 - 1 and all edges in Fi. For i \leq lg n, Gi contains all edges in T1, T2, . . . , Ti and
all edges in Fi.

Lemma 4.1. The \gamma -overlap property is satisfied by the above definitions.

Proof. Let Yi denote the set of edges in Gi but not in Fi. For any i \not = j,

Fi \cap Fj = \emptyset 

and each edge appears in Yi for at most 2 + lg n different values of i. This proves the
\gamma -overlap property.

To prove the \Pi -connectivity property, we will use the following fact that follows
from the definition of NI forests.

Fact 4.2. Let T1, T2, . . . be an NI forest packing of a graph G = (V,E). For any
pair of vertices u, v \in V and for any i \geq 1, u, v are at least min(kuv, i)-connected in
the first i NI forests, i.e., in T1 \cup T2 \cup . . . \cup Ti.
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Proof. Consider any cut separating u, v in G. Each such cut contains at least kuv
edges. For any NI forest Tj , j \leq i, either there is at least one edge of the cut in Tj ,
or all edges in the cut are already contained in T1 \cup T2 \cup . . . \cup Tj - 1. It follows that
T1 \cup T2 \cup . . . \cup Ti contains at least min(kuv, i) edges in the cut.

Lemma 4.3. The \Pi -connectivity property is satisfied by the above definitions.

Proof. Note that since \kappa e = \lambda e \leq ke, the connectivity of any edge in Fi sat-
isfies ke \geq 2i. Then, from Fact 4.2, any edge e \in Fi is at least 2i-heavy in the
union of NI forests T1, T2, . . . , T2i+1 - 1. Since there are at most 2i - 1 edges overall
in T1, T2, . . . , T2i - 1 - lg n - 1, any edge e \in Fi is 2i - 1-heavy in Gi. This proves the \Pi -
connectivity property.

Theorem 1.15 now follows from the above lemmas and Corollary 1.7 applied to
Theorem 1.14. Note that Corollary 1.17 follows immediately from Lemma 1.5, Theo-
rem 1.15, and Lemma 1.8; hence, we will not consider sampling by edge conductances
separately.

4.2. Compression using edge strengths. Now, we use the sparsification
framework to show the result of Bencz\'ur and Karger on compression using edge
strengths (Theorem 1.12), up to constant factors.

For any edge e, set \lambda e to its strength se. Let

\gamma = 1 and \pi i = 2\Lambda for all i,

where, as usual, \Lambda = \lfloor lgmaxe\in E\{ \lambda e\} \rfloor . Let Gi contain all edges in Fr for all r \geq i,
where each edge in Fr is replicated 2\Lambda  - r times. (Recall that replication of edges is
allowed in Gi, which are only used in the analysis and not in the actual compression
algorithm.)

Let us introduce the following notation. Suppose that C is a cut containing an
edge e \in Fi. Then Ci denotes the corresponding cut in Gi (i.e., with the same bi-

partition of vertices). Recall that f
(C)
i and e

(C)
i , respectively, denote the number of

edges in Fi \cap C and in Ci, respectively.

Lemma 4.4. The \gamma -overlap property is satisfied by the above definitions.

Proof. The proof amounts to the following calculation:

\Lambda \sum 
i=0

e
(C)
i 2i - 1

\pi i
=

\Lambda \sum 
i=0

\Lambda \sum 
r=i

f
(C)
r 2\Lambda  - r2i - 1

2\Lambda 

=

\Lambda \sum 
i=0

\Lambda \sum 
r=i

f
(C)
r

2r - i+1

=

\Lambda \sum 
r=0

r\sum 
i=0

f
(C)
r

2r - i+1

=

\Lambda \sum 
r=0

f (C)
r

r\sum 
i=0

1

2r - i+1

<

\Lambda \sum 
r=0

f (C)
r

= e(C).
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Lemma 4.5. The \Pi -connectivity property is satisfied by the above definitions.

To prove this lemma, we use the following property of edge strengths [7].

Lemma 4.6. The strength of an edge does not decrease even if all edges with lower
strength are removed from the graph.

We need to show that the number of edges in Ci is at least 2
\Lambda to prove Lemma 4.5.

Let the maximum edge strength in C be kC , where

2j \leq kC \leq 2j+1  - 1

for some j \geq i. By Lemma 4.6, Ci contains at least 2j distinct edges of G, each of
which is replicated at least 2\Lambda  - j times. Thus, Ci contains at least 2\Lambda edges. This
completes the proof of Lemma 4.5.

