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Abstract: Scalable overlay networks such as Chord, CAN,
Pastry, and Tapestry have recently emerged as flexible infras-
tructure for building large peer-to-peer systems. In practice,
such systems have two disadvantages: They provide no control
over where data is stored and no guarantee that routing paths
remain within an administrative domain whenever possible.
SkipNet is a scalable overlay network that provides controlled
data placement and guaranteed routing locality by organiz-
ing data primarily by string names. SkipNet allows for both
fine-grained and coarse-grained control over data placement:
Content can be placed either on a pre-determined node or dis-
tributed uniformly across the nodes of a hierarchical naming
subtree. An additional useful consequence of SkipNet’s locality
properties is that partition failures, in which an entire organi-
zation disconnects from the rest of the system, can result in two
disjoint, but well-connected overlay networks. Furthermore,
SkipNet can efficiently re-merge these disjoint networks when
the partition heals.

Categories and Subject Descriptors: E.1 [Data Struc-
tures]: Graphs and networks; D.2.11 [Software En-
gineering]: Software Architectures—Patterns (Peer-to-
Peer); C.2.4 [Computer-Communication Networks]:
Distributed Systems—Distributed applications; C.2.1
[Computer-Communication Networks]: Network Archi-
tecture and Design—Network topology; C.2.2 [Computer-
Communication Networks]: Network Protocols—Routing
protocols ; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Store and forward
networks; C.4 [Performance of Systems]: Reliability, avail-
ability, and serviceability; H.3.4 [Information Storage and
Retrieval]: Systems and Software—Distributed systems.

General Terms: Overlay Network, Peer-to-Peer, Locality,
Scalablity, Routing, Performance, Fault-Tolerance, Distributed
Systems.

1 Introduction

Scalable overlay networks, such as Chord [38],
CAN [32], Pastry [34], and Tapestry [44], have recently

∗Microsoft Research, Microsoft Corporation, Redmond, WA
98052, {jdunagan, mbj, theimer, alecw}@microsoft.com

†Department of Computer Science and Engineering, University of
Washington, Seattle, WA 98195, tzoompy@cs.washington.edu

‡MIT Computer Science and Artificial Intelligence Lab, Cam-
bridge, MA 02139, nickh@mit.edu

emerged as flexible infrastructure for building large peer-
to-peer systems. A key function that these networks en-
able is a distributed hash table (DHT), which allows data
to be uniformly diffused over all the participants in the
peer-to-peer system.

While DHTs provide nice load balancing properties,
they do so at the price of controlling where data is stored.
This has at least two disadvantages: Data may be stored
far from its users and it may be stored outside the ad-
ministrative domain to which it belongs. This paper in-
troduces SkipNet [16, 17], a distributed generalization
of Skip Lists [30], adapted to meet the goals of peer-to-
peer systems. SkipNet is a scalable overlay network that
supports traditional overlay functionality as well as two
locality properties that we refer to as content locality and
path locality.

Content locality refers to the ability to either explicitly
place data on specific overlay nodes or distribute it across
nodes within a given organization. Path locality refers
to the ability to guarantee that message traffic between
two overlay nodes within the same organization is routed
within that organization only.

Content and path locality provide a number of ad-
vantages for data retrieval, including improved availabil-
ity, performance, manageability, and security. For ex-
ample, nodes can store important data within their or-
ganization (content locality) and nodes will be able to
reach their data through the overlay even if the organiza-
tion becomes disconnected from the rest of the Internet
(path locality). Storing data near the clients that use it
also yields performance benefits. Placing content onto
a specific overlay node—or a well-defined set of over-
lay nodes—enables provisioning of those nodes to reflect
demand. Content placement also allows administrative
control over issues such as scheduling maintenance for
machines storing important data, thus improving man-
ageability.

Content locality can improve security by allowing one
to control the administrative domain in which data re-
sides. Even when encrypted and digitally signed, data
stored on an arbitrary overlay node outside the organi-
zation is susceptible to denial of service (DoS) attacks
as well as traffic analysis. Although other techniques



for improving the resiliency of DHTs to DoS attacks ex-
ist [3], content locality is a simple, zero-overhead tech-
nique.

Path locality provides additional security benefits to
an overlay that supports content locality. Although some
overlay designs [4] are likely to keep routing messages
within an organization most of the time, none guarantee
path locality. For example, without such a guarantee the
route from explorer.ford.com to mustang.ford.com could
pass through camaro.gm.com, a scenario that people at
ford.com might prefer to prevent. With path locality,
nodes requesting data within their organization traverse
a path that never leaves the organization. This example
also illustrates that path locality can be desirable even in
a scenario where no content is being placed on nodes.

Controlling content placement is in direct tension
with the goal of a DHT, which is to uniformly dis-
tribute data across a system in an automated fashion. A
significant contribution of this paper is the concept of
constrained load balancing, which is a generalization
that combines these two notions: Data is uniformly dis-
tributed across a well-defined subset of the nodes in a
system, such as all nodes in a single organization, all
nodes residing within a given building, or all nodes re-
siding within one or more data centers.

SkipNet supports efficient message routing between
overlay nodes, content placement, path locality, and con-
strained load balancing. It does so by employing two
separate, but related address spaces: a string name ID
space as well as a numeric ID space. Node names and
content identifier strings are mapped directly into the
name ID space, while hashes of the node names and con-
tent identifiers are mapped into the numeric ID space. A
single set of routing pointers on each overlay node en-
ables efficient routing in either address space and a com-
bination of routing in both address spaces provides the
ability to do constrained load balancing.

A useful consequence of SkipNet’s locality proper-
ties is resiliency against a common form of Internet fail-
ure. Because SkipNet clusters nodes according to their
name ID ordering, nodes within a single organization
gracefully survive failures that disconnect the organi-
zation from the rest of the Internet. Furthermore, the
organization’s SkipNet segment can be efficiently re-
merged with the external SkipNet when connectivity is
restored. In the case of uncorrelated, independent fail-
ures, SkipNet has similar resiliency to previous overlay
networks [34, 38].

The basic SkipNet design, not including its enhance-
ments to support constrained load balancing, network
proximity-aware routing, reduced overhead for virtual
nodes, or merge algorithms, has been concurrently and
independently invented by Aspnes and Shah [1]. As de-
scribed in Section 2, their work has a substantially differ-

ent focus than our work and the two efforts are comple-
mentary to each other while still starting from the same
underlying inspiration.

The rest of this paper is organized as follows: Sec-
tion 2 describes related work, Section 3 describes Skip-
Net’s basic design, Section 4 discusses SkipNet’s locality
properties, Section 5 presents enhancements to the ba-
sic design, Section 6 presents the ring merge algorithms,
Section 7 discusses design alternatives to SkipNet, Sec-
tion 8 presents a theoretical analysis of SkipNet, Sec-
tion 9 presents an experimental evaluation, and Section
10 concludes the paper.

2 Related Work

A large number of peer-to-peer overlay network de-
signs have been proposed recently, such as CAN [32],
Chord [38], Freenet [7], Gnutella [14], Kademlia [26],
Pastry [34], Salad [11], Tapestry [44], and Viceroy [25].
SkipNet is designed to provide the same functionality as
existing peer-to-peer overlay networks, and additionally
to provide improved content availability through explicit
control over content placement.

One key feature provided by systems such as CAN,
Chord, Pastry, and Tapestry is scalable routing perfor-
mance while maintaining a scalable amount of routing
state at each node. By scalable routing paths we mean
that the expected number of forwarding hops between
any two communicating nodes is small with respect to
the total number of nodes in the system. Chord, Pastry,
and Tapestry scale with log N , where N is the system
size, while maintaining log N routing state at each over-
lay node. CAN scales with D · N1/D, where D is a di-
mensionality parameter with a typical value of 6, while
maintaining an amount of per-node routing state propor-
tional to D.

A second key feature of these systems is that they are
able to route to destination addresses that do not equal
the address of any existing node. Each message is routed
to the node whose address is “closest” to that specified
in the destination field of a message; we interchange-
ably use the terms “route” and “search” to mean rout-
ing to the closest node to the specified destination. This
feature enables implementation of a distributed hash ta-
ble (DHT) [15], in which content is stored at an overlay
node whose node ID is closest to the result of applying
a collision-resistant hash function to that content’s name
(i.e. consistent hashing [21]).

Distributed hash tables have been used, for instance,
in constructing the PAST [35] and CFS [9] distributed
filesystems, the Overlook [41] scalable name service,
the Squirrel [19] cooperative web cache, and scalable
application-level multicast [6, 36, 33]. For most of these
systems, if not all of them, the overlay network on which
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they were designed can easily be substituted with Skip-
Net.

SkipNet has a fundamental philosophical difference
from existing overlay networks, such as Chord and Pas-
try, whose goal is to implement a DHT. The basic phi-
losophy of systems like Chord and Pastry is to diffuse
content randomly throughout an overlay in order to ob-
tain uniform, load-balanced, peer-to-peer behavior. The
basic philosophy of SkipNet is to enable systems to pre-
serve useful content and path locality, while still enabling
load balancing over constrained subsets of participating
nodes.

This paper is not the first to observe that locality prop-
erties are important in peer-to-peer systems. Keleher et
al. [22] make two main points: locality is a good thing,
and DHTs destroy locality. Vahdat et al. [42] raises the
locality issue as well. SkipNet addresses this problem
directly: By using names rather than hashed identifiers
to order nodes in the overlay, natural locality based on
the names of objects is preserved. Furthermore, by ar-
ranging content in name order rather than dispersing it,
efficient operations on ranges of names are possible in
SkipNet, enabling, among other things, constrained load
balancing.

Aspnes and Shah [1] have independently invented the
same basic data structure that defines a SkipNet, which
they call a Skip Graph. Beyond that, they investigate
questions that are mostly orthogonal to those addressed
in this paper. In particular, they describe and analyze
different search and insertion algorithms and they focus
on formal characterization of Skip Graph invariants. In
contrast, our work is focused primarily on the content
and path locality properties of the design, and we de-
scribe several extensions that are important in building
a practical system: network proximity-aware routing is
obtained by means of two auxiliary routing tables; con-
strained load balancing is supported through a combi-
nation of searches in both the string name and numeric
address spaces that SkipNet defines; efficient algorithms
are used to re-merge disjoint SkipNet segments that re-
sult from network partitions; and multiple virtual nodes
can be hosted on a single physical node with substan-
tially less overhead than the schemes described in previ-
ous work.

3 Basic SkipNet Structure

In this section, we introduce the basic design of Skip-
Net. We present the SkipNet architecture, including how
to route in SkipNet, and how to join and leave a SkipNet.

3.1 Analogy to Skip Lists

A Skip List, first described in Pugh [30], is a dictio-
nary data structure typically stored in-memory. A Skip
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Figure 1. A perfect Skip List.
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Figure 2. A probabilistic Skip List.

List is a sorted linked list in which some nodes are sup-
plemented with pointers that skip over many list ele-
ments. A “perfect” Skip List is one where the height
of the ith node is the exponent of the largest power-of-
two that divides i. Figure 1 depicts a perfect Skip List.
Note that pointers at level h have length 2h (i.e., they tra-
verse 2h nodes). A perfect Skip List supports searches in
O(log N) time.

Because it is prohibitively expensive to perform inser-
tions and deletions in a perfect Skip List, Pugh suggests a
probabilistic scheme for determining node heights while
maintaining O(log N) searches with high probability.
Briefly, each node chooses a height such that the prob-
ability of choosing height h is 1/2h. Thus, with proba-
bility 1/2 a node has height 1, with probability 1/4 it has
height 2, etc. Figure 2 depicts a probabilistic Skip List.

Whereas Skip Lists are an in-memory data structure
that is traversed from its head node, we desire a data
structure that links together distributed computer nodes
and supports traversals that may start from any node in
the system. Furthermore, because peers should have uni-
form roles and responsibilities in a peer-to-peer system,
we desire that the state and processing overhead of all
nodes be roughly the same. In contrast, Skip Lists main-
tain a highly variable number of pointers per data record
and experience a substantially different amount of traver-
sal traffic at each data record.

3.2 The SkipNet Structure

The key idea we take from Skip Lists is the notion
of maintaining a sorted list of all data records as well
as pointers that “skip” over varying numbers of records.
We transform the concept of a Skip List to a distributed
system setting by replacing data records with computer
nodes, using the string name IDs of the nodes as the data
record keys, and forming a ring instead of a list. The
ring must be doubly-linked to enable path locality, as is
explained in Section 3.3.

Rather than having nodes store a highly variable num-
ber of pointers, as in Skip Lists, each SkipNet node stores
2 log N pointers, where N is the number of nodes in the
overlay system. Each node’s set of pointers is called
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Figure 4. The full SkipNet routing infrastructure for an
8 node system, including the ring labels.

its routing table, or R-Table, since the pointers are used
to route message traffic between nodes. The pointers at
level h of a given node’s routing table point to nodes that
are roughly 2h nodes to the left and right of the given
node. Figure 3 depicts a SkipNet containing eight nodes
and shows the routing table pointers that nodes A and V
maintain.

The SkipNet in Figure 3 is a “perfect” SkipNet: each
level h pointer traverses exactly 2h nodes. Figure 4 de-
picts the same SkipNet of Figure 3, arranged to show
all node interconnections at every level simultaneously.
All nodes are connected by the root ring formed by each
node’s pointers at level 0. The pointers at level 1 point to
nodes that are 2 nodes away and hence the overlay nodes
are implicitly divided into two disjoint rings. Similarly,
pointers at level 2 form four disjoint rings of nodes, and
so forth. Note that rings at level h + 1 are obtained by
splitting a ring at level h into two disjoint sets, each ring
containing every second member of the level h ring.

Maintaining a perfect SkipNet in the presence of in-
sertions and deletions is impractical, as is the case with
perfect Skip Lists. To facilitate efficient insertions and
deletions, we derive a probabilistic SkipNet design. Each
ring at level h is split into two rings at level h + 1
by having each node randomly and uniformly choose to

which of the two rings it belongs. With this probabilis-
tic scheme, insertion/deletion of a node only affects two
other nodes in each ring to which the node has randomly
chosen to belong. Furthermore, a pointer at level h still
skips over 2h nodes in expectation, and routing is possi-
ble in O(log N) forwarding hops with high probability.

Each node’s random choice of ring memberships can
be encoded as a unique binary number, which we refer
to as the node’s numeric ID. As illustrated in Figure 4,
the first h bits of the number determine ring membership
at level h. For example, node X’s numeric ID is 011
and its membership at level 2 is determined by taking the
first 2 bits of 011, which designate Ring 01. As described
in [38], there are advantages to using a collision-resistant
hash (such as SHA-1) of the node’s DNS name as the nu-
meric ID. The SkipNet design does not require the use of
hashing to generate nodes’ numeric IDs; we only require
that numeric IDs are random and unique.

Because the numeric IDs of nodes are unique they can
be thought of as a second address space that is main-
tained by the same SkipNet data structure. Whereas
SkipNet’s string address space is populated by node
name IDs that are not uniformly distributed throughout
the space, SkipNet’s numeric address space is populated
by node numeric IDs that are uniformly distributed. The
uniform distribution of numeric IDs in the numeric space
is what ensures that our routing table construction yields
routing table entries that skip over the appropriate num-
ber of nodes.

Readers familiar with Chord may have observed that
SkipNet’s routing pointers are exponentially distributed
in a manner similar to Chord’s: The pointer at level h
hops over 2h nodes in expectation. The fundamental
difference is that Chord’s routing pointers skip over 2h

nodes in the numeric space. In contrast SkipNet’s point-
ers, when considered from level 0 upward, skip over 2h

nodes in the name ID space and, when considered from
the top level downward, skip over 2h nodes in the nu-
meric ID space. Chord guarantees O(log N) routing
and node insertion performance by uniformly distribut-
ing node identifiers in its numeric address space. Skip-
Net guarantees O(log N) performance of node insertion
and routing in both the name ID and numeric ID spaces
by uniformly distributing numeric IDs and leveraging the
sorted order of name IDs.

3.3 Routing by Name ID

Routing/searching by name ID in SkipNet is based on
the same basic principle as searching in Skip Lists: Fol-
low pointers that route closest to the intended destina-
tion. At each node, a message will be routed along the
highest-level pointer that does not point past the destina-
tion value. Routing terminates when the message arrives
at a node whose name ID is closest to the destination.
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SendMsg(nameID, msg) {
if( LongestPrefix(nameID,localNode.nameID)==0 )
msg.dir = RandomDirection();

else if( nameID<localNode.nameID )
msg.dir = counterClockwise;

else
msg.dir = clockwise;

msg.nameID = nameID;
RouteByNameID(msg);

}

// Invoked at all nodes (including the source and
// destination nodes) along the routing path.
RouteByNameID(msg) {
// Forward along the longest pointer
// that is between us and msg.nameID.
h = localNode.maxHeight;
while (h >= 0) {
nbr = localNode.RouteTable[msg.dir][h];
if (LiesBetween(localNode.nameID, nbr.nameID,

msg.nameID, msg.dir)) {
SendToNode(msg, nbr);
return;

}
h = h - 1;

}
// h<0 implies we are the closest node.
DeliverMessage(msg.msg);

}

Figure 5. Algorithm for routing by name ID in SkipNet.

Figure 5 presents this algorithm in pseudocode.
Since nodes are ordered by name ID along each ring

and a message is never forwarded past its destination,
all nodes encountered during routing have name IDs be-
tween the source and the destination. Thus, when a mes-
sage originates at a node whose name ID shares a com-
mon prefix with the destination, all nodes traversed by
the message have name IDs that share that same pre-
fix. Because rings are doubly-linked, this scheme can
route using either right or left pointers depending upon
whether the source’s name ID is smaller or greater than
the destination’s. The key observation of this scheme
is that routing by name ID traverses only nodes whose
name IDs share a non-decreasing prefix with the desti-
nation ID. Section 8.5 proves that node stress is well-
balanced even under this scheme.