Theorem 1.12 (with a different constant) now follows from the above lemmas and
Lemma 1.6 applied to Theorem 1.14.

4.3. Compression using NI indices. Now, we use the sparsification frame-
work to show Theorem 1.19.

For any edge e = (u, v), set \lambda e to its NI index \ell e. Let

\gamma = 2 and \pi i = 2i - 1.

For any i \geq 1, define Gi to be the union of the set of edges in NI forests T2i - 1 , T2i - 1+1,
. . . , T2i - 1 (call this set of edges Yi) and all edges in Fi. (Note that Yi may contain
parallel edges.) Let G0 only contain edges in F0.

Lemma 4.7. The \gamma -overlap property is satisfied by the above definitions.

Proof. For any i \not = j,
Fi \cap Fj = Yi \cap Yj = \emptyset .

Thus, each edge appears in Gi for at most two different values of i, proving the
\gamma -overlap property.

Lemma 4.8. The \Pi -connectivity property is satisfied by the above definitions.

Proof. For any edge e \in Fi, the endpoints of e are connected in each of T2i - 1 ,
T2i - 1+1, . . . , T2i - 1 by definition of an NI forest packing. It follows that e is 2i - 1-heavy
in Gi, thereby proving the \Pi -connectivity property.

Theorem 1.19 now follows from the above lemmas and Lemma 1.9 applied to
Theorem 1.14.

5. Cut sparsification algorithm. Recall that for graphs with polynomial edge
weights, an implementation of edge compression using NI indices has a running time
of O(m) and produces a cut sparsifier containing O(n log2 n/\epsilon 2) edges in expecta-
tion. In this section, we give a more refined algorithm for unweighted input graphs
that will have the same time complexity, but will produce cut sparsifiers containing
O(n log n/\epsilon 2) edges in expectation. This algorithm proves Theorem 1.22.

Before formally describing the algorithm, let us give some intuition about it. Let
us abstractly view compression using NI indices as an iterative algorithm that finds a
set of edges Fi in iteration i (these are the edges in NI forests T2i , T2i+1, . . . , T2i+1 - 1

and are sampled with probability \Theta (log n/2i)) with the following properties:
\bullet (P1) Each edge in Fi has connectivity of \Theta (2i) in Fi - 1.
\bullet (P2) The number of edges in Fi is \Theta (n \cdot 2i).
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Our first observation is that property (P1) can be weakened---using the general frame-
work, we show it is sufficient for each edge in Fi to have connectivity of \Theta (2i) in
Hi - 1 = (V,Ei - 1) where Ei - 1 = Fi - 1 \cup Fi \cup . . . . Since we are aiming for a sparser
sample than in the previous algorithm, we also need to make (P2) stricter. Our new
requirement is that the number of edges in Fi - 1 from any connected component C
of Hi - 1 is O(2i) times the number of components into which C decomposes in Hi.
This stricter condition ensures that the expected number of edges in G\epsilon decreases to
\Theta (n log n/\epsilon 2).

We also need to give a linear-time construction of Fi's satisfying the above prop-
erties. Iteration i runs on each component of Hi separately; we describe the algorithm
for any one component C. First, (2i + 1) NI forests T1, T2, . . . , T2i+1 are constructed
in C and all edges in T2i+1 are contracted; let the resulting graph be G\bfC = (V\bfC , E\bfC ).
If | E\bfC | = O(| V\bfC | \cdot 2i), we add the edges in E\bfC to Fi and retain the remaining edges
for iteration i + 1. Otherwise, we construct (2i + 1) NI forests on G\bfC , contract the
edges in the (2i+1)st NI forest, and update G\bfC to this contracted graph. We repeat
these steps until | E\bfC | = O(| V\bfC | \cdot 2i); then, we add the edges in E\bfC to Fi and retain
the remaining edges for iteration i+ 1. One may verify that the modified versions of
properties (P1) and (P2) described above are satisfied by the Fi's constructed by this
algorithm.

This algorithm, with a preprocessing step where the number of edges is reduced to
\~O(n) by sampling using NI indices, runs in O(m) + \~O(n) time, and yields a sparsifier
of expected size O(n log n/\epsilon 2). We need one additional idea to turn this into a strictly
linear-time algorithm for unweighted graphs. Observe that we would ideally like to
place as many edges as we can in subsets Fi for large values of i so as to obtain a
sparse G\epsilon . On the other hand, the fact that these edges are retained till the later
iterative stages implies that we pay for them in our time complexity repeatedly. To
overcome this dilemma, we use the following trick: instead of sampling these edges
with probability 1/2i in iteration i, we sample them with probability 1/2 in each
iteration j < i, and retain them in the set of edges for the next iteration only if
selected in the sample. Now, we are able to reduce the size of our edge set by a factor
of 2 (in expectation) in each iteration; therefore, implementing a single iteration in
linear time immediately yields a linear-time algorithm overall. However, this iterative
sampling scheme creates several technical hurdles since it introduces dependencies
between the sampling processes for different edges. Our key technical contribution
is in showing that these dependencies are mild enough for us to continue to use the
sparsification framework that we developed for independent compression of edges.

Now, we will formally describe our sparsification algorithm. The algorithm (Al-
gorithm 2) has three phases.

The first phase has the following steps:
\bullet If m \leq 2\rho n, where

\rho =
1014 lnn

0.38\epsilon 2
,

then G\epsilon = G.
\bullet Otherwise, we construct an NI forest packing of G and all edges in the first

2\rho NI forests are included in G\epsilon with weight one. We call these edges F0.
The edge set Y0 is then defined as E  - F0.

The second phase is iterative. The input to iteration i is a graph (V, Yi - 1), which
is a subgraph of the input graph to iteration i  - 1 (i.e., Yi - 1 \subseteq Yi - 2). Iteration i
comprises the following steps:

\bullet If the number of edges in Yi - 1 is at most 2\rho n, we take all those edges in G\epsilon 
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Algorithm 2. The cut sparsification algorithm.

1: procedure Sparsify(G)
2: input: An undirected unweighted graph G = (V,E), a parameter \epsilon \in (0, 1)
3: output: An undirected weighted graph G\epsilon = (V,E\epsilon )

4: Set \rho = 1014 lnn/0.38\epsilon 2.
5: if m \leq 2\rho n then
6: G\epsilon = G and terminate
7: end if
8: Construct NI forests T1, T2, . . . for G.
9: Set i = 0.

10: Set X0 = E.
11: Set F0 = \cup 1\leq j\leq 2\rho Tj .
12: Set Y0 = X0  - F0.
13: Add each edge in F0 to G\epsilon with weight 1.

OuterLoop:
14: if | Yi| \leq 2\rho n then
15: Add each edge in Yi to G\epsilon with weight 2i - 1 and terminate
16: end if
17: Sample each edge in Yi with probability 1/2 to construct Xi+1.
18: Increment i by 1.
19: Set Ec = Xi.
20: Set Vc = V .
21: Set ki = \rho \cdot 2i+1.

InnerLoop:
22: if | Ec| \leq 2ki| Vc| then
23: Set Fi = Ec; Yi = Xi  - Ec.
24: for all e \in Fi do
25: Set \lambda e = \rho \cdot 4i.
26: end for
27: Go to OuterLoop.
28: else
29: Construct NI forests T1, T2, . . . , Tki+1 for graph Gc = (Vc, Ec).
30: Update Gc by contracting all edges in Tki+1.
31: Go to InnerLoop.
32: end if

33: for all Fi created in the previous loops do
34: for all edge e \in Fi do
35: Set pe = min

\bigl( 
1, 16128

1521 \cdot 1
4i

\bigr) 
.

36: Generate re from Binomial(2i, pe).
37: if re > 0 then
38: Add edge e to G\epsilon with weight re/pe.
39: end if
40: end for
41: end for
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with weight 2i - 1 each, and terminate the algorithm.
\bullet Otherwise, all edges in Yi - 1 are sampled with probability 1/2; call the sample
Xi and let Gi = (V,Xi).

\bullet We identify a set of edges Fi \subseteq Xi with the following properties:
-- The number of edges in Fi is at most 2ki| Vc| , where ki = \rho \cdot 2i+1, and
Vc is the set of components in (V, Yi), where Yi = Xi  - Fi.

-- Each edge in Yi is ki-heavy in Gi.
\bullet Each edge e \in Fi is assigned the sampling probability

pi = pe = min

\biggl( 
112 \cdot (32/3) lnn
0.38\lambda e(\epsilon /3)2

, 1

\biggr) 
= min

\biggl( 
16128

1521
\cdot 1

4i
, 1

\biggr) 
,

since \lambda e = \rho \cdot 4i and \rho = 1014 lnn
0.38\epsilon 2 .