If the source name ID and the destination name ID
share no common prefix, a message can be routed in ei-
ther direction. For the sake of fairness, we randomly pick
a direction so that nodes whose name IDs are near the
middle of the sorted ordering do not get a disproportion-
ately large share of the forwarding traffic.

The number of message hops when routing by name
ID is O(log N) with high probability. For a proof see
Section 8.1.

3.3.1 Generality of the Name ID Space

In this paper we use examples where the name IDs
for each node are chosen based on the name of the or-
ganization that the node belongs to. However, SkipNet
has many potential uses beyond this particular naming
scheme. Because there is no requirement that the names
be uniformly distributed along the root ring in order to
achieve O(log N) routing performance, there are no con-
straints placed on the strategy one uses to select names
for nodes and data.

// Invoked at all nodes (including the source and
// destination nodes) along the routing path.
// Initially:
// msg.ringLvl = -1
// msg.startNode = msg.bestNode = null
// msg.finalDestination = false
RouteByNumericID(msg) {
if (msg.numID == localNode.numID ||

msg.finalDestination) {
DeliverMessage(msg.msg);
return;

}

if (localNode == msg.startNode) {
// Done traversing current ring.
msg.finalDestination = true;
SendToNode(msg.bestNode);
return;

}

h = CommonPrefixLen(msg.numID, localNode.numID);
if (h > msg.ringLvl) {
// Found a higher ring.
msg.ringLvl = h;
msg.startNode = msg.bestNode = localNode;

} else if ( abs(localNode.numID - msg.numID) <
abs(msg.bestNode.numID - msg.numID)) {

// Found a better candidate for current ring.
msg.bestNode = localNode;

}

// Forward along current ring.
nbr = localNode.RouteTable[clockWise][msg.ringLvl];
SendToNode(nbr);

}

Figure 6. Algorithm to route by numeric ID in SkipNet

3.4 Routing by Numeric ID

It is also possible to route messages efficiently to a
given numeric ID. In brief, the routing operation begins
by examining nodes in the level 0 (root) ring until a node
is found whose numeric ID matches the destination nu-
meric ID in the first digit. At this point the routing op-
eration jumps up to this node’s level 1 ring, which also
contains the destination node. The routing operation then
examines nodes in this level 1 ring until a node is found
whose numeric ID matches the destination numeric ID
in the second digit. As before, we know that this node’s
level 2 ring must also contain the destination node, and
thus the routing operation proceeds in this level 2 ring.

This procedure repeats until we cannot make any
more progress — we have reached a ring at some level
h such that none of the nodes in that ring share h + 1
digits with the destination numeric ID. We must now de-
terministically choose one of the nodes in this ring to be
the destination node. Our algorithm defines the desti-
nation node to be the node whose numeric ID is numeri-
cally closest to destination numeric ID amongst all nodes
in this highest ring. Figure 6 presents this algorithm in
pseudocode.

As an example, imagine that the numeric IDs in Fig-
ure 4 are 4 bits long and that node Z’s ID is 1000 and
node O’s ID is 1001. If we want to route a message from
node A to destination 1011 then A will first forward the
message to node D because D is in ring 1. D will then
forward the message to node O because O is in ring 10.
O will forward the message to Z because it is not in ring
101. Z will forward the message onward around the ring
(and hence back) to O for the same reason. Since none
of the members of ring 10 belong to ring 101, node O
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will be picked as the final message destination because
its numeric ID is closest to 1011 of all ring 10 members.

The number of message hops when routing by nu-
meric ID is O(log N) with high probability. For a proof
see Section 8.3.

Some intuition for why SkipNet can support efficient
routing by both name ID and numeric ID with the same
data structure is illustrated in Figure 4. Note that the root
ring, at the bottom, is sorted by name ID and, collec-
tively, the top-level rings are sorted by numeric ID. For
any given node, the SkipNet rings to which it belongs
precisely form a Skip List. Thus efficient searches by
name ID are possible. Furthermore, if you construct a
trie on all nodes’ numeric IDs, the nodes of the result-
ing trie would be in one-to-one correspondence with the
SkipNet rings. This suggests that efficient searches by
numeric ID are also possible.

3.5 Node Join and Departure

To join a SkipNet, a newcomer must first find the top-
level ring that corresponds to the newcomer’s numeric
ID. This amounts to routing a message to the newcomer’s
numeric ID, as described in Section 3.4.

The newcomer then finds its neighbors in this top-
level ring, using a search by name ID within this ring
only. Starting from one of these neighbors, the new-
comer searches for its name ID at the next lower level
and thus finds its neighbors at this lower level. This pro-
cess is repeated for each level until the newcomer reaches
the root ring. For correctness, the existing nodes only
point to the newcomer after it has joined the root ring;
the newcomer then notifies its neighbors in each ring that
it should be inserted next to them. Figure 7 presents this
algorithm in pseudocode.

As an example, imagine inserting node O into the
SkipNet of Figure 4. Node O initiates a search by nu-
meric ID for its own ID (101) and the resulting insertion
message ends up at node Z in ring 10 since that is the
highest non-empty ring that shares a prefix with node O’s
numeric ID. Since Z is the only node in ring 10, Z con-
cludes that it is both the clockwise and counter-clockwise
neighbor of node O in this ring.

In order to find node O’s neighbors in the next lower
ring (ring 1), node Z forwards the insertion message to
node D. Node D then concludes that D and V are the
neighbors of node O in ring 1. Similarly, node D for-
wards the insertion message to node M in the root ring,
who concludes that node O’s level 0 neighbors must be
M and T . The insertion message is returned to node O,
who then instructs all of its neighbors to insert it into the
rings.

The key observation for this algorithm’s efficiency is
that a newcomer searches for its neighbors at a certain
level only after finding its neighbors at all higher levels.

InsertNode(nameID, numID) {
msg = new JoinMessage();
msg.operation = findTopLevelRing;
RouteByNumericID(numID, msg);

}

DeliverMessage(msg) {
...
else if (msg.operation == findTopLevelRing) {
msg.ringLvl =

CommonPrefix(localNode.numID, msg.numID);
msg.ringNbrClockWise = new Node[msg.ringLvl];
msg.ringNbrCClockWise = new Node[msg.ringLvl];
msg.doInsertions = false;
CollectRingInsertionNeighbors(msg);

}
else ...

}

// Invoked at every intermediate routing hop.
CollectRingInsertionNeighbors(msg) {
if (msg.doInsertions) {
InsertIntoRings(msg.ringNbrClockWise,

msg.ringNbrCClockWise);
return;

}

while (msg.ringLvl >= 0) {
nbr = localNode.RouteTable[clockWise][msg.ringLvl];
if (LiesBetween(localNode.nameID, msg.nameID,

nbr.nameID, clockWise)) {
// Found an insertion neighbor.
msg.ringNbrClockWise[msg.ringLvl] = nbr;
msg.ringNbrCClockWise[msg.ringLvl] = localNode;
msg.ringLvl = msg.ringLvl-1;

} else {
// Keep looking
SendToNode(msg, nbr);
return;

}
}

msg.doInsertions = true;
SendToNode(msg, msg.joiningNode);

}

Figure 7. Algorithm to insert a SkipNet node.

As a result, the search by name ID will traverse only a
few nodes within each ring to be joined: The range of
nodes traversed at each level is limited to the range be-
tween the newcomer’s neighbors at the next higher level.
Therefore, with high probability, a node join in SkipNet
will traverse O(log N) hops. For a proof see Section 8.4.

The basic observation in handling node departures is
that SkipNet can route correctly as long as the root ring
is maintained. All pointers but the root ring ones can
be regarded as routing optimization hints, and thus are
not necessary to maintain routing protocol correctness.
Therefore, like Chord and Pastry, SkipNet maintains and
repairs the upper-level ring memberships by means of
a background repair process. In addition, when a node
voluntarily departs from the SkipNet, it can proactively
notify all of its neighbors to repair their pointers imme-
diately.

To maintain the root ring correctly, each SkipNet node
maintains a leaf set that points to additional nodes along
the root ring, for redundancy. We describe the leaf set
next.

3.6 Leaf Set

Every SkipNet node maintains a set of pointers to the
L/2 nodes closest in name ID on the left side and simi-
larly on the right side. We call this set of pointers a leaf
set. Several previous peer-to-peer systems [34] incorpo-
rate a similar architectural feature; in Chord [39] they
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refer to this as a successor list.
These additional pointers in the root ring provide two

benefits. First, the leaf set increases fault tolerance. If a
search operation encounters a failed node, a node adja-
cent to the failed node will contain a leaf set pointer with
a destination on the other side of the failed node, and
so the search will eventually move past the failed node.
Repair is also facilitated by repairing the root ring first,
and recursively relying on the accuracy of lower rings
to repair higher rings. Without a leaf set, it is not clear
that higher level pointers (that point past a failed node)
sufficiently enable repair. If two nodes fail, it may be
that some node in the middle of them becomes invisi-
ble to other nodes looking for it using only higher level
pointers. Additionally, in the node failure scenario of an
organizational disconnect, the leaf set pointers on most
nodes are more likely to remain intact than higher level
pointers. The resiliency to node failure that leaf sets pro-
vide (with the exception of the organizational disconnect
scenario) was also noted by [39].

A second benefit of the leaf set is to increase search
performance by subtracting a noticeable additive con-
stant from the required number of search hops. When
a search message is within L/2 of its destination, the
search message will be immediately forwarded to the
destination. In our current implementation we use a leaf
set of size L = 16, just as Pastry does.

3.7 Background Repair

SkipNet uses the leaf set to ensure with good probabil-
ity that the neighbor pointers in the root ring point to the
correct node. As is the case in Chord [38], this is all that
is required to guarantee correct, if possibly inefficient,
routing by name ID. For an intuitive argument of why
this is true, suppose that some higher-level pointer does
not point to the correct node, and that the search algo-
rithm tries to use this pointer. There are two cases. In the
first case, the incorrect pointer points further around the
ring than the routing destination. In this case the pointer
will not be used, as it goes past the destination. In the
second case, the incorrect pointer points to a location be-
tween the current location and the destination. In this
case the pointer can be safely followed and routing will
proceed from wherever it points. The only potential loss
is routing efficiency. In the worst case, correct routing
will occur using the root ring.

Nonetheless, for efficient routing, it is important to
ensure as much as possible that the other pointers are
correct. SkipNet employs two background algorithms to
detect and repair incorrect ring pointers.

The first of these algorithms builds upon the invariant
that a correct set of ring pointers at level h can be used
to build a correct set of pointers in the ring above it at
level h + 1. Each node periodically routes a message a

short distance around each ring that it belongs to, starting
at level 0, verifying that the pointers in the ring above it
point to the correct node and adjusting them if necessary.
Once the pointers at level h have been verified, this al-
gorithm iteratively verifies and repairs the pointers one
level higher. At each level, verification and repair of a
pointer requires only a constant amount of work in ex-
pectation.

The second of these algorithms performs local repairs
to rings whose nodes may have been inconsistently in-
serted or whose members may have disappeared. In this
algorithm nodes periodically contact their neighbors at
each level saying “I believe that I am your left(right)
neighbor at level h”. If the neighbor agrees with this in-
formation no reply is necessary. If it doesn’t, the neigh-
bor replies saying who he believes his left(right) neigh-
bor is, and a reconciliation is performed based upon this
information to correct any local ring inconsistencies dis-
covered.

4 Useful Locality Properties of SkipNet

In this section we discuss some of the useful local-
ity properties that SkipNet is able to provide, and their
consequences.

4.1 Content and Routing Path Locality

Given the basic structure of SkipNet, describing how
SkipNet supports content and path locality is straight-
forward. Incorporating a node’s name ID into a con-
tent name guarantees that the content will be hosted
on that node. As an example, to store a document
doc-name on the node john.microsoft.com, naming it
john.microsoft.com/doc-name is sufficient.

SkipNet is oblivious to the naming convention used
for nodes’ name IDs. Our simulations and deploy-
ments of SkipNet use DNS names for name IDs, af-
ter suitably reversing the components of the DNS
name. In this scheme, john.microsoft.com becomes
com.microsoft.john, and thus all nodes within mi-
crosoft.com share the com.microsoft prefix in their name
IDs. This yields path locality for organizations in which
all nodes share a single DNS suffix (and hence share a
single name ID prefix).

4.2 Constrained Load Balancing

As mentioned in the Introduction, SkipNet supports
Constrained Load Balancing (CLB). To implement CLB,
we divide a data object’s name into two parts: a part that
specifies the set of nodes over which DHT load balancing
should be performed (the CLB domain) and a part that is
used as input to the DHT’s hash function (the CLB suffix).
In SkipNet the special character ‘!’ is used as a delimiter
between the two parts of the name.
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For example, suppose we stored a document using
the name msn.com/DataCenter!TopStories.html. The
CLB domain indicates that load balancing should oc-
cur over all nodes whose names begin with the prefix
msn.com/DataCenter. The CLB suffix, TopStories.html,
is used as input to the DHT hash function, and this de-
termines the specific node within msn.com/DataCenter
on which the document will be placed. Note that stor-
ing a document with CLB results in the document be-
ing placed on precisely one node within the CLB domain
(although it would be possible to store replicas on other
nodes). If numerous other documents were also stored
in the msn.com/DataCenter CLB domain, then the docu-
ments would be uniformly distributed across all nodes in
that domain.

To search for a data object that has been stored using
CLB, we first search for any node within the CLB do-
main using search by name ID. To find the specific node
within the domain that stores the data object, we perform
a search by numeric ID within the CLB domain for the
hash of the CLB suffix.

The search by name ID is unmodified from the de-
scription in Section 3.3, and takes O(log N) message
hops. The search by numeric ID is constrained by a
name ID prefix and thus at any level must effectively step
through a doubly-linked list rather than a ring. Upon en-
countering the right boundary of the list (as determined
by the name ID prefix boundary), the search must reverse
direction in order to ensure that no node is overlooked.
Reversing directions in this manner affects the perfor-
mance of the search by numeric ID by at most a factor
of two, and thus O(log N) message hops are required in
total.

Note that both traditional system-wide DHT seman-
tics as well as explicit content placement are special
cases of constrained load balancing: system-wide DHT
semantics are obtained by placing the ‘!’ hashing delim-
iter at the beginning of a document name. Omission of
the hashing delimiter and choosing the name of a data
object to have a prefix that matches the name of a par-
ticular SkipNet node will result in that data object being
placed on that SkipNet node.

Constrained load balancing can be performed over
any naming subtree of the SkipNet but not over an arbi-
trary subset of the nodes of the overlay network. Another
limitation is that CLB domain is encoded in the name of
a data object. Thus, transparent remapping to a different
load balancing domain is not possible.

4.3 Fault Tolerance

Previous studies [24, 28] indicate that network con-
nectivity failures in the Internet today are due primar-
ily to Border Gateway Protocol (BGP) misconfigurations
and faults. Other hardware, software and human failures

play a lesser role. As a result, node failures in overlay
networks are not independent; instead, nodes belonging
to the same organization or AS tend to fail together. We
consider both correlated and independent failure cases in
this section.

4.3.1 Independent Failures

SkipNet’s tolerance to uncorrelated, independent fail-
ures is much the same as previous overlay designs’ (e.g.,
Chord and Pastry), and is achieved through similar mech-
anisms. The key observation in failure recovery is that
maintaining correct neighbor pointers in the root ring
is enough to ensure correct functioning of the overlay.
Since each node maintains a leaf set of 16 neighbors at
level 0, the root ring pointers can be repaired by replac-
ing them with the leaf set entries that point to the nearest
live nodes following the failed node. The live nodes in
the leaf set may be contacted to repopulate the leaf set
fully.

As described in Section 3.7, SkipNet also employs a
background stabilization mechanism that gradually up-
dates all necessary routing table entries when a node
fails. Any query to a live, reachable node will still suc-
ceed during this time; the stabilization mechanism sim-
ply restores optimal routing.

4.3.2 Failures along Organization Boundaries

In previous peer-to-peer overlay designs [32, 38, 34,
44], node placement in the overlay topology is deter-
mined by a randomly chosen numeric ID. As a result,
nodes within a single organization are placed uniformly
throughout the address space of the overlay. While a uni-
form distribution facilitates the O(log N) routing perfor-
mance of the overlay it makes it difficult to control the
effect of physical link failures on the overlay network. In
particular, the failure of a inter-organizational network
link may manifest itself as multiple, scattered link fail-
ures in the overlay. Indeed, it is possible for each node
within a single organization that has lost connectivity
to the Internet to become disconnected from the entire
overlay and from all other nodes within the organization.
Section 9.4 reports experimental results that confirm this
observation.

Since SkipNet name IDs tend to encode organiza-
tional membership, and nodes with common name ID
prefixes are contiguous in the overlay, failures along or-
ganization boundaries do not completely fragment the
overlay, but instead result in ring segment partitions.
Consequently, a significant fraction of routing table en-
tries of nodes within the disconnected organization still
point to live nodes within the same network partition.
This property allows SkipNet to gracefully survive fail-
ures along organization boundaries. Furthermore, the
disconnected organization’s SkipNet segment can be ef-
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ficiently re-merged with the external SkipNet when con-
nectivity is restored, as described in Section 6.

4.4 Security

In this section, we discuss some security conse-
quences of SkipNet’s content and path locality proper-
ties. Recent work [3] on improving the security of peer-
to-peer systems has focused on certification of node iden-
tifiers and the use of redundant routing paths. The secu-
rity advantages of content and path locality depend on
an access control mechanism for creation of name IDs.
SkipNet does not directly provide this mechanism but
rather assumes that it is provided at another layer. Our
use of DNS names for name IDs does provide this mech-
anism: Arbitrary nodes cannot create global DNS names
containing the suffix of a registered organization without
its permission.