The final phase consists of replacing each edge in Fi with 2i parallel edges, and
then compressing each edge independently with probability pi. (Recall that in the
interest of time complexity of the compression procedure, we will generate a Binomial
random variable to represent the weight of the edge in the sparsifier.) The weighted
graph formed by this compression procedure is the sparsifier G\epsilon .

We now give a short description of the subroutine that constructs the set Fi in
the second phase of the algorithm. This subroutine is iterative itself. We start with
Vc = V and Ec = Xi, and let Gc = (Vc, Ec). We repeatedly construct an NI forest
packing for Gc and contract all edges in the (ki + 1)st forest, where ki = \rho \cdot 2i+1, to
obtain a new Gc. We terminate this iterative process when

| Ec| \leq 2ki| Vc| .

The set of edges Ec that finally achieves this property forms Fi.

5.1. Cut preservation. We use the following notation throughout: for any set
of unweighted edges Z, cZ denotes these edges with a weight of c given to each edge.
Our goal is to prove the following theorem.

Theorem 5.1. G\epsilon \in (1\pm \epsilon )G with probability at least 1 - 8/n.

Let \Lambda be the maximum value of i for which Fi \not = \emptyset ; let

S =
\bigl( 
\cup \Lambda 
i=02

iFi
\bigr) 
\cup 2\Lambda Y\Lambda 

and GS = (V, S). Then, we prove the following two theorems, which together yield
Theorem 5.1 using the union bound. (Observe that since \epsilon < 1, (1 + \epsilon /3)2 \leq 1 + \epsilon 
and (1 - \epsilon /3)2 \geq 1 - \epsilon .)

Theorem 5.2. GS \in (1\pm \epsilon /3)G with probability at least 1 - 4/n.

Theorem 5.3. G\epsilon \in (1\pm \epsilon /3)GS with probability at least 1 - 4/n.

The following property is key to proving both theorems.

Lemma 5.4. For any i \geq 0, any edge e \in Yi is ki-heavy in Gi = (V,Xi), where
ki = \rho \cdot 2i+1.

Proof. Since all edges in Y0 are in NI forests T2\rho +1, T2\rho +2, . . . of G0 = G, the
lemma holds for i = 0.

We now prove the lemma for i \geq 1. Let Ge = (Ve, Ee) be the component of Gi
containing e. We will show that e is ki-heavy in Ge; since Ge is a subgraph of Gi,
the lemma follows. In the execution of the else block of InnerLoop on Ge, there are
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multiple contraction operations, each comprising the contraction of a set of edges. We
show that any such contracted edge is ki-heavy in Ge; it follows that e is ki-heavy in
Ge.

Let Ge have t contraction phases, and let the graph produced after contraction
phase r be Ge,r. We now prove that all edges contracted in phase r must be ki-heavy
in Ge by induction on r. For r = 1, since e appears in the (ki + 1)st NI forest
of phase 1, e is ki-heavy in Ge. For the inductive step, assume that the property
holds for phases 1, 2, . . . , r. Any edge that is contracted in phase r + 1 appears in
the (ki + 1)st NI forest of phase r + 1; therefore, e is ki-connected in Ge,r. By the
inductive hypothesis, all edges of Ge contracted in previous phases are ki-heavy in
Ge; therefore, an edge that is ki-heavy in Ge,r must have been ki-heavy in Ge.

We will now prove Theorem 5.2. First, we state a property of edge sampling. Let
R \subseteq Q be subsets of edges such that R is \pi -heavy in (V,Q). Suppose each edge e \in R
is sampled with probability p, and if selected, given a weight of 1/p to form a set of

weighted edges \widehat R. Now, for any cut C in G, let

R(C) = R \cap C, Q(C) = Q \cap C, and \widehat R(C) = \widehat R \cap C,

respectively; also let the total weight of edges in R(C), Q(C), and \widehat R(C) be r(C), q(C),

and \widehat r(C), respectively. Then the following lemma holds.

Lemma 5.5. For any \delta \in (0, 1] satisfying \delta 2p\pi \geq 6 lnn
0.38 ,

| r(C)  - \widehat r(C)| \leq \delta q(C)

for all cuts C, with probability at least 1 - 4/n2.

Proof. Let \scrC j be the set of all cuts C such that

2j \cdot \pi \leq r(C) \leq 2j+1 \cdot \pi  - 1

for each j \geq 0. We will prove that with probability at least 1  - 2n - 2j+1

, all cuts in
\scrC j satisfy the property of the lemma. Then, the lemma follows by using the union
bound over j since

2n - 2 + 2n - 4 + \cdot \cdot \cdot + 2n - 2j+1

+ \cdot \cdot \cdot \leq 4n - 2.

We now prove the property for cuts C \in \scrC j . Since each edge e \in R(C) is sam-

pled with probability p in obtaining \widehat R(C), we can use Theorem A.1 with sampling
probability p. Then, for any R(C) where C \in \scrC j , by Theorem A.1, we have

\BbbP 
\Bigl[ \bigm| \bigm| \bigm| \widehat r(C)  - r(C)

\bigm| \bigm| \bigm| > \delta q(C)
\Bigr] 
< 2e - 0.38\cdot \delta 2\cdot p\cdot q(C)

\leq 2e - 0.38\cdot \delta 2\cdot p\cdot \pi \cdot 2j

\leq 2e - 6\cdot 2j lnn

= 2n - 6\cdot 2j ,

since q(C) \geq \pi \cdot 2j for any C \in \scrC j . Since each edge in R(C) is \pi -heavy in (V,Q),
Theorem 2.3 ensures that the number of distinct R(C) sets for cuts C \in \scrC j is at most

n
2
\Bigl( 

\pi \cdot 2j+1

\pi 

\Bigr) 
= n4\cdot 2

j

.

Using the union bound over these distinct R(C) edge sets, we conclude that with
probability at least 1 - 2n - 2j+1

, all cuts in \scrC j satisfy the property of the lemma.
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To obtain Corollary 5.6, we use the following settings in Lemma 5.5:

R = Yi, Q = Xi, \widehat R = 2Xi+1, \delta =
\epsilon /13

2i/2
, p = 1/2, and \pi = \rho \cdot 2i+1.

Corollary 5.6. With probability at least 1 - 4/n2, for every cut C in Gi,

| 2x(C)
i+1 + f

(C)
i  - x

(C)
i | \leq \epsilon /13

2i/2
\cdot x(C)

i ,

where x
(C)
i , x

(C)
i+1, and f

(C)
i , respectively, denote the weight of Xi \cap C,Xi+1 \cap C, and

Fi \cap C.
Next, we show the following fact.

Fact 5.7. Let x \in (0, 1] and ri = 13 \cdot 2i/2. Then, for any k \geq 0,

k\prod 
i=0

(1 + x/ri) \leq 1 + x/3,

k\prod 
i=0

(1 - x/ri) \geq 1 - x/3.

Proof. We prove by induction on k. For k = 0, the property trivially holds.
Suppose the property holds for k  - 1. Then,

k\prod 
i=0

(1 + x/ri) =

k\prod 
i=0

\biggl( 
1 +

x

13 \cdot 2i/2

\biggr) 

= (1 + x/13) \cdot 
k\prod 
i=1

\Biggl( 
1 +

x/
\surd 
2

13 \cdot 2(i - 1)/2

\Biggr) 
\leq (1 + x/13) \cdot (1 + x/(3

\surd 
2))

\leq 1 + x/3

k\prod 
i=0

(1 - x/ri) =

k\prod 
i=0

\biggl( 
1 - x

13 \cdot 2i/2

\biggr) 

= (1 - x/13) \cdot 
k\prod 
i=1

\Biggl( 
1 - x/

\surd 
2

13 \cdot 2(i - 1)/2

\Biggr) 
\geq (1 - x/13) \cdot (1 - x/(3

\surd 
2))

\geq 1 - x/3.

We now use Fact 5.7 and Corollary 5.6 to prove the following lemma.

Lemma 5.8. Let

Sj =
\bigl( 
\cup \Lambda 
i=j2

i - jFi
\bigr) 
\cup 2\Lambda  - jY\Lambda 

for any j \geq 0. Then,

Sj \in (1\pm (\epsilon /3)2 - j/2)Gj

with probability at least 1 - 4/n, where Gj = (V,Xj).
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Proof. For any cut C in G, let the edges crossing C in Sj be S
(C)
j , and let their

total weight be s
(C)
j . Also, let

X
(C)
i = Xi \cap C, Y

(C)
i = Yi \cap C, and F

(C)
i = Fi \cap C,

and let their respective sum of weights be x
(C)
i , y

(C)
i , and f

(C)
i .