Path locality allows SkipNet to guarantee that mes-
sages between two machines within a single administra-
tive domain that uses a single name ID prefix will never
leave the administrative domain. Thus, these messages
are not susceptible to traffic analysis or denial-of-service
attacks by machines located outside of the administrative
domain. Furthermore, traffic that is internal to an orga-
nization is not susceptible to a Sybil attack [10] originat-
ing from a foreign organization: Creating an unbounded
number of nodes outside microsoft.com will not allow
the attacker to see any traffic internal to microsoft.com,
nor allow the attacker to usurp control over documents
placed specifically within microsoft.com.

In Chord, the nodes belonging to an administrative
domain (for example, microsoft.com) are uniformly dis-
persed throughout the overlay. Thus, intercepting a sig-
nificant portion of the traffic to microsoft.com may re-
quire that an attacker create a large number of nodes. In
SkipNet, the nodes belonging to an administrative do-
main form a contiguous segment of the overlay. Thus,
an attacker might attempt to target microsoft.com by cre-
ating nodes (for example, microsofa.com) that are adja-
cent to the target domain. Thus a security disadvantage
of SkipNet is that it may be possible to target traffic be-
tween an administrative domain and the outside world
with fewer attacking nodes than would be necessary in
systems such as Chord. We believe that susceptibility to
these kinds of attacks is a small price to pay in return for
the benefits provided by path and content locality.

4.5 Range Queries

Since SkipNet’s design is based on and inspired by
Skip Lists, it inherits their functionality and flexibility
in supporting efficient range queries. In particular, since
nodes and data are stored in name ID order, documents
sharing common prefixes are stored over contiguous ring

segments. Performing range queries in SkipNet is there-
fore equivalent to routing along the corresponding ring
segment. Because our current focus is on SkipNet’s ar-
chitecture and locality properties, we do not discuss the
use of range queries for implementing various higher-
level data query operators further in this paper.

5 SkipNet Enhancements

This section presents several optimizations and en-
hancements to the basic SkipNet design.

5.1 Sparse and Dense Routing Tables

The basic SkipNet design may be modified in order
to improve routing performance. Thus far in our discus-
sions, SkipNet numeric IDs consist of 128 random binary
digits. However, the random digits need not be binary.
Indeed, Skip Lists using non-binary random digits are
well-known [30].

We can also use non-binary random digits for the nu-
meric IDs in SkipNet, which changes the ring structure
depicted in Figure 4, the number of pointers stored per
node, and the expected routing cost. We denote the num-
ber of different possibilities for a digit by k; in the binary
digit case, k = 2. If k = 3, the root ring of SkipNet re-
mains a single ring, but there are now three level 1 rings,
nine level 2 rings, etc. As k increases, the total number
of pointers in the R-Table will decrease. Because there
are fewer pointers, it will take more routing hops to get to
any particular node. For increasing values of k, the num-
ber of pointers decreases to O(logk n) while the number
of hops required for search increases to O(k logk n). We
call the routing table that results from this modification a
sparse R-Table with parameter k.

It is also possible to build a dense R-Table by addi-
tionally storing k − 1 pointers to contiguous nodes at
each level of the routing table and in both directions.
In this case, the expected number of search hops de-
creases while the expected number of pointers at a node
increases.

Increasing k makes the sparse R-Table sparser and
the dense R-Table denser. The density parameter k and
choice of sparse or dense construction can be used to
control the amount routing state used by all SkipNet rout-
ing tables, and in Section 9 we examine the relationship
between routing performance and the amount of routing
table state maintained.

Our density parameter, k, bears some similarity to
Pastry’s density parameter, b. Pastry always generates bi-
nary numeric IDs but divides bits into groups of b. This is
analogous to our scheme for choosing numeric IDs with
k = 2b.

Implementing node join and departure in the case of
sparse R-Tables requires no modification to our previous
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algorithms. For dense R-Tables, the node join message
must traverse and gather information about at least k −
1 nodes in both directions in every ring containing the
newcomer, before descending to the next ring. As before,
node departure merely requires notifying every neighbor.

If k = 2, the sparse and dense constructions are iden-
tical. Increasing k makes the sparse R-Table sparser and
the dense R-Table denser. Any given degree of sparsity/-
density can be well-approximated by appropriate choice
of k and either a sparse or a dense R-Table. Our im-
plementation chooses k = 8 to achieve a good balance
between state per node and routing performance.

5.2 Duplicate Pointer Elimination

Two nodes that are neighbors in a ring at level h
may also be neighbors in a ring at level h + 1. In this
case, these two nodes maintain “duplicate” pointers to
each other at levels h and h + 1. Intuitively, routing ta-
bles with more distinct pointers yield better routing per-
formance than tables with fewer distinct pointers, and
hence duplicate pointers reduce the effectiveness of a
routing table. Replacing a duplicate pointer with a suit-
able alternative, such as the following neighbor in the
higher ring, improves routing performance by a moder-
ate amount (our experiments indicate improvements typ-
ically around 25%). Routing table entries adjusted in this
fashion can only be used when routing by name ID since
they violate the invariant that a node point to its closest
neighbor on a ring, which is required for correct routing
by numeric ID.

5.3 Incorporating Network Proximity for Rout-
ing by Name ID

In SkipNet, a node’s neighbors are determined by a
random choice of ring memberships (i.e., numeric IDs)
and by the ordering of name IDs within those rings.
Accordingly, the SkipNet overlay is constructed with-
out direct consideration of the physical network topol-
ogy, potentially hurting routing performance. For ex-
ample, when sending a message from the node sat-
urn.com/nodeA to the node chrysler.com/nodeB, both in
the USA, the message might get routed through the inter-
mediate node jaguar.com/nodeC in the UK. This would
result in a much longer path than if the message had been
routed through another intermediate node in the USA.

To deal with this problem, we introduce a second rout-
ing table called the P-Table, which is short for proximity
table. The goal of the P-Table is to maintain routing in
O(log N) hops, while also ensuring that each hop has
low cost in terms of network latency. Our P-Table de-
sign is inspired by Pastry’s proximity-aware routing ta-
bles [4]. To incorporate network proximity into SkipNet,
the key observation is that any node that is roughly the
right distance away in name ID space can be used as an

acceptable routing table entry that will maintain the un-
derlying O(log N) routing performance. For example, it
doesn’t matter whether a P-Table entry at level 3 points
to the node that is exactly 8 nodes away or to one that is
7 or 9 nodes away; statistically the number of forward-
ing hops that messages will take will end up being the
same. However, if the 7th or 9th node is nearby in net-
work distance then using it as the P-Table entry can yield
substantially better routing performance. In fact, the P-
Table entry at level h can be anywhere between 2h and
2h+1 nodes away while maintaining O(log N) routing
performance.

To construct its P-Table, a node needs to locate a set
of candidate nodes that are close in terms of network dis-
tance and whose name IDs are appropriately distributed
around the root ring. Unlike Chord and Pastry, in Skip-
Net it is difficult to estimate distance along the root ring
simply by looking at a candidate node’s name ID. We
solve this problem by observing that a node’s basic rout-
ing table (the R-Table) conveniently divides the root ring
into intervals of exponentially increasing size. Thus, two
pointers at adjacent levels in the R-Table provide the
name ID boundaries of a contiguous interval along the
root ring. Given a node, we examine these intervals to
determine which P-Table entry it is a candidate for. We
discover candidate nodes that are nearby using a recur-
sive process: we start at a nearby seed node and discover
other nearby nodes by querying the P-Table of the seed
node. Finally, we determine that two nodes are near each
other by estimating the round-trip latency between them.

The following section provides a detailed description
of the algorithm that a SkipNet node uses to construct its
P-Table. After the initial P-Table is constructed, Skip-
Net constantly tries to improve the quality of its P-Table
entries, as well as adjust to node joins and departures,
by means of a periodic stabilization algorithm. The pe-
riodic stabilization algorithm is very similar to the initial
construction algorithm presented below. Finally, in Sec-
tion 8.8 we argue that P-Table routing performance and
P-Table construction are efficient.

5.3.1 P-Table Construction

Recall that the R-Table has only two configuration pa-
rameters: the value of k and either sparse or dense con-
struction. The P-Table inherits these parameters from the
R-Table upon which it is based. In certain cases it is pos-
sible to construct a P-Table with parameters that differ
from the R-Table’s by first constructing a temporary R-
Table with the desired parameters. For example, if the
R-Table is sparse, one may construct a dense P-Table by
first constructing a temporary dense R-Table to use as in-
put to the P-Table construction algorithm.

When a node joins SkipNet it first constructs its R-
Table. P-Table construction is then initiated by copying
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the entries of the R-Table to a separate list, where they are
sorted by name ID and then duplicate entries are elimi-
nated. Duplicates and out-of-order entries can arise in
this list due to the probabilistic nature of constructing the
R-Table.

The joining node then constructs a P-Table join mes-
sage that contains the sorted list of endpoints: a list of j
nodes defining j − 1 intervals. The joining node sends
this P-Table join message to a seed node – a node that
should be nearby in terms of network distance.

Every node that receives a P-Table join message uses
its own P-Table entries to fill in the intervals with “can-
didate” nodes. As a practical consideration, we limit the
maximum number of candidates per interval to 10 in or-
der to avoid accumulating too many nodes. After filling
in any possible intervals, the node checks whether any
of the intervals are still empty. If so, the node must for-
ward the join message to another node in order to fill the
remaining empty intervals.

Assuming that all intervals are initially empty, the ex-
pected number of hops required to find a candidate for
the jth farthest interval from the joining node is O(j).
Thus, in order to find candidates that are close to the
joining node in terms of network proximity, we use the
following strategy: Nodes that receive the join message
use their own P-Table entries to forward the message to-
wards the unfilled interval that is the farthest from the
joining node. If all the intervals have at least one candi-
date, the node sends the completed join message back to
the original joining node. The expected total number of
hops to fill all intervals is O(log N).

When the original node receives its own join message,
it chooses one candidate node per interval as its P-Table
entry. The choice between candidate nodes is performed
by estimating the network latency to each candidate and
choosing the closest node.

We now summarize a few remaining key details of P-
Table construction. Since SkipNet can route either clock-
wise or counter-clockwise, the P-Table contains intervals
that cover the address space in both directions from the
joining node. Thus two join messages are sent from the
same starting node.

The effectiveness of P-Table routing entries is depen-
dent to a great extent on finding nearby nodes. The ba-
sis of this process is finding a good seed node. In our
simulator, we implemented two strategies for locating a
seed node. Our first strategy uses global knowledge from
the simulator topology model to find the closest node in
the entire system. The second and more realistic strat-
egy is that we choose the seed node at random, and then
run the P-Table join algorithm twice. We use the first
run of the P-Table join algorithm to locate a nearby seed,
and the second run to construct a better P-table based on
the nearby seed. Section 9.6 summarizes a performance

evaluation of these two approaches.
For a real implementation, we make the following

simple proposal: The seed node should be determined
by estimating the network latency to all nodes in the leaf
set and choosing the closest leaf set node. Since SkipNet
name IDs incorporate naming locality, a node is likely to
be close in terms of network proximity to the nodes in its
leaf set. Thus the closest leaf set node is likely to be an
excellent choice for a seed node.

After the initial P-Table is constructed, SkipNet con-
stantly tries to improve the quality of its P-Table entries,
and adjusts to node joins and departures, by means of a
periodic stabilization algorithm. The P-Table is updated
periodically so that the P-Table segment endpoints accu-
rately reflect the distribution of name IDs in the Skip-
Net, which may change over time. The periodic mecha-
nism used to update P-Table entries is very similar to the
initial construction algorithm presented above. One key
difference between the update mechanism and the initial
construction mechanism is that for update, the current P-
Table entries are considered as candidate nodes in addi-
tion to the candidates returned by the P-Table join mes-
sage. The other difference is that for update, the seed
node is chosen as the best candidate from the existing P-
Table. Finally, the P-Table entries may also be incremen-
tally updated as node joins and departures are discovered
through ordinary message traffic.

5.4 Incorporating Network Proximity for Rout-
ing by Numeric ID

We add a third routing table, the C-Table, to incorpo-
rate network proximity when searching by numeric ID.
Constrained Load Balancing (CLB), because it involves
searches by both name ID and numeric ID, takes advan-
tage of both the P-Table and the C-Table. Because search
by numeric ID as part of a CLB search must stay within
the CLB domain, C-Table entries that step outside the
domain cannot be used. When such an entry is encoun-
tered, the CLB search must revert to using the R-Table.

The C-Table has identical functionality and design
to the routing table that Pastry maintains [34]. The
suggested parameter choice for Pastry’s routing table is
b = 4 (i.e. k = 16), while our implementation chooses
k = 8, as mentioned in Section 5.1. As is the case with
searching by numeric ID using the R-Table, and as is the
case with Pastry, searching by numeric ID with the C-
Table requires at most O(log N) message hops.

For concreteness, we describe the C-Table in the case
that k = 8, although this description could be inferred
from [34]. At each node the C-Table consists of a set of
arrays of node pointers, one array per numeric ID digit,
each array having an entry for each of the eight possi-
ble digit values. Each entry of the first array points to
a node whose first numeric ID digit matches the array
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index value. Each entry of the second array points to a
node whose first digit matches the first digit of the cur-
rent node and whose second digit matches the array index
value. This construction is repeated until we arrive at an
empty array.

5.4.1 C-Table Construction and Update

C-Tables are constructed in the same manner as Pas-
try’s routing tables, which is described in [4]. The key
idea is: For each array in the C-Table, route to a nearby
node with the necessary numeric ID prefix, obtaining its
C-Table entries at that level, and then populate the join-
ing node’s array with those entries. Since several candi-
date nodes may be available for a particular table entry,
the candidate with the best network proximity is selected.
Section 8.8 shows that the cost of constructing a C-Table
is O(log N) in terms of message traffic. As in Pastry,
the C-Table is updated lazily, by means of a background
stabilization algorithm.

We report experiments in Section 9.5 showing that use
of the C-Table during CLB search reduces the RDP (Rel-
ative Delay Penalty). An adaptation of the argument pre-
sented in [4] for Pastry explains why this should be the
case.

5.5 Failover Nodes

Many overlay networks, including SkipNet, have the
following useful property: a message routed to a partic-
ular destination will arrive at the node that is closest to
that destination. The definition of closest depends on the
routing scheme used by the particular overlay. As an ex-
ample, suppose that we store a file X by routing towards
the destination X . If node Y is the closest node to that
destination, then the file X will be stored on node Y .
Next, suppose that node Y has failed and that we try to
retrieve file X . All messages routed towards destination
X will now arrive at some other node, say node Z. If
node Z previously received a replica of file X from node
Y , then node Z can successfully handle our request for
this file. We say that node Z is a failover node for file X .

In order to implement this automatic failover func-
tionality, an overlay network must provide a facility to
determine failover nodes. In SkipNet, the identity of the
failover nodes may depend on the actual routing destina-
tion used. In our example, even if files X1 and X2 are
both stored on node Y , the respective failover nodes may
be Z1 and Z2. If destination X1 uses routing by name
ID, it is easy to determine the failover nodes for this des-
tination: they are simply the nodes in node Y ’s leaf set.
However, if destination X2 uses routing by numeric ID
or constrained load-balancing, determining the failover
nodes is more complicated, as explained next.

Recall that a message routed by numeric ID will ar-
rive at the highest-level ring matching the destination ID.

Among those nodes in that ring, the message will termi-
nate at the node whose numeric ID is numerically closest
to the destination ID. However, this node is not necessar-
ily a neighbor of the node that is second-closest to the
destination ID, since the ring is sorted by name ID, not
by numeric ID. This shows that the failover node for a
message routed by numeric ID need not be a neighbor
of the original destination. A similar argument holds for
messages routed by constrained load-balancing, except
that the failover node must lie within the CLB domain
used by the destination ID. For simplicity, the remainder
of this discussion will regard routing by numeric ID as
a special case of CLB routing where the CLB domain is
the empty string.

Suppose that node Y is the destination node when
routing to CLB destination A!B, where A is the CLB
domain. We now describe our algorithm for determining
a list of f failover nodes for this destination. This algo-
rithm searches all rings containing node Y , looking for
other nodes in CLB domain A. The search starts in the
highest ring, since it contains the fewest nodes and hence
requires the least work to search. If the neighbors of node
Y in this ring are not in CLB domain A, it follows that
node Y is the only member of CLB domain A in this ring,
so the search drops to the next lowest ring. When the al-
gorithm reaches a ring containing another node in CLB
domain A, we enumerate over all such nodes, building
a list of the f nodes whose numeric IDs are numerically
closest to the hash of the CLB suffix B. If f such nodes
are found, the search halts. Otherwise, the search drops
again to the next lowest ring and continues searching for
nodes until f nodes are found in total. A straightforward
argument shows that the expected number of nodes tra-
versed by this algorithm is O(f).

Each SkipNet node Y supports a function
CLBNeighbor(D) that returns a list of failover neighbors
for the given CLB destination D, assuming that Y is
the destination node for D. A simple implementation
of this function could use the algorithm described in
the previous paragraph to send a message around the
SkipNet and build up the desired list of neighbors. A
disadvantage of this simple implementation is that it
must perform network traffic for each invocation of the
function. Our implementation of CLBNeighbor() uses a
different approach to avoid this disadvantage.

Instead of finding a list of failover nodes for each
given destination, each node builds one list of failover
nodes for each CLB domain to which it belongs. Specif-
ically, for a node Y and CLB domain A, we find f nodes
that are in CLB domain A, whose numeric IDs match Y ’s
in as many digits as possible, and whose numeric IDs are
numerically closest to but less than Y ’s. We also find a
symmetric list of nodes within this CLB domain whose
numeric IDs are greater than Y ’s. Each node stores a
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cached copy of these lists and periodically rebuilds them
to maintain their accuracy as node arrive and depart.

These lists enable node Y to determine the failover
nodes for any CLB destination D for which Y is the
destination node, without incurring any network traffic.
Suppose that the function CLBNeighbor(D) is invoked,
where CLB destination D is in CLB domain A. Node Y
combines the two lists of failover nodes for CLB domain
A, sorts the nodes in the combined list by (1) the number
of numeric ID digits that match destination D, and (2)
the absolute difference in numeric ID value with destina-
tion D. The first f nodes in the sorted list are precisely
the f failover nodes for destination D.

5.6 CLB Routing Loop Elimination

When routing a message with CLB1, a particular node
may appear multiple times on the routing path. We refer
to such an occurrence as a routing loop. While the pres-
ence of routing loops does not affect the correctness of
the CLB routing protocol, these loops may present dif-
ficulties for applications that layer on top of SkipNet.
For example, applications such as Scribe [36, 5], Over-
look [41] and FUSE [12] use the SkipNet routing paths
to build additional data structures, such as reverse-path
forwarding trees. Each of these applications would need
complicated additional logic if it were modified to build
its data structure in the presence of routing loops. A
preferable design is for SkipNet to either eliminate these
routing loops or hide them from applications.

Our implementation of SkipNet hides CLB routing
loops by modifying the routing algorithms presented ear-
lier. Recall that the CLB routing algorithm has two
phases. The first phase simply routes by name ID to-
wards the CLB domain. In the second phase, the mes-
sage is routed by numeric ID within the CLB domain.
Each node primarily uses its C-Table (Section 5.4) for
this second phase, as long the required entry stays within
the CLB domain. If the C-Table entry steps outside the
CLB domain, we must route using the R-Table instead.
To hide routing loops we modify the R-Table routing al-
gorithm (Section 3.4) and keep track of several pieces of
state within the routing message:

start stores the identifier of the first node encountered
within this ring.

dir indicates the current routing direction within this
ring, clockwise or counter-clockwise.

mode is either “tentative” or “commit”. In tentative
mode applications are not notified as we traverse
each node, so traversing a node multiple times is

1As in Section 5.5, we will regard routing by numeric ID as a special
case of CLB routing where the CLB domain is the empty string.

permissible. In commit mode applications are noti-
fied as we traverse each node, so routing paths may
not have loops.

best stores the identifier of the node in the current ring
whose numeric ID is closest to the destination.

The message starts at the level 0 ring, initially in tenta-
tive mode and in the clockwise direction. The message
hops linearly through this ring in the current direction,
updating the best variable as necessary, until one of the
following cases applies.

Case 1: We find a node v that matches the destina-
tion ID in one more digit. In this case, the message
then returns to the start node, switches to commit
mode, and hops towards node v in the appropriate
direction. Hopping from start to node v will not
create any routing loops. Upon arriving at node v,
we will continue this algorithm in the ring one level
higher. Before doing so, we set start to node v, dir
to clockwise and mode to tentative.

Case 2: The variable dir is clockwise, and we find a
node that is outside the CLB domain. In this case,
we change dir to counter-clockwise, and the mes-
sage hops back through the ring in the new direc-
tion. The message will traverse nodes that it has
already traversed, thereby creating a routing loop.
However, since the message is in tentative node, all
applications are oblivious to this routing loop.

Case 3: The variable dir is counter-clockwise, and we
find a node v that is outside the CLB domain. In
this case, we may conclude that no node within
the CLB domain matches the destination ID in any
more digits. Therefore the message returns to the
start node, switches to commit mode, and hops
towards the best node in the appropriate direction.
Hopping from start to the best node will not create
any routing loops.

This modified CLB routing algorithm performs no more
than twice as many hops as the algorithm described in
Section 3.4 and Section 4.2. Furthermore, since only the
second phase is affected, and primarily the C-Table is
used within this phase, typically much fewer than twice
as many hops are performed.

5.7 CLB Routing Requires Consistency at All
R-Table Levels

All peer-to-peer overlay networks implementing a
DHT attempt to preserve consistency of the address
space: distinct messages with identical destination IDs
should be routed to the same destination node. In realis-
tic deployment scenarios, it is not feasible to make this
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an absolute guarantee. For example, a network partition
might prevent a message on one side of the partition from
reaching a node on the other side. Nevertheless, con-
sistency of the address space is considered sufficiently
desirable that most overlay networks employ leafsets to
help ensure routing consistency.

Leafsets provide redundancy at the lowest level of
the routing table, so that a limited number of node fail-
ures or departures can be tolerated without disrupting ad-
dress space consistency. Because of this redundancy at
the lowest level, many overlay networks consider knowl-
edge of neighbors at other levels of the routing table as
strictly an optimization – not something necessary for
correctness. A consequence of this choice is that differ-
ent strategies are often used to maintain the leafset than
other levels of the routing table (for instance, different
ping intervals).

Supporting CLB routing invalidates the assumptions
behind these design choices. Consistency of CLB rout-
ing requires consistency at all levels of the R-Table – not
just the lowest level. To see this, consider a CLB mes-
sage that has arrived at its CLB domain. To continue
routing the message using its CLB suffix, the message
must be routed using routing table entries at increasingly
higher level rings. (These correspond to nodes with an
increasing number of digits in their numeric IDs match-
ing the CLB suffix.) If at any point a node routing the
message does not have a neighbor at the appropriate level
ring, then the node will consider itself to be the destina-
tion.

The R-Table design outlined in Section 3 is clearly
vulnerable to a single node failure above ring 0 dis-
rupting consistency of the CLB address space. Perhaps
more surprisingly, the C-Table algorithm outlined in Sec-
tion 5.4.1 is not sufficient to address this vulnerability.
This is because the selection of C-Table entries does not
incorporate name ID constraints; a node might only have
C-Table entries at some level that are outside a partic-
ular CLB domain (i.e., contiguous section of name ID
space), even though other nodes within that CLB domain
were also candidates for inclusion in the C-Table at this
level. Therefore, even when routing a CLB message by
its CLB suffix, it is not always possible to rely solely on
the entries in the C-Table.

Fortunately, dense R-Tables (Section 5.1) effectively
have a leafset at every level of the R-Table, and this pro-
vides consistency guarantees for CLB routing equivalent
to what leafsets provide for name ID routing. When a
CLB message is being routed by its CLB suffix at any
particular R-Table level the dense R-Table will have k−1
pointers to neighbors matching this node in the appropri-
ate number of numeric ID digits. Therefore, at least k−1
unrepaired node failures or departures in a single node’s
R-Table must have occurred for consistency of the CLB

address space to be disrupted. An appropriate choice of
k makes this no more likely than the chance that name ID
routing is disrupted due to multiple simultaneous failures
in the leafset.

5.8 Virtual Nodes

Economies of scale and the ability to multiplex hard-
ware resources among distinct web sites have led to the
emergence of hosting services in the World Wide Web.
We anticipate a similar demand for hosting virtual nodes
on a single hardware platform in peer-to-peer systems. In
this section, we describe a scheme for scalably support-
ing virtual nodes within the SkipNet design. For ease of
exposition, we describe only the changes to the R-Table;
the corresponding changes to the P-Table and C-Table
are obvious and hence omitted.

Nothing in the SkipNet design prevents multiple
nodes from co-existing on a single machine; however,
scalability becomes a concern as the number of virtual
nodes increases. As shown in Section 8.2, a single Skip-
Net node’s R-Table will probably contain roughly log N
pointers. If a single physical machine hosts v virtual
nodes, the total number of R-Table pointers for all vir-
tual nodes is therefore roughly v log N . As v increases,
the periodic maintenance traffic required for each of
those pointers poses a scalability concern. To alleviate
this potential bottleneck, the present section describes
a variation on the SkipNet design that reduces the ex-
pected number of pointers required for v virtual nodes
to O(v + log n), while maintaining logarithmic expected
path lengths for searches by name ID. In Section 8.6 we
provide mathematical proofs for the performance of this
virtual node scheme.

Although Skip Lists have comparable routing path
lengths as SkipNet, Section 3 mentioned two fundamen-
tal drawbacks of Skip Lists as an overlay routing data
structure:

• Nodes in a Skip List experience markedly dispro-
portionate routing loads.

• Nodes in a Skip List have low average edge connec-
tivity.

Our key insight is that neither of these two Skip List
drawbacks apply to virtual nodes. In the context of vir-
tual nodes, we desire that:

• A peer-to-peer system must avoid imposing a dis-
proportionate amount of work on any given physical
machine. It is less important that virtual nodes on a
single physical machine do proportionate amounts
of work.

• Similarly, each physical machine should have high
edge connectivity. It is less important that virtual
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nodes on a single physical machine have high edge
connectivity.

In light of these revised objectives, we can relax the
requirement that each virtual node has roughly log n
pointers. Instead, we allow the number of pointers per
virtual node to have a similar distribution to the num-
ber of pointers per data record in a Skip List. More
precisely, all but one of the virtual nodes independently
truncate their numeric IDs such that they have length
i ≥ 0 with probability 1/2i+1. The one remaining vir-
tual node keeps its full-length numeric ID, in order to en-
sure that the physical machine has at least log n expected
neighbors. As a result, in this scheme, the expected
number of total pointers for a set of v virtual nodes is
2v + log n + O(1).

When a virtual node routes a message, it can use any
pointer in the R-Table of any co-located virtual node.
Simply using the pointer that gets closest to the desti-
nation (without going past it) will maintain path locality
and logarithmic expected routing performance.

The interaction between virtual nodes and DHT func-
tionality is more complicated. DHT functionality in-
volves searching for a given numeric ID. Search by nu-
meric ID terminates when it reaches a ring from which
it cannot go any higher; this is likely to occur in a rel-
atively high-level ring. By construction, virtual nodes
are likely only to be members of low-level rings, and
thus they are likely not to shoulder an equal portion of
the DHT storage burden. However, because at least one
node per physical machine is not virtualized, the storage
burden of the physical machine is no less than it would
be without any virtual nodes.

5.9 NewNeighbour and NeighbourRemoved
Functionality

Some kinds of applications built using overlay net-
works need to be informed when a node’s routing state
changes. For instance, if the overlay network is used to
build a dynamic hash table (DHT) with content for a key
hosted at the node that is the overlay routing destination
for that key, then when a new node is added to the over-
lay adjacent to a key’s former routing destination node,
then the DHT needs to determine whether the new node
is now the key’s overlay routing destination, and if so,
move the content there. Thus, the application must be
informed when new neighbors of a node join the overlay.

Some overlay applications, such as the Overlook dis-
tributed name server [41], cache content along overlay
routes to the primary copy of a piece of content. Thus,
when the overlay path to a node changes, any cached
content along routes that are no longer used should be
invalidated. This is an example of the need for appli-
cations to be informed when nodes are removed from a
node’s routing table.

SkipNet provides two upcalls to its overlay clients to
inform them of these conditions: NewNeighbour() and
NeighbourRemoved(). Both pass up as an argument the
NodeID of the node being added or removed, respec-
tively, from the current node’s routing tables.

5.10 GetNextHop Functionality

Another facility that SkipNet exposes to its applica-
tions is its routing mechanism. Applications can ask
SkipNet what the next hop in the overlay path to a given
overlay destination is using the GetNextHop() call. This
is useful for at least two kinds of uses: for caching in-
formation about the overlay routes used for a particular
piece of content, and for implementing iterative overlay
routing. (Iterative overlay routing doesn’t forward over-
lay messages from node to node until they reach their
destination. Instead, the source node for a message first
iteratively asks each node along the overlay route to its
destination what the next overlay hop to the destination
is, and only actually sends the message once the desti-
nation node has been determined. With iterative routing,
all messages are actually sent directly from the source to
the destination, using point-to-point communication.)

5.11 Simple Pings versus Smart Pings

SkipNet supports both the traditional ping mechanism
for checking the liveness of routing table neighbors, and
a novel smart ping mechanism to coalesce ping traffic. A
node using simple pings just sends ping messages once
per ping interval to all its neighbors, which reply to the
sender. In contrast, a node using smart pings instead
sends pings only to its immediate neighbors at each ring
level in the R-Table. Each node a smart ping message
reaches adds state to it indicating that it is alive, then for-
wards the message to the next neighbor along the ring.
When the message has reached k nodes, it is sent back
to the originating node, containing a list of all the nodes
that it reached.

Smart pings reduce the overhead of pinging neigh-
bors in a dense R-Table (Section 5.1) by roughly a fac-
tor of k without lengthening the interval between checks
for the liveness of a given neighbor. Thus, although a
dense R-Table may contain many more neighbors than
a sparse R-Table, the overhead of maintaining the two
tables using smart pings is roughly the same. Because
P-Tables and C-Tables are updated significantly less fre-
quently than the R-Table (recall that their accuracy is not
required for routing consistency), significantly reducing
the R-Table maintenance traffic substantially reduces the
total amount of background traffic.

One reason we can coalesce ping traffic is that dense
R-Tables are structured such that adjacent nodes at any
level of the R-Table are interested in a mostly overlap-
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ping set of liveness queries. Smart pings exploit this re-
dundancy.

Routing the message along the ring, rather than ping-
ing each node individually, is sufficient to halve the ping
traffic. The factor of k savings in message overhead re-
sults from the fact that each node along the ring that is
contacted by this smart ping message will learn about
the liveness of all the nodes that the message has already
contacted. Although any given node will initiate smart
ping messages only once per ping interval, the node will
learn about the liveness of its neighbors much more of-
ten, k−1 times per ping interval. Because of this, a much
longer ping interval can be used with smart pings while
updating liveness information just as frequently as sim-
ple pings would on a short ping interval. The end result
is that the total amount of message traffic used to check
liveness is much less for the same frequency of liveness
checking.

Although smart pings result in significant savings in
maintenance traffic, they also raise new subtleties. Smart
pings combine the function of pings with the function of
fixing up the routing table. A smart ping may discover
new neighbors while it is being routed because any node
that notices a missing entry (based on its routing tables)
can forward the smart ping message to this missing node.
To ensure timely return of the smart ping message to the
originating node, we insist that the smart ping return as
soon as it has tried to reach k − 1 nodes, regardless of
whether it successfully reached every node in the origi-
nating node’s routing table at this level.

If a node attempts to send a smart ping to a failed
node the send failure will be noticed and the messages
will be re-sent to a different (hopefully live) node. No
annotation is added to the message saying that that the
node could not be contacted. This means that other nodes
the ping reaches may try to independently contact the
failed node if their routing tables indicate that it should
have been between the node originating the ping and the
present recipient – communication that will also fail if
the node is actually down. However, we decided that this
was preferable to the alternative of marking the node as
having failed in the message. Marking the node as dead
in the message posed the danger that an intransitive fail-
ure between any two nodes would lead every other node
to believe that one of the nodes was dead, even though it
was both alive and currently reachable. An example of
how this might occur would be if A and C could com-
municate, B and C could communicate, but A and B
could not. Suppose A tried to ping B, timed out, and
then marked B as having failed. C might then receive
the smart ping message from A and remove B from its
routing table, even though B was both alive and reach-
able. Our concern with this intransitive failure scenario
led us to choose the alternative design where multiple

failed sends might be caused by a single failed node.

5.12 Ping Piggybacking

SkipNet nodes periodically ping their routing ta-
ble neighbors to ensure that they are still reachable.
Given that applications may utilize knowledge of overlay
neighbor relationships (which can be gained by observ-
ing message routes, via the GetNextHop() call, or via the
NewNeighbour() and NeighbourRemoved() calls), it is
also useful to allow them to use the ping messages sent to
overlay neighbors to not just check neighbor liveness, but
to also check application-level invariants between over-
lay neighbors. SkipNet provides a mechanism to allow
applications to add information to the period SkipNet
ping messages called ping piggybacking that lets appli-
cations accomplish this. Ping piggybacking eliminates
the need for a second level of application-level ping mes-
sages to neighbors, reducing the total amount of overlay
and overlay application maintenance traffic that would
otherwise be needed by eliminating the redundant layer
of ping messages.

SkipNet exports ping piggybacking to its applications
by allowing them to register upcalls that are invoked
when ping messages will be sent and when they are re-
ceived. The send upcall is told which node the ping is
addressed to and allows the application to add data to
be sent in the ping message, along with a key identi-
fying the kind of data being piggybacked. Upon ping
receipt, SkipNet checks whether each SkipNet applica-
tion has registered a receive upcalls under the keys re-
ceived, and if so, invokes those upcalls in the applica-
tions. Thus, ping piggybacking can be used to piggy-
back arbitrary application-level messages onto the peri-
odic SkipNet node liveness-checking pings. The FUSE
system [12], for instance, uses ping piggybacking to per-
form delegated liveness checking, allowing the liveness
status of arbitrary numbers of groups of nodes to be
checked in a manner that requires only a constant amount
of liveness-checking traffic, independent of the number
of groups.

Ping piggybacking is straightforward for R-Table
routes whether we are employing smart pings or simple
pings. The neighbor relationship in the R-Table is sym-
metric, and hence if A pings B regularly, B will ping A
regularly. In contrast, P-Table and C-Table construction
does not necessarily lead to a symmetric neighbor rela-
tionship. For example, because the neighbor relationship
is not symmetric, A contacting B as part of A’s P-Table
reconstruction does not imply that B will contact A as
part of B’s P-Table reconstruction. This is one reason we
do not support ping piggybacking for P-Table or C-Table
neighbors. We wanted to support ping piggybacking be-
havior where applications could count on two neighbors
both being able to initiate pings.
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A second reason for not supporting ping piggyback-
ing for P-Table or C-Table neighbors is that the rest of the
SkipNet design treats the P-Table and C-Table as routing
optimizations – not routing information that needs to be
maintained with the same reliability as the R-Table. By
restricting ping piggybacking to the R-Table, we were
able to utilize the R-Table’s consistently shorter ping in-
terval.

Lastly, P-Table and C-Table construction is done in
a batch update fashion that aggressively looks for new
neighbors that will have better latency characteristics
than the current set of neighbors. Ping piggybacking
seems less useful when the set of neighbors is allowed
to fluctuate significantly even in the absence of failure
events.