Since \Lambda \leq n  - 1, we can use the union bound on Corollary 5.6 to conclude that
with probability at least 1 - 4/n, for every 0 \leq i \leq \Lambda and for all cuts C,

2x
(C)
i+1 + f

(C)
i \leq (1 + \epsilon /ri)x

(C)
i ,

2x
(C)
i+1 + f

(C)
i \geq (1 - \epsilon /ri)x

(C)
i ,

where ri = 13 \cdot 2i/2. Then,

sCj = 2\Lambda  - jy
(C)
\Lambda + 2\Lambda  - jf

(C)
\Lambda + 2\Lambda  - 1 - jf

(C)
\Lambda  - 1 + \cdot \cdot \cdot + f

(C)
j

= 2\Lambda  - jx
(C)
\Lambda + 2\Lambda  - 1 - jf

(C)
\Lambda  - 1 + \cdot \cdot \cdot + f

(C)
j

since y
(C)
\Lambda + f

(C)
\Lambda = x

(C)
\Lambda 

= 2\Lambda  - 1 - j(2x
(C)
\Lambda + f

(C)
\Lambda  - 1) + (2\Lambda  - 2 - jf

(C)
\Lambda  - 2 + \cdot \cdot \cdot )

\leq (1 + \epsilon /r\Lambda  - 1)2
\Lambda  - 1 - jx

(C)
\Lambda  - 1 + (2\Lambda  - 2 - jf

(C)
\Lambda  - 2 + \cdot \cdot \cdot )

\leq (1 + \epsilon /r\Lambda  - 1)(2
\Lambda  - 1 - jx

(C)
\Lambda  - 1 + 2\Lambda  - 2 - jf

(C)
\Lambda  - 2 + \cdot \cdot \cdot )

. . .

\leq (1 + \epsilon /r\Lambda  - 1)(1 + \epsilon /r\Lambda  - 2) . . . (1 + \epsilon /rj)x
(C)
j

\leq (1 + (\epsilon 2 - j/2)/r\Lambda  - 1 - j)(1 + (\epsilon 2 - j/2)/r\Lambda  - 2 - j) . . .

. . . (1 + (\epsilon 2 - j/2)/r0)x
(C)
j since rj+i = ri \cdot 2j/2

\leq (1 + (\epsilon /3)2 - j/2)x
(C)
j by Fact 5.7.

Similarly, we can show that

sCj \geq (1 - (\epsilon /3)2 - j/2)x
(C)
j .

Finally, we observe that Theorem 5.2 follows from Lemma 5.8 if we set j = 0.
Now, we will prove Theorem 5.3. First, observe that edges F0\cup 2\Lambda Y\Lambda are identical

in GS and G\epsilon . Therefore, we do not consider these edges in the analysis below. For
any i \geq 1, let \psi (i) be such that

2\psi (i) \leq \rho \cdot 4i \leq 2\psi (i)+1  - 1.

(Note that \psi (i)'s define doubling intervals on a function of i, which will be useful
later in invoking the sparsification framework.) Note that for any j, \psi (i) = j for at
most one value of i. Then, for any j \geq 1,

Rj = Fi if j = \psi (i)

and Rj = \emptyset if there is no i such that j = \psi (i).

We set
\gamma = 32/3, \pi j = \rho \cdot 4\Lambda , and for any j \geq 1, Qj = (V,Wj),
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where
Wj = \cup i - 1\leq r\leq \Lambda 4

\Lambda  - r+12rFr if Rj \not = \emptyset and j = \psi (i),

and Wj = \emptyset if Rj = \emptyset .

The following lemma ensures \Pi -connectivity.

Lemma 5.9. With probability at least 1 - 4/n, every edge e \in Fi = R\psi (i) for each
i \geq 1 is \pi -heavy in Q\psi (i), where \pi = \rho \cdot 4\Lambda .

Proof. Consider any edge e \in Fi. Since Fi \subseteq Yi - 1, Lemma 5.4 ensures that e is
\rho \cdot 2i-heavy in Gi - 1 = (V,Xi - 1), and therefore \rho \cdot 22i - 1-heavy in (V, 2i - 1Xi - 1). Since
\epsilon \leq 1, Lemma 5.8 ensures that with probability at least 1  - 4/n, the weight of each
cut in (V, 2i - 1Xi - 1) is preserved up to a factor of 2 in Zi = (V,\cup i - 1\leq r\leq \Lambda 2

rFr). Thus,
e is \rho \cdot 4i - 1-heavy in Zi.