5.13 Transparency of Overlay State

Mogul et al. [27] recently argued that state main-
tained by network protocol implementations should also
be made available to clients of those protocols. Analo-
gously, in our experience building overlay applications,
nearly all internal state maintained by overlay networks
is also useful to the overlay applications themselves. In-
deed, one the aspects of the SkipNet design that we be-
lieve that other overlays should adopt is to export as
much of the overlay’s state to its applications as possi-
ble.

In summary, some of the facilities that SkipNet pro-
vides to make its overlay state visible to and usable by its
applications are the CLBNeighbour() call, the GetNex-
tHop() call, the via the NewNeighbour() and Neighbour-
Removed() calls), and ping piggybacking. Many of them
are actually implemented as overlay-independent facili-
ties (and all of them could be). For instance, a C# generic
overlay base class from which the SkipNet overlay class
is derived is where the NewNeighbour() and Neighbour-
Removed() APIs are actually defined. Our Pastry and
Chord implementations also provide implementations of
them. This means that overlay-independent overlay ap-
plications could use the same code, for instance, to han-
dle changes in either Pastry’s or SkipNet’s neighbor sets,
depending upon which overlay they were being run on.

6 Recovery from Organizational Discon-
nects

In this section, we characterize the behavior of Skip-
Net with respect to a common failure mode: when or-
ganizations become disconnected from the Internet. We
describe and evaluate the recovery algorithms used to re-
pair the SkipNet overlay when such failures occur. One
key benefit of SkipNet’s locality properties is graceful
degradation in response to disconnection – one of the
more common forms of Internet failure, which can be

caused by router misconfigurations and link and router
faults [24, 28]. Because SkipNet orders nodes accord-
ing to their names, and assuming that organizations as-
sign node names with one or a few organizational pre-
fixes, an organization’s nodes are naturally arranged into
a few contiguous overlay segments. Should an organiza-
tion become disconnected, its segments remain internally
well-connected and intra-segment traffic can be routed
with the same O(log M) hop efficiency as before, where
M is the maximum number of nodes in any segment.

By repairing only a few key routing pointers between
the “edge” nodes of each segment, the entire organiza-
tion can be connected into a separate SkipNet that can
route traffic with similar efficiency: Intra-segment traffic
is still routed in O(log M) hops, but inter-segment traffic
may initially require O(log M) hops for every segment
that it traverses. In total, O(S log M) hops may be re-
quired for inter-segment traffic, where S is the number
of segments in the organization.

A background process repairs the additional routing
pointers, thereby eliminating the cross-segment penalty.
SkipNet’s structure enables this repair process to be done
in a manner that avoids unnecessary duplication of work.
When the organization reconnects to the Internet, these
same repair operations can be used to merge the organi-
zation’s segments back into the global SkipNet.

In contrast, most previous scalable, peer-to-peer over-
lay designs [32, 34, 38, 44] place nodes in the overlay
topology according to a unique random numeric ID only.
Disconnection of an organization in most of these sys-
tems will result in its nodes fragmenting into many dis-
joint overlay pieces. During the time that these fragments
are reforming into a single overlay, network routing effi-
ciency may be poor or unbalanced, or may even fail.

6.1 Recovery Algorithms

When an organization is disconnected from the In-
ternet, its nodes will be able to communicate with each
other over IP but will not be able to communicate with
nodes outside the organization. If the organization’s
nodes’ names employ only a few organizational prefixes
then the nodes are mostly contiguous in SkipNet, and
hence the global SkipNet will partition itself into several
disjoint, but internally well-connected, segments. This is
illustrated in Figure 8.

Because of SkipNet’s path locality property, message
traffic within each segment will be unaffected by discon-
nection and will continue to be routed with O(log M)
efficiency, where M is the number of nodes within the
segment. Assuming that the disconnecting organization
constitutes a small fraction of the global SkipNet, cross-
segment traffic among the global portions of the Skip-
Net will also remain largely unaffected because most
cross-segment pointers among global segments will re-
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Figure 8. Two partitioned SkipNets to be merged.

main valid. This will not be true for the segments of the
disconnected organization.

Gracefully handling a partition in the underlying IP
network has two aspects: continuing to provide internal
connectivity for the duration of the partition, and effi-
ciently repairing the overlay when the underlying IP net-
work partition heals. Maintaining internal connectivity
of the overlay requires that communications be possible
both within each overlay segment and across segments
that still have IP connectivity to each other. Repairing
the overlay when the partition heals involves reestablish-
ing communications between overlay segments that were
formerly unreachable by IP. Thus, the primary repair task
after both disconnection and reconnection is the merging
of overlay segments.

The algorithms employed in both the disconnection
and reconnection cases are very similar: SkipNet seg-
ments must discover each other and then be merged to-
gether. For the disconnect case, the organization seg-
ments are merged into a separate SkipNet and the global
segments are merged to reform the global SkipNet. For
the reconnect case, all segments from the two separate
SkipNets are merged into a single SkipNet.

6.2 Discovery Techniques

When an organization disconnects from the Internet
there is no guarantee that the resulting non-contiguous
segments will have pointers into each other. Therefore
its segments may not be able to find each other using
only SkipNet pointers. To solve this discovery prob-
lem we assume that organizations will divide their nodes
into a relatively small number of name segments and
that they designate some number of nodes in each seg-
ment as “well-known”. For instance, Microsoft might
maintain well-known members of segments with name
prefixes microsoft.com, hotmail.com, xbox.jp, etc. Each
node in an organization maintains a list of these well-
known nodes and uses them as contact points between
the various overlay segments.

When an organization reconnects to the Internet, the

ConnectRootLevel(n1, n2) {
edgeNodes = GatherEdgeNodeInfo(n1, n2, null)
Connect edge node pairs.

}

GatherEdgeNodeInfo(n1, n2, msg) {
n2 routes msg to n1 in its SkipNet.
Msg will arrive at d1.
d1 appends d1 and next neighbor, d0, to msg contents.
d1 sends msg directly to n1 over IP.
n1 routes msg to d0 in its SkipNet.
Msg will arrive at s1.
if (memberOf(s0, msg contents)) // => all segments
return msg contents // traversed

else // => Message needs to discover more edge nodes
s1 appends s1 and next neighbor, s0, to msg contents.
return GatherEdgeNodeInfo(s0, d0, msg)

}

Figure 9. SkipNet root ring connection algorithm.

organizational and global SkipNets discover each other
through their segment edge nodes. Since each node
maintains a leaf set, if a node discovers that one side
of its leaf set, but not the other, is completely unreach-
able then it concludes that a disconnect event has oc-
curred and that it is an edge node of a segment. These
edge nodes keep track of their unreachable leaf set point-
ers and periodically ping them for reachability; should a
pointer become reachable, the node initiates the merge
process. Note that merging two previously independent
SkipNets together—for example, when a new organiza-
tion joins the system—is functionally equivalent to re-
connecting a previously connected one, except that an
alternate means of discovery is needed.

6.3 Connecting Root Ring Segments

The segment merge process is comprised of two steps:
repair of the root ring pointers and repair of the point-
ers for all higher-level rings. The first step can be done
quickly, as it only involves repair of the root ring point-
ers of the edge nodes of each segment. Once the first
step has been done it will be possible to route messages
correctly among nodes in different segments and to do so
with O(S log M) efficiency, where S is the total number
of segments and M is the maximum number of nodes
within a segment. As a consequence, the second, more
expensive step can be done as a background task, as de-
scribed in Section 6.4.

The key idea for connecting SkipNet root ring seg-
ments is to discover the relevant edge nodes by having a
node in one segment route a message towards the name
ID of a node in the other segment. This message will be
routed to the edge node in the first segment that is lex-
icographically nearest to the other node’s name ID. By
repeating this process one can enumerate all edge nodes
and hence all segments.

The actual inter-segment pointer updates are then
done as a single atomic operation among the segment
edge nodes, using distributed two-phase commit. This
avoids routing inconsistencies where a message destined
for a specific node on one segment inadvertently ends up
at a different node in another overlay segment because
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Figure 10. Nodes whose pointers have been repaired at the
boundary of two SkipNet segments.

the segments to be merged do not yet form a fully con-
nected root ring.

To illustrate, Figure 8 shows two SkipNets to be
merged, a Microsoft SkipNet and a global SkipNet, each
containing two different name segments. Suppose that
node n1 knows of node n2’s existence. Node n1 will
send a message to node n2 (over IP) asking it to route a
search message towards n1 in the global SkipNet. n2’s
message will end up at node d1 and, furthermore, d1’s
neighbor on the global SkipNet will be d0. d1 sends a
reply to n1 (over IP) telling it about d0 and d1. n1 routes
a search message towards d0 on the Microsoft SkipNet to
discover s1 and s0 in the same manner. The procedure is
iteratively invoked using s0 and d0 to gain information
about s2, s3, d2, and d3. Figure 9 presents the algorithm
in pseudo-code.

Immediately following root ring connection, mes-
sages sent to cross-segment destinations will be routed
efficiently. Cross-segment messages will be routed to
the edge of each segment they traverse and will then hop
to the next segment using the root ring pointer connect-
ing the segments. This leads to O(S log M) routing ef-
ficiency. When an organization reconnects its fully re-
paired SkipNet root ring to the global one, traffic des-
tined for nodes external to the organization will be routed
in O(log M) hops to an edge node of the organization’s
SkipNet. The root ring pointer connecting the two Skip-
Nets will be traversed and then O(log N) hops will be
needed to route traffic within the global SkipNet. Note
that traffic that does not have to cross between the two
SkipNets will not incur this routing penalty.

6.4 Repairing Routing Pointers following Root
Ring Connection

Once the root ring connection phase has completed
we can update all remaining pointers that need repair us-
ing a background task. We present here an algorithm for
doing this that avoids unnecessary duplication of work
through appropriate ordering of repair activities.

// Called initially with level h=0 at node
// to the left of the merge point
PostMergeRepair(h) {
Find closest node to left whose numeric ID matches

mine in the first h bits and whose ID differs from
mine in the next bit, by following level h
pointers to the left.

On my node:
cont = FixMyRightPointer(h+1)
if (cont) PostMergeRepair(h+1)

In parallel, on the other node:
cont2 = FixMyRightPointer(h+1)
if (cont) PostMergeRepair(h+1)

}

FixMyRightPointer(h) {
Search right using level h-1 pointers until a node is

found that matches my numeric id in h bits.
Connect our level h pointers.
if (pointers are already equal)
return false

else
return true

}

Figure 11. Level h ring repair algorithm for a single inter-
segment boundary.

The key idea is that we recursively repair pointers at
one level by using correct pointers at the level below to
find the desired nodes in each segment. All pointers at
one level must be repaired across a segment boundary be-
fore repair of a higher level can be initiated. To illustrate,
consider Figure 10, which depicts a single boundary be-
tween two SkipNet segments after pointers have been re-
paired. Figure 11 presents an algorithm in pseudo-code
for repairing pointers above the root ring across a sin-
gle boundary. We begin by discussing the single bound-
ary case, and later we extend our algorithm to handle the
multiple boundary case.

Assume that the root ring pointers have already been
correctly connected. There are two sets of two pointers to
connect between the segments at level 1: the ones for the
routing ring labeled 0 and the ones for the routing ring
labeled 1 (see Figure 4). We can repair the level 1 ring
labeled 0 by traversing the root (level 0) ring from one
of the edge nodes until we find nodes in each segment
belonging to the ring labeled 0. The same procedure is
followed to correctly connect the level 1 ring labeled 1.
After the level 1 rings, we use the same approach to re-
pair the four level 2 rings.

Because rings at higher levels are nested within rings
at lower levels, repair of a ring at level h+1 can be initi-
ated by one of the nodes that had its pointer repaired for
the enclosing ring at level h. A repair at level h + 1 is
unnecessary if the level h ring (a) contains only a single
member or (b) does not have an inter-segment pointer
that required repair. The latter termination condition
implies that most rings—and hence most nodes—in the
global SkipNet will not, in fact, need to be examined for
potential repair.

The total work involved in this repair algorithm is
O(M log(N/M)), where M is the size of the discon-
necting/reconnecting SkipNet segment and N is the size
of the external SkipNet. Note that rings at level h + 1
can be repaired in parallel once their enclosing rings at
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level h have been repaired across all segment boundaries.
Thus, the repair process for a given segment boundary
parallelizes to the extent supported by the underlying net-
work infrastructure. We provide a theoretical analysis of
the total work and total time to complete repair in Sec-
tion 8.7.

To repair multiple segment boundaries, we simply call
the algorithm described above once for each segment
boundary. In the current implementation, we perform
this process iteratively, waiting for the repair operation
to complete on one boundary before initiating the repair
at the next boundary. In future work, we plan to inves-
tigate initiating the segment repair operations in parallel
— the open question is how to avoid repair operations
from different boundaries interfering with each other.

6.5 Repairing P-Table and C-Table Entries

In normal operation, both a node’s P-Table and the
C-Table entries are updated periodically using informa-
tion gathered from the node’s R-table. Once the R-table
repair algorithms above have run then these periodic up-
date processes will likewise repair the node’s P-Table an
C-Table with no resulting increase in maintenance traf-
fic.

7 Design Alternatives

SkipNet’s locality properties can be obtained to a lim-
ited degree by suitable extensions to existing overlay net-
work designs. We explore several such extensions in this
section. However, none of these design alternatives pro-
vides all of SkipNet’s locality advantages.

The space of alternative design choices can be divided
into three cases: Rely on the inherent locality properties
of the underlying IP network and DNS naming instead of
using an overlay network; use a single overlay network—
possibly augmented—that supports locality properties;
or use multiple overlay networks that provide locality by
spanning different sets of member nodes.

7.1 IP routing and DNS naming

A simple alternative to SkipNet’s content placement
scheme is to route directly using IP after a DNS lookup.
This approach would also arguably provide path locality
since most organizations structure their internal networks
in a path-local manner. However, discarding the overlay
network also discards all of its advantages, including:

• Implicit support for DHTs, and in the case of Skip-
Net, support for constrained load balancing.

• Seamless reassignment of traffic to well-defined al-
ternative nodes in the presence of node failures.

• Better support for higher level abstractions, such
as application-level multicast [6, 36, 33] and load-
aware replication [41].

• The ability to reach named destinations independent
of the availability of the DNS name lookup service.

7.2 Single Overlay Networks

Existing overlays are based on DHTs and depend on
random assignment of node IDs in order to obtain a uni-
form distribution of nodes within their address spaces.
To support explicit content placement onto a particular
node requires changing either node or data naming. One
could name a node with the hash of the data object’s
name, or some portion of its name. This scheme effec-
tively virtualizes overlay nodes so that each node joins
the overlay once per data object.

The drawback of this solution is that separate rout-
ing tables are required for each local data object. This
will result in a prohibitive cost whenever a single node
needs to store more than a few hundred data objects due
to the network traffic overhead of building and maintain-
ing large numbers of routing table entries.

Alternatively, one could change object names to use
a two-part naming scheme, much like in SkipNet, where
content names consist of unique node addresses concate-
nated to local, node-relative, names. Although this ap-
proach supports content placement, it does not support
guaranteed path locality nor constrained load balanc-
ing (including continued content locality in the event of
failover to a neighbor node).

One might imagine providing path locality by adding
routing constraints to messages, so that messages are not
allowed to be forwarded outside of a given organizational
boundary. Unfortunately, such constraints would also
prevent routing from being consistent. That is, messages
sent to the same destination ID from two different source
nodes would not be guaranteed to end up at the same
destination node.

Overlay networks such as Pastry can partially mitigate
the path locality problem using their support for network
proximity [4]. However, Pastry’s network proximity sup-
port depends on having a nearby node to use as a “seed”
node when joining an overlay. If the nearby node is not
within the same organization as the joining node, Pas-
try might not be able to provide good, let alone guaran-
teed, path locality. This problem is exacerbated for or-
ganizations that consist of multiple separate “islands” of
nodes that are far apart in terms of network distance. In
contrast, SkipNet is able to guarantee path locality, even
across organizations that consist of separate clusters of
nodes, as long as they are contiguous in name ID space.

An alternative to virtualizing node names would be to
lengthen node IDs and partition them into separate, con-
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catenated parts. For example, in a two-part scheme, node
names would consist of two concatenated IDs and con-
tent names would also consist of two parts: a numeric ID
value and a string name. The numeric ID would map to
the first part of an overlay ID while the hash of the string
name would map to the second part. The result is a static
form of constrained load balancing: The numeric ID of a
data object’s name selects the DHT formed by all nodes
sharing the same numeric ID and the string name deter-
mines which node to map to within the selected DHT.
Furthermore, combining this approach with node virtu-
alization provides explicit content placement.

This approach comes close to providing the same lo-
cality semantics as SkipNet: it provides explicit content
placement, a static form of constrained load balancing,
and path locality within each numeric ID domain. The
major drawbacks of this approach are that the granularity
of the hierarchy is frozen at the time of overlay creation
by human decision; every layer of the hierarchy incurs an
additional cost in the length of the numeric ID and in the
size of the routing table that must be maintained; and the
path locality guarantee is only with respect to boundaries
in the static hierarchy.

7.3 Multiple Overlay Networks

Instead of using a single DHT-based overlay one
might consider employing multiple overlays with differ-
ent memberships. These multiple overlays can be ar-
ranged either as a static set of networks reflecting the
desired locality requirements or as a dynamic set of over-
lays reflecting the participation of nodes in particular ap-
plications. In the static overlay case, a node could belong
to just one of several alternative overlays, or belong to
multiple overlays at different levels of a hierarchy.

In the case where each node belongs to only one of
several overlays, one could imagine accessing other over-
lays by gateways. These gateways need not be a single
point of failure if we give the backup gateway an appro-
priate neighboring numeric ID. One could either route
directly to well-known gateways, or the gateways could
organize an overlay network amongst themselves (imag-
ine a overlay network of overlay networks). In either
case, inter-domain routing requires serial traversal of the
domain hierarchy, resulting in potentially large latencies
when routing between domains.

If instead each node belonged to multiple overlays
(for example, to a global overlay, an organization-wide
overlay, and perhaps also a divisional or building-wide
overlay), the associated overhead would correspondingly
grow. Explicit content placement would still require
extension of the overlay design. Furthermore, in this
scheme, access to data that is constrained load balanced
within a single overlay is not readily accessible to clients
outside that overlay network, although it could be made

so by introducing gateways in this design.
A final design alternative involving multiple overlays

is to define an overlay network per application. This lets
applications dynamically define the set of participating
nodes, and thus ensure that application specific messages
stay within this overlay. It does not provide any notion
of locality within a subset of the overlay, and therefore
fails to provide much of SkipNet’s functionality, such as
constrained load balancing.

In contrast, SkipNet provides explicit content place-
ment, allows clients to dynamically define new DHTs
over any name prefix scope, and guarantees path locality
within any shared name prefix, all within a single shared
infrastructure.

8 Analysis of SkipNet

In this section we analyze various properties of and
costs of operations in SkipNet. Each subsection begins
with a summary of the main results followed by a brief,
intuitive explanation. The remainder of each subsection
proves the results formally.

8.1 Searching by Name ID

Searches by name ID in a dense SkipNet take
O(logk N) hops in expectation, and O(k logk N) hops in
a sparse SkipNet. Furthermore, these bounds hold with
high probability. (Refer to Section 5.1 for the definition
of ‘sparse’, ‘dense’, and parameter k; the basic SkipNet
design described in Section 3 is a sparse SkipNet with
k = 2). We formally prove these results in Theorem 8.5
and Theorem 8.2. Intuitively, searches in SkipNet re-
quire this many hops for the same reason that Skip List
searches do: every node’s pointers are approximately ex-
ponentially distributed, and hence there will most likely
be some pointer that halves the remaining distance to the
destination. A dense SkipNet maintains roughly a factor
of k more pointers and makes roughly a factor of k more
progress on every hop.

For the formal analysis, we will consider a sparse R-
Table first, and then extend our analysis to the dense R-
Table. It will be helpful to have the following defini-
tions: The node from which the search operation begins
is called the source node and the node at which the search
operation terminates is called the destination node. The
search operation visits a sequence of nodes, until the des-
tination node is found; this sequence is called the search
path. Each step along the search path from one node to
the next is called a hop. Throughout this subsection we
will refer to nodes by their name IDs, and we will denote
the name ID of the source by s, and the name ID of the
destination by d.

The rings to which s belongs induce a Skip List struc-
ture on all nodes, with s at the head. To analyze the
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search path in SkipNet, we consider the path that the
Skip List search algorithm would use on the induced
Skip List; we then prove that the SkipNet search path
is no bigger the Skip List search path. Let P be the Skip-
Net search path from s to d using a sparse R-Table. Let
Q be the path that the Skip List search algorithm would
use in the Skip List induced by node s. Note that both
search paths begin with s and end with d, and all the
nodes in the paths lie between s and d. To see that P
and Q need not be identical, note that the levels of the
pointers traversed in a Skip List search path are mono-
tonically non-increasing; in a SkipNet search path this is
not necessarily true.

To characterize the paths P and Q, it will be helpful
to let F (x, y) denote the longest common prefix in x and
y’s numeric IDs. The following useful identities follow
immediately from the definition of F :

F (x, y) = F (y, x) (1)

F (x, y) < F (y, z) ⇒ F (x, z) = F (x, y) (2)

F (x, y) ≤ F (y, z) ⇒ F (x, z) ≥ F (x, y) (3)

F (x, y) > f, F (x, z) > f ⇒ F (y, z) > f (4)

The Skip List search path, Q, includes every node x
between s and d such that no node closer to d has more
digits in common with s. Formally, Q contains x ∈ [s, d]
if and only if �y ∈ [x, d] such that F (s, y) > F (s, x).

The SkipNet search path P contains every node be-
tween s and d such that no node closer to d has more dig-
its in common with the previous node on the path. This
uniquely defines P by specifying the nodes in order; the
node following s is uniquely defined, and this uniquely
defines the subsequent node, etc. Formally, x ∈ [s, d]
immediately follows w in P if and only if it is the clos-
est node following w such that �y ∈ [x, d] satisfying
F (w, y) > F (w, x).

Lemma 8.1. Let P be the SkipNet search path from s to
d using a sparse R-Table and let Q be the path that the
Skip List search algorithm would use in the induced Skip
List. Then P is a subsequence of Q. That is, every node
encountered in the SkipNet search is also encountered in
the Skip List search.

Proof: Suppose for the purpose of showing a contradic-
tion that some node x in P does not appear in Q. Let
x be the first such node. Clearly x �= s because s must
appear in both P and Q. Let w denote x’s predecessor in
P ; since x �= s, x is not the first node in P and so w is
indeed well-defined. Node w must belong to Q because
x was the first node in P that is not in Q.

We first consider the case that F (s, x) > F (s, w), i.e.,
x shares more digits with s than w does. We show that
this implies that w is not in Q, the Skip List search path
(a contradiction). Referring back to the Skip List search

path invariant, x ∈ [w, d] plays the role of y, thereby
showing that w is not in Q.

We next consider the case that F (s, x) = F (s, w),
i.e., x shares equally many digits with s as w does.
We show that this implies that x is in Q, the Skip List
search path (a contradiction). Referring back to the
Skip List search path invariant, �y ∈ [w, d] such that
F (s, y) > F (s, w). Combining the assumption of this
case, F (s, w) = F (s, x), with [x, d] ⊂ [w, d], we have
that �y ∈ [x, d] such that F (s, y) > F (s, x), and there-
fore x is in Q.

We consider the last case F (s, x) < F (s, w), i.e., x
shares fewer digits with s than w does. We show that
this implies that x is not in P , the SkipNet search path (a
contradiction). Applying Identity 2 yields that F (s, x) =
F (w, x), i.e., x shares the same number of digits with w
as it does with s. By the assumption that x is not in Q, the
Skip List search path, there exists y ∈ [x, d] satisfying
F (s, y) > F (s, x). Combining F (s, y) > F (s, x) with
the case assumption, F (s, w) > F (s, x) and applying
Identity 4 yields F (w, y) > F (s, x). Since F (s, x) =
F (w, x), this y also satisfies F (w, y) > F (w, x). Com-
bining this with y ∈ [x, d] implies that y violates the
SkipNet search path invariant for x; x is not in P . �

A consequence of Lemma 8.1 is that the length of the
Skip List search path bounds the length of the SkipNet
search path. In the following theorem, we prove a bound
on the length of the SkipNet search path as a function of
D, the distance between the source s and the destination
d, by analyzing the Skip List search path. Note that our
high-probability result holds for arbitrary values of D; to
the best of our knowledge, analyses of Skip Lists and of
other overlay networks [39, 34] prove bounds that hold
with high probability for large N . Because of the Skip-
Net design, we expect that D � N will be a common
case. There is no reason to expect this in Skip Lists or
other overlay networks.

It will be convenient to define some standard proba-
bility distribution functions. Let fn,1/k(g) be the distri-
bution function of the binomial distribution: if each ex-
periment succeeds with probability 1/k, then fn,1/k(g)
is the probability that we see exactly g successes after n
experiments. Let Fn,1/k(g) be the cumulative distribu-
tion function of the binomial distribution: Fn,1/k(g) is
the probability that we see at most g successes after n ex-
periments. Let Gg,1/k(n) be the cumulative distribution
function of the negative binomial distribution: Gg,1/k(n)
is the probability that we see g successes after at most n
experiments.

We use the following two identities below:

Gg, 1
k
(n) = 1 − Fn, 1

k
(g − 1) (5)

Fn, 1
k
(αn − 1) < 1−α

1−αkfn, 1
k
(αn) for α < 1

k (6)
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Identity 5 follows immediately from the definitions of
our cumulative distribution functions, F and G. Iden-
tity 6 follows from [8, Theorem 6.4], where we substitute
our αn for their k, our 1/k for their p, and our 1 − 1/k
for their q.

Theorem 8.2. Using a sparse R-Table, the expected
number of search hops in SkipNet is

O(k logk D)

to arrive at a node distance D away from the source.
More precisely, there exist constants z0 =

√
e and t0 =

9, such that for t ≥ t0, the search requires no more than
(tk logk D+t2k) hops with probability at least 1−3/zt

0.

Proof: By Lemma 8.1, it suffices to upper bound the
number of hops in the Skip List search path; we focus on
the Skip List search path for the remainder of the proof.
Define g to be t + logk D. Let X be the random vari-
able giving the maximum level traversed in the Skip List
search path. We now show that Pr[X ≥ g] is small.
Note that the probability that a given node matches s in
g or more digits is 1/kg . By a simple union bound, the
probability that any node between s and d matches s in g
or more digits is at most D/kg . Thus,

Pr[X ≥ g] ≤ D/kg

= 1/kg−logk D

= 1/kt

Let Y be the random variable giving the number of
hops traversed in a Skip List search path, and define m
to be tkg, i.e., m = (tk logk D + t2k). We will upper
bound the probability that Y takes more than m hops via:

Pr[Y > m] = Pr[Y > m and X < g]
+Pr[Y > m and X ≥ g]

≤ Pr[Y > m and X < g]
+Pr[X ≥ g]

It remains to show that the probability the search takes
more than m hops without traversing a level g pointer is
small. The classical Skip List analysis [31] upper bounds
this probability using the negative binomial distribution,
showing that Pr[Y > m and X < g] ≤ 1 − Gg,1/k(m).
Using Identity 5, we have 1−Gg,1/k(m) = Fm,1/k(g −
1). Setting α = 1/tk and applying Identity 6 gives the
following upper bound:

Fm, 1
k
(g − 1) = Fm, 1

k
(αm − 1) <

1 − α

1 − αk
fm, 1

k
(αm)

Note that 1−α
1−αk is at most 2, since t and k are both at

least 2. This yields that Fm,1/k(g − 1) is less than:

2
(

m

g

)
(1/k)g(1 − 1/k)m−g

= 2
(

tkg

g

)
(1/k)g(1 − 1/k)tkg(1 − 1/k)−g

< 2
(tkg)g

g!
(1/k)ge−tg(1 − 1/k)−g

< 2eg log tkg

(
1√
2πg

(g

e

)−g
)

e−g log ke−tgeg

< 2eg log tkge−g log gege−g log ke−tgeg

≤ 2eg(log t+log k+log g)−g log g+g−g log k+g−tg

= 2eg log t+g+g−tg

= 2e(−t+log t+2)g

For t ≥ 9, we have −t + log t + 2 < −t/2 < 0 and
so e(−t+log t+2)g < e−t/2. Thus,

Fm,1/k(g) < 2e−t/2

Combining our results and letting z0 =
√

e yields

Pr[Y > m] ≤ Pr[Y > m and X < g] + Pr[X ≥ g]

≤ 2/et/2 + 1/kt

< 3/zt
0

Setting t0 = 9, for t ≥ t0, we have that Pr[Y > m] <
3/zt

0. That is, Pr[Y ≤ m] ≥ 1 − 3/zt
0. The expectation

bound straightforwardly follows. �
We now consider the case of searching by name ID

in a SkipNet using a dense R-Table. Recall that a dense
R-Table points to the k − 1 closest neighbours in each
direction at each level. Note that it would be possible
to use the same approach to create a ‘dense Skip List’,
but such a structure would not be useful because in a
Skip List, comparisons are typically more expensive than
hops. Whenever we refer to a Skip List, we are always
referring to a sparse Skip List. Define P to be the Skip-
Net search path with a dense R-Table and, as before, let
Q be the path that the Skip List search algorithm would
use in the induced Skip List.

To characterize the path P , it will be helpful to let
G(x, y, h) denote to be the number of hops between
nodes x and y in the ring that contains them both at level
h. If h > F (x, y) (meaning nodes x and y are not in the
same ring at level h), we define G(x, y, h) = ∞. Note
that node x has a pointer to node y at level h if and only if
G(x, y, h) < k. At each intermediate node on the Skip-
Net search path we hop using the pointer that takes us as
close to the destination as possible without going beyond
it. The formal characterization is: x ∈ [s, d] immediately
follows w in P if and only if G(w, x, F (w, x)) < k and
�y, h such that x < y ≤ d and G(w, y, h) < k.

Lemma 8.3. Let P be the SkipNet search path with a
dense R-Table and let Q be the path that the Skip List
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search algorithm would use in the induced Skip List.
Then P is a subsequence of Q.

Proof: The proof begins by defining the same quantities
as in the proof of Lemma 8.1. Suppose for the purpose of
showing a contradiction that some node x in P does not
appear in Q. Let x be the first such node; clearly x �= s
because s must appear in both P and Q. Let w denote x’s
predecessor in P ; since x �= s, x is not the first node in
P and so w is indeed well-defined. Node w must belong
to Q because x was the first node in P that is not in Q.

We consider the three cases that F (s, x) >
F (s, w), F (s, x) = F (s, w), F (s, x) < F (s, w) sepa-
rately. The first two were shown to lead to a contradic-
tion in the proof of Lemma 8.1 without reference to the
SkipNet search path; thus it remains to consider only the
case F (s, x) < F (s, w).

Let l = G(w, x, F (w, x)) be the number of hops be-
tween w and x in the highest ring that contains them
both. Since x ∈ P , we must have l < k (from the
characterization of the dense SkipNet search path). Since
x �∈ Q, there must exist y ∈ [x, d] such that F (s, y) >
F (s, x) (from the characterization of the Skip List search
path). Since w ∈ Q and y ∈ [w, d], it cannot be the case
that F (s, y) > F (s, w), otherwise that would contra-
dict the fact that w ∈ Q (using the Skip List search path
characterization again). Therefore F (s, y) ≤ F (s, w),
and Identity 3 yields that F (w, y) ≥ F (s, y). Applying
Identity 2 to F (s, x) < F (s, w) (the case assumption)
implies F (w, x) = F (s, x). Putting the inequalities to-
gether yields F (w, y) ≥ F (s, y) > F (s, x) = F (w, x).
We apply the conclusion, F (w, y) > F (w, x), in the rest
of the proof to derive a contradiction.

Consider the ring containing w at level F (w, y). Node
y must be in this ring but node x cannot be because
F (w, y) > F (w, x). Starting at w, consider traversing
this ring until we encounter z, the first node on this ring
with x < z (to the right of x). Such a node z must
exist because y is in this ring and x < y. Note that
x < z ≤ y ≤ d.

Since this ring at level F (w, y) is a strict subset of the
ring at at level F (w, x) (in particular, x is not in it), it
takes at most l < k hops to traverse from w to z. We
now have x < z ≤ d and G(w, z, F (w, y)) < k, which
contradicts the fact that x ∈ Q. �

Lemma 8.4. Let P be the SkipNet search path from s to
d using a dense R-Table. Let Q be the search path from
s to d in the induced Skip List. Let m be the number of
hops along path Q and let g be the maximum level of a
pointer traversed on path Q. Then the number of hops
taken on path P is at most m

k−1 + g + 1.

Proof: Let Q = (s, q1, . . . , qm) be the sequence of
nodes on path Q, where qm = d. By choice of g,

F (s, qi) ≤ g for all i ≥ 1. Thus, the qi nodes are parti-
tioned into levels according to the value of F (s, qi). Re-
call that F (s, qi) is monotonically non-increasing with i
since Q is a Skip List search path. Thus the nodes in each
partition are contiguous on path Q.

Suppose P contains qi. Using the dense R-Table, it is
possible to advance in one hop to any node in the Skip
List path that is at most k−1 hops away at level F (s, qi).
Thus, if there are li nodes at level i in P , then Q contains
at most �li/(k − 1)� of those nodes. Summing over all
levels, Q contains at most m

k−1 + g + 1 nodes. �

Theorem 8.5. Using a dense R-Table, the expected num-
ber of search hops is

O(logk D)

to arrive at a node distance D away from the source.
More precisely, for constants z0 =

√
e and t0 = 9,

and for t ≥ t0, the search completes in at most (2t +
1) logk D + 2t2 + t + 1 hops with probability at least
1 − 3/zt

0.

Proof: As in the proof of Theorem 8.2, with probability
at least 1 − 3/zt

0 the number of levels in the Skip List
search path is at most g = t+logk D, and the number of
hops is at most m = tkg = (tk logk D + t2k). Applying
Lemma 8.4, the number of hops in the dense SkipNet
search path is

m

k − 1
+ g + 1 =

tkg

k − 1
+ g + 1

≤ 2tg + g + 1 = (2t + 1)g + 1
= (2t + 1)(t + logk D) + 1

= (2t + 1) logk D + 2t2 + t + 1

�

8.2 Correspondence between SkipNet and
Tries

The pointers of a SkipNet effectively make every node
the head of a Skip List ordered by the nodes’ name IDs.
Simultaneously, every node is also the root of a trie [13]
on the nodes’ numeric IDs. Thus the SkipNet simultane-
ously implements two distinct data structures in a single
structure. One implication is that we can reuse the trie
analysis to determine the expected number of non-null
pointers in the sparse R-Table of a SkipNet node. This
extends previous work relating Skip Lists and tries by
Papadakis in [29, pp. 38]: The expected height of a Skip
List with N nodes and parameter p corresponds exactly
to the expected height of a 1

p -ary trie with N + 1 keys
drawn from the uniform [0, 1] distribution.
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Recall that ring membership in a SkipNet is deter-
mined as follows: For i ≥ 0, two nodes belong to the
same ring at level i if the first i digits of their numeric ID
match exactly. All nodes belong to the one ring at level
0, which is called the root ring. Note that if two nodes
belong to ring R at level i > 0 then they must also be-
long to the same ring at level i − 1, which we refer to
as the parent ring of ring R. Moreover, every ring R at
level i ≥ 0 is partitioned into at most k disjoint rings at
level i + 1, which we refer to as the child rings of ring
R. Thus, the rings naturally form a Ring Tree which is
rooted at the root ring.