Consider any cut C containing e \in Fi. We need to show that the weight of this
cut in Q\psi (i) is at least \rho \cdot 4\Lambda . Let the maximum \lambda a of an edge a in C be \rho \cdot 4kC , for
some kC \geq i. By the above proof, a is \rho \cdot 4kC - 1-heavy in ZkC . Then, the total weight
of edges crossing cut C in Q\psi (kC) is at least

\rho \cdot 4kC - 1 \cdot 4\Lambda  - kC+1 = \rho \cdot 4\Lambda .

Since kc \geq i, \psi (kC) \geq \psi (i) and Q\psi (kC) is a subgraph of Q\psi (i). Therefore, the total
weight of edges crossing cut C in Q\psi (i) is at least \rho \cdot 4\Lambda .

We now prove the \gamma -overlap property. For any cut C, let f
(C)
i and w

(C)
i , respec-

tively, denote the total weight of edges in Fi\cap C and W\psi (i)\cap C, respectively. Further,
let the number of edges in \cup \Lambda 

i=02
iFi \cap C be f (C). Then, we have the following bound:

\Lambda \sum 
i=1

w
(C)
i 2\psi (i) - 1

\pi 
\leq 

\Lambda \sum 
i=1

w
(C)
i \rho \cdot 4i

2\rho \cdot 4\Lambda 

=

\Lambda \sum 
i=1

w
(C)
i

2 \cdot 4\Lambda  - i

=

\Lambda \sum 
i=1

\Lambda \sum 
r=i - 1

f
(C)
r \cdot 2r \cdot 4\Lambda  - r+1

2 \cdot 4\Lambda  - i

=

\Lambda \sum 
i=1

\Lambda \sum 
r=i - 1

f
(C)
r

2r - 2i - 1

=

\Lambda \sum 
r=0

r+1\sum 
i=1

f
(C)
r

2r - 2i - 1

=

\Lambda \sum 
r=0

f
(C)
r

2r

r+1\sum 
i=1

22i+1

\leq 32

3

\Lambda \sum 
r=0

2rf (C)
r

=
32

3
f (C).

Using Theorem 1.14 with \gamma = 32/3, we conclude the proof of Theorem 5.3.
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5.2. Size of the sparsifier. We now prove that the expected number of edges
in G\epsilon is O(n log n/\epsilon 2). For i \geq 1, define Di to be the set of connected components
in the graph Gi = (V,Xi); let D0 be the single connected component in G. For any
i \geq 1, if any connected component in Di remains intact in Di+1, then there is no
edge from that connected component in Fi. On the other hand, if a component in Di

splits into \eta components in Di+1, then the algorithm explicitly ensures that
\sum 
e\in Fi

we

\lambda e

(where we is the number of parallel copies of e in the Binomial sampling step) from
that connected component is\sum 

e\in Fi

2i

\rho \cdot 4i
\leq 
\biggl( 
\rho \cdot 2i+2 \cdot 2i

\rho \cdot 4i

\biggr) 
\eta = 4\eta \leq 8(\eta  - 1).

Therefore, if di = | Di| , then

\Lambda \sum 
i=1

\sum 
e\in Fi

we
\lambda e

\leq 
\Lambda \sum 
i=1

8(di+1  - di) \leq 8n,

since we can have at most n singleton components. It follows from Theorem 1.14 that
the expected number of edges in G\epsilon is O(n log n/\epsilon 2).

5.3. Time complexity. If m \leq 2\rho n, the algorithm terminates after the first
step which takes O(m) time. Otherwise, we prove that the expected running time
of the algorithm is O(m + n log n/\epsilon 2) = O(m) since \rho = \Theta (log n/\epsilon 2). First, observe
that phase 1 takes O(m+ n log n) time. In iteration i of phase 2, the first step takes
| Yi - 1| time. We will show that all of the remaining steps take O(| Xi| + n log n) time.
Since Xi \subseteq Yi - 1 and the steps are executed only if Yi - 1 = \Omega (n log n/\epsilon 2), it follows
that the total time complexity of iteration i of phase 2 is O(| Yi - 1| ). Since Yi \subset Xi,
\BbbE [| Xi| ] = \BbbE [| Yi - 1| ]/2 \leq \BbbE [| Xi - 1| ]/2, and | Y0| \leq m, it follows that the expected
overall time complexity of phase 2 is O(m). Finally, the time complexity of phase 3
is O(m+ n log n/\epsilon 2) (see, e.g., [17]).

We are now left to prove that all, except the first step, of iteration i in phase 2
takes O(| Xi| +n log n) time. Each iteration of the else block takes O(| Vc| log n+ | Ec| )
time for the current Gc = (Vc, Ec). So, the last invocation of the else block takes at
most O(| Xi| + n log n) time. In any other invocation, | Ec| = \Omega (| Vc| log n) and hence
the time spent is O(| Ec| ). Now, consider an iteration that begins with | Ec| > 2ki \cdot | Vc| .
Note that Ec for the next iteration (denoted by E\prime 

c) comprises only edges in the first
ki NI forests constructed in the current iteration. Hence,

| E\prime 
c| \leq ki \cdot | Vc| < | Ec| /2.

Since | Ec| decreases by a factor of 2 from one invocation of the else block to the next,
the total time over all invocations of the else block is O(| Xi| + n log n).

6. Conclusion. In this paper, we gave a general sampling framework for cut
sparsification and used it to show that various sampling schemes produce cut spar-
sifiers. In addition, we gave two algorithms for cut sparsification both of which run
in O(m) time and produce cut sparsifiers containing an expected O(n log n/\epsilon 2) edges
for unweighted graphs and O(n log2 n/\epsilon 2) edges for weighted graphs. For weighted
graphs, using previously known algorithms for postprocessing, we can obtain cut
sparsifiers with an expected O(n log n/\epsilon 2) edges in O(m) +O(n log5 n) time. Several
problems are left open by our work. For example, can the running time of the spar-
sification algorithm be improved to O(m) even for weighted graphs? An interesting
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combinatorial question is to remove the additional factor of log n in the sampling
probability used in Theorem 1.15, i.e., sampling using edge connectivities.

Appendix A. A variant of Chernoff bounds. Our sparsification techniques
in sections 3 and 5 require the following form of Chernoff bounds for a set of random
variables with nonuniform sampling probabilities but uniform expectation.

Theorem A.1. Let X1, X2, . . . , Xn be n independent random variables such that
Xi takes value 1/pi with probability pi and 0 otherwise. Then, for any p such that
p \leq pi for each i, any \epsilon \in (0, 1), and any N \geq n,

\BbbP 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 
n\sum 
i=1

Xi  - n

\bigm| \bigm| \bigm| \bigm| \bigm| > \epsilon N

\Biggr] 
< 2e - 0.38\epsilon 2pN .

We will derive Theorem A.1 using the following familiar form of the Chernoff
bound, whose proof proceeds as in standard references [29, 30].

Theorem A.2. Let Y1, . . . , Yn be n independent random variables such that Yi
takes values in [0, 1]. Let \mu =

\sum n
i=1 \BbbE [Yi] and c = 2 ln(2)  - 1 > 0.38. Then, for all

\delta > 0,

\BbbP 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 
n\sum 
i=1

Yi  - \mu 

\bigm| \bigm| \bigm| \bigm| \bigm| > \delta \mu 

\Biggr] 
\leq 2 exp( - c \cdot min(1, \delta )\delta \mu ).

Proof of Theorem A.1. Define Yi = p \cdot Xi, so that Yi \in [0, 1] and \BbbE [Yi] = p. Then
\mu =

\sum n
i=1 \BbbE [Yi] = pn. We apply Theorem A.2 with \delta = \epsilon N/n, obtaining

\BbbP 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 
n\sum 
i=1

Xi  - n

\bigm| \bigm| \bigm| \bigm| \bigm| > \epsilon N

\Biggr] 
= \BbbP 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 
n\sum 
i=1

Yi  - \mu 

\bigm| \bigm| \bigm| \bigm| \bigm| > \delta \mu 

\Biggr] 
\leq 2 exp

\bigl( 
 - c \cdot min(1, \delta )\delta \mu 

\bigr) 
.

If \delta \leq 1, then the bound is

2 exp
\bigl( 
 - c\delta 2\mu 

\bigr) 
= 2 exp( - c\epsilon 2pN2/n) < 2 exp( - 0.38\epsilon 2pN)

since N \geq n. If \delta > 1, then the bound is

2 exp
\bigl( 
 - c\delta \mu 

\bigr) 
= 2 exp( - c\epsilon pN) < 2 exp( - 0.38\epsilon 2pN)

since \epsilon \in [0, 1].
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