Given a Ring Tree, one can construct a trie as follows.
First, remove all rings whose parent ring contains a sin-
gle node — this will collapse any subtree of the trie that
contains only a single node. Every remaining ring that
contains a single node is called a leaf ring; label the leaf
ring with the numeric ID of its single node. The resulting
structure on the rings is a trie containing all the numeric
IDs of the nodes in the SkipNet.

Let YN be the random variable denoting the number
of non-null right (equivalently, left) pointers at a partic-
ular node in a SkipNet containing N nodes. Papadakis
defines DN to be the random variable giving the depth of
a node in a k-ary trie with keys drawn from the uniform
[0, 1] distribution. Note that YN is identical to the ran-
dom variable giving the depth of a node’s numeric ID in
the trie constructed above, and thus we have YN = DN .

We may use this correspondence and Papadakis’ anal-
ysis to show that E[YN ] = 1 + V 1

k
(N), where V 1

k
(N) is

(as defined in [23]):

V 1
k
(N) =

1
N

N∑
g=2

(
N

g

)
(−1)g g · (1/k)g−1

1 − (1/k)g−1

Knuth proves in [23, Ex. 6.3.19] that V 1
k
(N) = logk N+

O(1), and thus the expected number of right (equiv-
alently, left) non-null pointers is given by E[YN ] =
logk N + O(1).

8.3 Searching by Numeric ID

SkipNet supports searches by numeric ID as well
as searches by name ID. Searches by numeric ID in a
dense SkipNet take O(logk N) hops in expectation, and
O(k logk N) in a sparse SkipNet. We formally prove
these results in Theorem 8.6. Intuitively, search by nu-
meric ID corrects digits one at a time and needs to correct
at most O(logk N) digits. In the sparse SkipNet correct-
ing a single digit requires about O(k) hops, while in the
dense case only O(1) hops are required.

Theorem 8.6. The expected number of hops in a search
by numeric ID using a sparse R-Table is O(k logk N).
In a dense R-Table, the expected number of hops is

O(logk N). Additionally, these bounds hold with high
probability (i.e., the number of hops is close to the ex-
pectation).

Proof: We use the same upper bound as in the proof of
Theorem 8.2,

Pr[search takes more than m hops]
≤ Pr[more than m hops and at most g levels]

+ Pr[more than g levels]

and bound the two terms separately. In Theorem 8.2 we
showed that the maximum number of digits needed to
uniquely identify a node is g = O(logk N) with high
probability, and thus no search by numeric ID will need
to climb more than this many levels. This upper bounds
the right-hand term. The number of hops necessary on
any given level in the sparse R-Table before the next
matching digit is found is upper bounded by a geometric
random variable with parameter 1/k. The sum of g of
these random variables has expectation gk, and this ran-
dom variable is close to its expectation with high proba-
bility (by standard arguments). Thus the expected num-
ber of hops in a search by numeric ID using a sparse R-
Table is O(k logk N), and additionally the bound holds
with high probability.

For a search by numeric ID using a dense R-Table,
we upper bound the number of hops necessary on any
given level differently. Informally, instead of perform-
ing one experiment that succeeds with probability 1/k
repeatedly, we perform k − 1 such experiments simulta-
neously. Formally, the probability of finding a matching
digit in one hop is now 1− (1− 1/k)k−1 ≥ 1/2. There-
fore the analysis in the case of a sparse R-Table need
only be modified by replacing the parameter 1/k with
1/2. Thus the expected number of hops in a search by
numeric ID using a dense R-Table is O(logk N), and ad-
ditionally the bound holds with high probability. �

8.4 Node Joins and Departure

We now analyze node join and departure operations
using the analysis of both search by name ID and by
numeric ID from the previous sections. As described
in Section 3.5, a node join can be implemented using a
search by numeric ID followed by a search by name ID,
and will require O(k logk N) hops in either a sparse or
a dense SkipNet. Implementing node departure is even
easier: As described in Section 3.5, a departing node
need only notify its left and right neighbors at every level
that it is leaving, and that the left and right neighbors
of the departing node should point to each other. This
yields a bound of O(logk N) hops for the sparse Skip-
Net and O(k logk N) for the dense SkipNet, where hops
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measure the total number of hops traversed by messages
since these messages may be sent in parallel.

Theorem 8.7. The number of hops required by a node
join operation is O(k logk N) in expectation and with
high probability in either a sparse or a dense SkipNet.

Proof: The join operation can be decomposed into a
search by numeric ID, followed by a Skip List search by
name ID. Because of this, the bound on the number of
hops follows immediately from Theorem 8.2 and Theo-
rem 8.6. It only remains to establish that the join opera-
tion finds all required neighbors of the joining node.

For a sparse SkipNet, the joining node needs a pointer
at each level h to the node whose numeric ID matches in
h digits that is closest to the right or closest to the left
in the order on the name IDs. For a dense SkipNet, the
joining node must find the same nodes as in the sparse
SkipNet case, and then notify k− 2 additional neighbors
at each level.

The join operation begins with a search for a node
with the most numeric ID digits in common with the
joining node. The search by name ID operation for the
joining node starts at this node, and it is implemented
as a Skip List search by name ID; the pointers traversed
are monotonically decreasing in height, in contrast to the
normal SkipNet search by name ID. Whenever the Skip
List search path drops a level, it is because the current
node at level h points to a node beyond the joining node.
Therefore this last node at level h on the Skip List search
path is the closest node that matches the joining node in
h digits. This gives the level h neighbor on one side, and
the joining node’s level h neighbor on the other side is
that node’s former neighbor. The message traversing the
Skip List search path accumulates this information about
all the required neighbors on its way to the joining node.
This establishes the correctness of the join operation. �

8.5 Node Stress

We now analyze the distribution of load when per-
forming searches by name ID using R-Tables. To ana-
lyze the routing load, we must assume some distribution
of routing traffic. We assume a uniform distribution on
both the source and the destination of all routing traffic.
This assumption may or may not seem plausible, but its
plausibility is increased if SkipNet uses an obvious opti-
mization. If the destination of a SkipNet routing query is
cached at the search originator, then subsequent searches
to the same destination could be routed directly over IP.
Servicing repeated queries directly from the cache would
increase the randomness of the queries that SkipNet must
handle.

Under some routing algorithms (which happen not to
preserve path locality), the distribution of routing load is

obviously uniform. For example, if routing traffic were
always routed to the right, the load would be uniform.
If the source and destination name ID do not share a
common prefix, then path locality is not an issue and the
SkipNet routing algorithm randomly chooses a direction
in which to route — such traffic is uniformly distributed.

If the SkipNet routing algorithm can preserve path lo-
cality, it does so by always routing in the direction of
the destination (i.e., if the destination is to the right of
the source, routing proceeds to the right). We show that
in this case load is approximately balanced: very few
nodes’ loads are much smaller than the average load. We
also shows that no node’s load exceeds the average load
by more than a constant factor with high probability; this
result is relevant whether the routing algorithm preserves
path locality or not. In the interest of simplicity, our
proof assumes that k = 2; a similar result holds for arbi-
trary k. Also, we have previously given an upper bound
of O(log d) on the number of hops between two nodes
at distance d. In order to estimate the average load, we
assume a tight bound of Θ(log d) without proof.

Theorem 8.8. Consider an interval on which we pre-
serve path locality containing N nodes. Then the uth

node of the interval bears a Θ( log min{u,N−u}
log N ) fraction

of the average load in expectation.

Proof: We first establish the expected load on node u
due to routing traffic between a particular source l and
destination r. The search path can only encounter u if,
for some h, the numeric IDs of l and u have a common
prefix of length h but no node between u and r has a
longer common prefix with l. We observe that every
node’s random choice of numeric ID digits is indepen-
dent, and apply a union bound over h to obtain the fol-
lowing upper bound on the probability that the search
encounters u. Denote the distance from u to r by d.

Pr[search encounters u]

≤
∑
h≥0

Pr[u and l share h digits]

· Pr[no node between u and r shares more]

=
∑
h≥0

1
2h

·
(
1 − 1

2h+1

)d

Denote the term in the above summation by H(h).
Because H(h) falls by at most a factor of 2 when h in-
creases by 1, we can upper bound the summation using:

∑
h≥0

H(h) ≤ 2 ·
∫

h≥0

H(h)dh

Making the change of variables α = 1− 1
2h+1 , and hence
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dα = ln 2
2h+1 · dh, we obtain:

∫
h≥0

H(h)dh =
∫ 1

α=1/2

2
ln 2

· αd · dα

=
2

ln 2
· 1d+1 − ( 1

2 )d+1

d + 1
= O(1/d)

This completes the analysis of a single source/des-
tination pair. A similar single pair analysis was also
noted in [1]. We complete our theorem by considering
all source/destination pairs.

Our bound on the average load of a node is given by
the total number of source/destination pairs multiplied by
the bound on search hops divided by the total number of
nodes. Summing over all the routing traffic that passes
through u and dividing by the average load yields the
proportion of the average load that u carries. To within a
constant factor, this is:

∑
l∈[1,u−1]

∑
r∈[u+1,r]

(
1

|u−l| + 1
|u−r|

)
(
(
N
2

)
log N)/(N)

=
u log(N − u) + (N − u) log u

((N − 1) log N)/2

= Θ
( log min{u,N − u}

log N

)
�

Corollary 8.9. The number of nodes with expected load
less than Θ(α · average load) is Nα.

Proof: Apply Theorem 8.8 and note that log u
log N < α

implies that u < Nα. �
This completes the analysis showing that few nodes

expect to do much less work than the average node in the
presence of path locality. Our next theorem shows that
it is very unlikely any node will carry more than a con-
stant factor times the average load; this analysis is rel-
evant whether the routing policy maintains path locality
or not.

Theorem 8.10. With high probability, no node bears
more than a constant factor times the average load.

Proof: Consider any node u. There are at most N nodes
to the left of u and at most N nodes to the right. As
in the previous theorem, let l and r denote nodes to the
left and right of u respectively. Then the Skip List path
from l to r (of which the SkipNet path is a subsequence)
encounters u only if there is some number h such that l
and u share exactly h bits, but no node between u and
r shares exactly h bits with u. Considering only routing
traffic passing from left to right affects our bound by at
most a factor of two.

Let Lh be a random variable denoting the number of
l that share exactly h bits with u. Let Rh denote the
number of r such that no node between u and r shares
exactly h bits with u. (Note that if r shares exactly h bits
with u, it must share more than h bits with l, and thus
routing traffic from l to r does not pass through u.) The
analysis in the previous paragraph implies that the load
on u is exactly

∑
h LhRh. We desire to show that this

quantity is O(N log N) with high probability.

The random variable Lh has the binomial distribution
with parameter 1/2h+1. From this observation, standard
arguments (that we have made explicit in earlier proofs in
this section) show that Lh has expectation N/2h+1, and
for h ∈ [0, log N − log log N ], Lh = O(N/2h+1) with
high probability. The number of l that share more than
log N − log log N bits with u is log N in expectation,
and is O(log N) with high probability; these l (whose
number of common bits with u we do not bound) can
contribute at most O(N log N) to the final total.

To analyze the random variables Rh, we introduce
new random variables R′

h that stochastically dominate
Rh. In particular, let R′

h be the distance from u to the
first node after node R′

h−1 that matches u in exactly h
bits. Also, let R′

0 = R0. We define additional random
variables Yh using the recurrence R′

h =
∑h

i=0 Yi. The
Yh are completely independent of each other; Yh only de-
pends on the random bit choices of nodes after the nodes
that determine Yh−1.

The random variable Yh is distributed as a geomet-
ric random variable with parameter 1/2h+1 (and upper
bounded by N ). We rewrite the quantity we desire to
bound as

∑
h

LhRh =

O(N log N) +
log N−log log N∑

h=0

O
( N

2h+1

)
·

h∑
i=0

Yi

Using that the N/2h+1 form a geometric series, we apply
the upper bound

log N−log log N∑
h=0

N

2h+1
·

h∑
i=0

Yi ≤
log N−log log N∑

h=0

2N

2h+1
· Yh

We have that
∑

h LhRh equals O(N log N) plus the
sum of (slightly fewer than) log N independent random
variables, where the hth random variable is distributed
like a geometric random variable with parameter 1/2h

multiplied by O(N/2h), and thus has expectation O(N).
This yields the O(N log N) bound with high probability.
�
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8.6 Virtual Node Analysis

We outlined in Section 5.8 a scheme by which a single
physical node could host multiple virtual nodes. Using
this scheme, the bounds on search hops are unaffected,
and the number of pointers per physical node is only
O(k logk N +kv) in the dense case, where v is the num-
ber of virtual nodes. In the sparse case, the number of
pointers is just O(logk N + v).

Intuitively, we obtain this by relaxing the requirement
that nodes after the first have height O(logk N). We in-
stead allow node heights to be randomly distributed as
they are in a Skip List. Because Skip List nodes main-
tain a constant number of pointers in expectation, we add
only O(k) pointers per virtual node in the dense case, and
O(1) in the sparse case. Search are still efficient, just as
they are in a Skip List.

Theorem 8.11. Consider a single physical node sup-
porting v virtual nodes using the scheme of Section 5.8.
In the dense case, searches require O(logk D) hops, and
the number of pointers is O(k logk N+kv). In the sparse
case, searches require O(k logk D) hops, and the num-
ber of pointers is O(logk N + v). All these bounds hold
in expectation and with high probability.

Proof: The bound on the number of pointers is by con-
struction. Consider the sparse case. The leading term in
the bound, O(logk N), is due to the one virtual node that
is given all of its SkipNet pointers. The additional virtual
nodes have heights given by geometric random variables
with parameter 1/2, which is O(1) in expectation. The
claimed bound on the number of pointers immediately
follows, and the dense case follows by an identical argu-
ment with an additional factor of k.

We now analyze the number of search hops, focus-
ing first on the sparse case. Because we might begin the
search at a virtual node that does not have full height,
we will break the analysis into two phases. During the
first phase, the search path uses pointers of increasing
level. At some point, we encounter a node whose high-
est pointer goes beyond the destination. From this point
on (the second phase), we consider the Skip List search
path to the destination that begins at this node. As in
Theorem 8.2, the rest of the actual search path will be a
subsequence of this Skip List path.

As in Theorem 8.2, the maximum level of any pointer
in this interval of D nodes is O(logk D) with high prob-
ability. Suppose that some particular node t is the first
node encountered whose highest pointer points beyond
the destination. In this case, the first phase is exactly a
search by numeric ID for t’s numeric ID, and therefore
the high probability bound of Theorem 8.6 on the number
of hops applies. The second phase is a search from t for
d, and the high probability bound of Theorem 8.2 on the

number of hops applies. There is a subtlety to this sec-
ond argument — although some or all of the intermediate
nodes may be virtual, the actual search path is necessar-
ily a subset of the search path in the Skip List induced by
t (by the arguments of Lemma 8.1 and Lemma 8.3). We
previously supposed that t was fixed; because there are
at most D possibilities for t, considering all such possi-
bilities increases the probability of requiring more than
O(k logk D) hops by at most a factor of D. Because the
bound held with high probability initially, the probability
of exceeding this bound remains negligible.

This yields the result in the sparse case. An identical
argument holds in the dense case. �

8.7 Ring Merge

We now analyze the performance of the proactive al-
gorithm for merging disjoint SkipNet segments, as de-
scribed in Section 6. Consider the merge of a single Skip-
Net segment containing M nodes with a larger SkipNet
segment containing N nodes. In the interest of simplic-
ity, our discussion assumes that k = 2; a similar analysis
applies for arbitrary k. Recall that the expected maxi-
mum level of a ring in the merged SkipNet is O(log N)
with high probability (Section 8.2). Intuitively, the ex-
pected time to repair a ring at a given level after hav-
ing reached that level is O(1) and ring repair occurs in
parallel across all rings at a given level. This suggests
that the expected time required to perform the merge op-
eration is O(log N), and we will show this formally in
Theorem 8.12 under the assumption that the underlying
network accommodates unbounded parallelization of the
repair traffic. In practice, the bandwidth of the network
may impose a limit: doing many repairs in parallel may
saturate the network and hence take more time.

The expected amount of work required by the merge
is O(M log(N/M)) = O(N). We first give an in-
tuitive justification for this. The merge operation re-
pairs at most four pointers per SkipNet ring. Since the
total number of rings in the merged SkipNet is O(N)
and the expected work required to repair a ring is O(1),
the expected total work performed by the merge opera-
tion is O(N). Additionally, if M is much less than N ,
the bound O(M log(N/M)) proved in Theorem 8.13 is
much less than O(N).

Now consider an organization consisting of S disjoint
SkipNet segments, each of size at most M , merging into
a global SkipNet of size N . In this case, the merge algo-
rithm sequentially merges each segment of the organiza-
tion one at a time into the global SkipNet. The total time
required in this case is O(S log N) and the total work
performed is O(SM log(N/M)); these are straightfor-
ward corollaries of Theorem 8.12 and Theorem 8.13.
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Theorem 8.12. The time to merge a SkipNet segment
of size M with a larger SkipNet segment of size N
is O(log N) with high probability, assuming sufficient
bandwidth in the underlying network.

Proof: After repairing a ring, the merge operation
branches to repair both child rings in parallel, until there
are no more child rings. Using the analogy with tries
from Section 8.2, consider any path along the branches
from the root ring to a ring with no children. We show
that this path uses O(log N) hops with high probability.
Union bounding over all such paths will complete the
theorem.

We can assume that the height of any pointer is at most
c1 log N . The number of hops to traverse this path is then
upper bounded by a sum of c1 log N geometric random
variables with parameter 1/2. We now show that this
sum is at most c2 log N = O(log N) with high probabil-
ity. Applying the same reduction as in Section 8.1, using
Identity 5 and Identity 6, we obtain the following upper
bound on the probability of taking more than c2 log N
hops:

Fc2 log N,1/2(c1 log N)

≤ 1 − c1/c2

1 − 2c1/c2
fc2 log N,1/2(c1 log N)

=

(
1 − c1/c2

1 − 2c1/c2

)(
c2 log N

c1 log N

)
(1/2)c2 log N

≤
(

1 − c1/c2

1 − 2c1/c2

)
(c2 log N)c1 log N

(c1 log N)!
(1/2)c2 log N

≤
(

1 − c1/c2

1 − 2c1/c2

)
(c2 log N)c1 log N(

c1 log N
e

)c1 log N
2−c2 log N

<

(
1 − c1/c2

1 − 2c1/c2

)(c2 · e
c1

)c1 log N

2−c2 log N

Choosing c2 = max{7c1, 7}, this is at most 2N−2.
Applying a union bound over the N possible paths com-
pletes the proof. �

Theorem 8.13. The expected total work to merge a Skip-
Net segment of size M with a larger SkipNet segment of
size N is O(M log(N/M)).

Proof: Suppose all the pointers at level i have been re-
paired and consider any two level i + 1 rings that are
children of a single level i ring. To repair the pointers in
these two child rings, the nodes adjacent to the segment
boundary at level i must each find the first node in the di-
rection away from the segment boundary who differs in
the ith bit. The number of hops necessary to find either

node is upper bounded by a geometric random variable
with parameter 1/2. Only O(1) additional hops are nec-
essary to finish the repair operation.

By considering a particular order on the random bit
choices, we show that the number of additional hops in-
curred in every ring repair operation are independent ran-
dom variables. Let all the level i bits be chosen before the
level i + 1 bits. Then the number of hops incurred in fix-
ing any two level i+1 rings that are children of the same
level i ring depends only on the level i + 1 random bits
of those two rings. Also, only rings that require repair
initiate a repair operation on their children. Therefore
we can assume that the level i rings from which we will
continue the merge operation are fixed before we choose
the level i + 1 bits. Hence the number of hops incurred
in repairing these two child rings is independent of the
number of hops incurred in the repair of any other ring.

We now consider the levels of the pointers that require
repair. For low levels, we use the bound that the number
of pointers needing repair at level i is at most 2i because
there are at most 2i rings at this level. For higher levels,
we prove a high probability bound on the total number of
pointers that need to be repaired, showing that the total
number is M(log N +O(1)) with high probability in M .

A node of height i cannot contribute more than i
pointers to the total number needing repair. We upper
bound the probability that a particular node’s height ex-
ceeds h by:

Pr[height > h] ≤ N + M

2h
≤ 2N

2h
=

1
2h−log N−1

Thus each node’s height is upper bounded by a geometric
random variable starting at (log N + 1) with parameter
1/2, and these random variables are independent. By
standard arguments, their sum is at most M(log N + 3)
with high probability in M .

The contribution of the first log M levels is at most
2M pointers, while the remaining levels contribute at
most M(log N + 3 − log M) with high probability. In
total, the number of pointers is O(M log(N/M)). The
total number of hops is bounded by the sum of this many
geometric random variables. This sum has expectation
O(M log(N/M)) and is close to this expectation with
high probability, again by standard arguments. �

8.8 Incorporating the P-Table and the C-Table

We first argue that our bounds on search by numeric
ID, node join, and node departure continue to hold with
the addition of C-Tables to SkipNet. Search by nu-
meric ID corrects at least one digit on each hop, and
there are never more than O(logk N) digits to correct
(Section 8.2). Construction of a C-Table during node
join amounts to a search by numeric ID, using C-Tables,
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from an arbitrary SkipNet node to the joining node. This
yields the same bound on node join as on search by nu-
meric ID. During node departure, no work is performed
to maintain the C-Table.

We only give an informal argument that search by
name ID, node join, and departure continue to be efficient
with the addition of P-Tables. Intuitively, search by name
ID using P-Tables encounters nodes that interleave the
R-Table nodes and since the R-Table nodes are exponen-
tially distributed in expectation, we expect the P-Table
nodes to be approximately exponentially distributed as
well. Thus search should still approximately divide the
distance to the destination by k on each hop.

P-Table construction during node join is more in-
volved. Suppose that the intervals defined by the R-Table
are perfectly exponentially distributed. Finding a node
in the furthest interval is essentially a single search by
name ID, and thus takes O(logk N) time. Suppose the
interval we are currently in contains g nodes. Finding a
node in the next closest interval (containing at least g/k
nodes) has at least constant probability of requiring only
one hop. If we don’t arrive in the next closest interval
after the first hop, we expect to be much closer, and we
expect the second hop to succeed in arriving in the next
closest interval with good probability. Iterating over all
intervals, the total number of hops is O(k logk N) to fill
in every P-Table entry.

This completes the informal argument for construc-
tion of P-Tables during node join. As with C-Tables, no
work is performed to maintain the P-Table during node
departure.

9 Experimental Evaluation

To understand and evaluate SkipNet’s design and per-
formance, we used a simple packet-level, discrete event
simulator that counts the number of packets sent over
a physical link and assigns either a unit hop count or a
specified delay for each link, depending upon the topol-
ogy used. It does not model either queuing delay or
packet losses because modelling these would prevent
simulation of large networks.

Our simulator implements three overlay network de-
signs: Pastry, Chord, and SkipNet. The Pastry imple-
mentation is described in [34]. Our Chord implementa-
tion is based on the one available on the MIT Chord web
site [20], adapted to operate within our simulator. The
corresponding algorithms are described in [38]. For our
simulations, we run the Chord stabilization algorithm un-
til no finger pointers need updating after all nodes have
joined. We use two different implementations of Skip-
Net: a “basic” implementation that uses only the R-Table
with duplicate pointer elimination, and a “full” imple-
mentation that includes the P-Table and C-Table as well.

The full SkipNet implementation uses a sparse R-Table,
and a dense P-Table with density parameter k = 8. For
full SkipNet, we run two rounds of stabilization for P-
Table entries before each experiment.

All our experiments were run both on a Mercator
topology [40] and a GT-ITM topology [43]. The Merca-
tor topology has 102,639 nodes and 142,303 links. Each
node is assigned to one of 2,662 Autonomous Systems
(ASs). There are 4,851 links between ASs in the topol-
ogy. The Mercator topology assigns a unit hop count for
each link. All figures shown in this section are for the
Mercator topology. The experiments based on the GT-
ITM topology produced similar results.

Our GT-ITM topology has 5050 core routers gener-
ated using the Georgia Tech random graph generator ac-
cording to a transit-stub model. Application nodes were
assigned to core routers with uniform probability. Each
end system was directly attached by a LAN link to its as-
signed router (as was done in [6]). We used the routing
policy weights generated by the Georgia Tech random
graph generator [43] to perform IP unicast routing. The
delay of each LAN link was set to 1ms and the average
delay of core links was 40.5ms.

9.1 Methodology

We measured the performance characteristics of
lookups using the following evaluation criteria:

Relative Delay Penalty (RDP): The ratio of the la-
tency of the overlay network path between two nodes to
the latency of the IP-level path between them.

Physical network distance: The absolute length of
the overlay path between two nodes, in terms of the un-
derlying network distance. For the Mercator topology we
measure latency in terms of physical network hops since
the Mercator topology does not provide link latencies.
For the GT-ITM topology we measure latency in terms
of milliseconds. In contrast, RDP measures the penalty
of using an overlay network relative to IP. However, since
part of SkipNet’s goal is to enable the placement of data
near its clients, we also care about the absolute latency
that a DHT lookup request incurs.

Number of failed lookups: The number of unsuc-
cessful lookup requests in the presence of failures.

We also model the presence of organizations within
the overlay network; each participating node belongs to
a single organization. The number of organizations is
a parameter to the experiment, as is the total number of
nodes in the overlay. For each experiment, the total num-
ber of client lookups is ten times the number of nodes in
the overlay.

The format of the names of participating nodes is org-
name/node-name. The format of data object names is org-
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name/node-name/random-obj-name. Therefore we assume
that the “owner” of a particular data object will name it
with the owner node’s name followed by a node-local ob-
ject name. In SkipNet, this results in a data object being
placed on the owner’s node; in Chord and Pastry, the ob-
ject is placed on a node corresponding to the SHA-1 hash
of the object’s name. For constrained load balancing ex-
periments we use data object names that include the ‘!’
delimiter following the name of the organization.

We model organization sizes two ways: a uniform
model and a Zipf-like model.

• In the uniform model the size of each organization
is uniformly distributed between 1 and N – the total
number of application nodes in the overlay network.

• In the Zipf-like model, the size of an organization
is determined according to a distribution governed
by x−1.25 + 0.5 and normalized to the total number
of overlay nodes in the system. All other Zipf-like
distributions mentioned in this section are defined
in a similar manner.

We model three kinds of node locality: uniform, clus-
tered, and Zipf-clustered.

• In the uniform model, nodes are uniformly spread
throughout the overlay.

• In the clustered model, the nodes of an organization
are uniformly spread throughout a single randomly
chosen autonomous system in the Mercator topol-
ogy and throughout a randomly chosen stub net-
work in GT-ITM. In Mercator we ensure that the
selected AS has at least 1/10-th as many core router
nodes as overlay nodes. For GT-ITM, if an orga-
nization has 1000 or less member nodes, then we
spread it across a single stub network, otherwise we
spread it across a “stub cluster” – a set of stub net-
works that all connect to the same transit link.

• For Zipf-clustered, we place organizations within
ASes or stub networks, as before. However, the
nodes of an organization are spread throughout its
AS or stub network as follows: A “root” physical
node is randomly placed within the AS or stub net-
work and all overlay nodes are placed relative to this
root, at distances modeled by a Zipf-like distribu-
tion. In this configuration most of the overlay nodes
of an organization will be closely clustered together
within their AS or stub network. This configuration
is especially relevant to the Mercator topology, in
which some ASes span large portions of the entire
topology.

Data object names, and therefore data placement, are
modelled similarly. In a uniform model, data names
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Figure 12. RDP as a function of network size. Config-
uration: 1000 organizations with Zipf-like sizes, nodes
and data names are Zipf-clustered.

are generated by randomly selecting an organization and
then a random node within that organization. In a clus-
tered model, data names are generated by selecting an or-
ganization according to a Zipf-like distribution and then
a random member node within that organization. For
Zipf-clustered, data names are generated by randomly
selecting an organization according to a Zipf-like distri-
bution and then selecting a member node according to
a Zipf-like distribution of its distance from the “root”
node of the organization. Note that for Chord and Pastry,
but not SkipNet, hashing spreads data objects uniformly
among all overlay nodes in all of these three models.

For SkipNet, the actual node names used in our simu-
lations may impact performance, so we used realistic dis-
tributions for both host names and organization names.
Our distribution of organization names was derived from
a list of 5,608 unique organizations which had at least
one peer participating in Gnutella in March 2001 [37].
The host name distribution was obtained from a list of
177,000 internal host names in use at Microsoft Corpo-
ration.

We model locality of data access by specifying what
fraction of all data lookups will be forced to request data
local to the requestor’s organization. Finally, we model
system behavior under Internet-like failures and study
document availability within a disconnected organiza-
tion. We simulate domain isolation by failing the links
connecting the organization’s AS to the rest of the net-
work in Mercator and by failing the relevant transit links
in GT-IM.

Each experiment is run ten times, with different ran-
dom seeds, and the mean values are presented. Skip-
Net uses 128-bit numeric IDs and a leaf set of 16
nodes. Chord and Pastry use their default configura-
tions [38, 34].

Our experiments measured the costs of sending over-
lay messages to overlay nodes using the different over-
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Chord Basic SkipNet Full SkipNet Pastry

16.3 41.7 102.2 63.2

Table 1. Average number of unique routing entries per
node in an overlay with 216 nodes.

lays under various distributions of nodes and content.
Data gathered included:

Application Hops: The number of application-level
hops required to route a message via the overlay to the
destination

Relative Delay Penalty (RDP): The ratio between
the average delay using overlay routing and the average
delay using IP routing.

Experimental parameters varied included:

Overlay Type: Chord, Pastry, Basic SkipNet, or Full
SkipNet.

Topology: Mercator (the default) or GT-ITM.
Message Type: Either DHT Lookup (the default), in-

dicating that messages are DHT lookups, or Send, indi-
cating that messages are being sent to randomly chosen
overlay nodes.

Nodes (N ): Number of overlay nodes. Most experi-
ments vary N from 28 through 216 increasing by powers
of two. Some fix N at 216.

Lookups: Number of lookup requests routed per ex-
periment. Usually 10 × N .

Trials: The number of times each experiment is run,
each with different random seed values. Usually 10. Re-
sults reported are the average of all runs.

Organizations: Number of distinct organization
names content is located within. Typical values include
1, 10, 100, and 1000 organizations. Nodes within an or-
ganization are located within the same region of the sim-
ulated network topology. For Mercator topologies they
are located within the same Autonomous System (AS).
In a GT-ITM topology for small organizations they are
all nodes attached to the same stub network and for large
organizations they are all nodes connected to the same
stub cluster – a set of stub networks that all connect to
the same transit link.

Organization Sizes: One of Uniform – indicating
randomly chosen organization sizes between 1 and N in
size or Zipf – indicating organization sizes chosen using
a 1

x1.25 Zipf distribution with the largest organization size
being 1

2N .
Node Locality: One of Uniform or Zipf. Con-

trols how node locations cluster within each organiza-
tion. Uniform spreads nodes randomly among the nodes
within an organization’s topology. Zipf sorts candidate
nodes by distance from a chosen root node within an or-
ganization’s topology and clusters nodes using a Zipf dis-
tribution near that node.

Document Locality: One of Uniform, By Org, or
By Node. Uniform spreads document names uniformly
across all nodes. By Org applies a Zipf-like distribu-
tion causing larger organizations to have a larger share of
documents, with documents uniformly distributed across
nodes within each organization. By Node is used in con-
junction with a Zipf-like distribution of nodes within an
organization to distribute documents within the organiza-
tion with the same distribution as the nodes themselves.

% Local: Fraction of lookups that are constrained to
be local to documents within the client’s organization.
Non-local lookups are distributed among all documents
in the experiment.

Overlay-specific parameter defaults were:

Chord: NodeID Bits = 40.
Pastry: NodeID Bits = 128, Bits per Digit (b) = 4,

Leaf Set size = 16.
SkipNet: Basic configuration: Random ID Bits =

128, Leaf Set size = 16, ring branching factor (k) = 2.
Full configuration: Same as basic, except k = 8 and adds
use of P-Table for proximity awareness and C-Table for
efficient numeric routing.

9.2 Basic Routing Costs

To understand SkipNet’s routing performance we
simulated overlay networks varying the number of nodes
from 1,024 to 65,536. We ran experiments with 10, 100,
and 1000 organizations and with all the permutations ob-
tainable for organization size distribution, node place-
ment, and data placement. The intent was to see how
RDP behaves under various configurations. We were es-
pecially curious to see whether the non-uniform distri-
bution of data object names would adversely affect the
performance of SkipNet lookups, as compared to Chord
and Pastry.

Figure 12 presents the RDPs measured for both im-
plementations of SkipNet, as well as Chord and Pastry.
Table 1 shows the average number of unique routing ta-
ble entries per node in an overlay with 216 nodes. All
other configurations, including the completely uniform
ones, exhibited similar results to those shown here.

Our conclusion is that basic SkipNet performs simi-
larly to Chord and full SkipNet performs similarly to Pas-
try. This is not surprising since both basic SkipNet and
Chord do not support network proximity-aware routing
whereas full SkipNet and Pastry do. Since all our other
configurations produced similar results, we conclude that
SkipNet’s performance is not adversely affected by non-
uniform distributions of names.

9.3 Exploiting Locality of Placement

RDP only measures performance relative to IP-based
routing. However, one of SkipNet’s key benefits is that
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Figure 13. Absolute latency (in network hops) for
lookups as a function of data access locality (percent-
age of lookups forced to be within a single organization).
Configuration: 216 nodes, 100 organizations with Zipf-
like sizes, nodes and data names are Zipf-clustered.

it enables localized placement of data. Figure 13 shows
the average number of physical network hops for lookup
requests. The x-axis indicates what fraction of lookups
were forced to be to local data (i.e., the data object names
that were looked up were from the same organization as
the requesting client). The y-axis shows the number of
physical network hops for lookup requests.

As expected, both Chord and Pastry are oblivious
to the locality of data references since they diffuse
data throughout their overlay network. On the other
hand, both versions of SkipNet show significant perfor-
mance improvements as the locality of data references
increases. It should be noted that Figure 13 actually un-
derstates the benefits gained by SkipNet because, in our
Mercator topology, inter-domain links have the same cost
as intra-domain links. In an equivalent experiment run
on the GT-ITM topology, SkipNet end-to-end lookup la-
tencies were over a factor of seven less than Pastry’s for
100% local lookups.

9.4 Fault Tolerance

Content locality also improves fault tolerance. Fig-
ure 14 shows the number of lookups that failed when an
organization was disconnected from the rest of the net-
work.

This (common) Internet-like failure had catastrophic
consequences for Chord and Pastry. The size of the iso-
lated organization in this experiment was roughly 15% of
the total nodes in the system. Consequently, Chord and
Pastry will both place roughly 85% of the organization’s
data on nodes outside the organization. Furthermore,
they must also attempt to route lookup requests with 85%
of the overlay network’s nodes effectively failed (from
the disconnected organization’s point-of-view). At this
level of failures, routing is effectively impossible. The
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Figure 14. Number of failed lookup requests as a func-
tion of data access locality (percentage of lookup re-
quests forced to be within a single organization) for a
disconnected organization. Configuration: 216 nodes,
100 organizations with Zipf-like sizes, nodes and data
names are Zipf-clustered.
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Figure 15. Number of routing hops taken to route inter-
organizational messages, as a function of network size, after
an organization’s internal SkipNet has been reconnected to the
global SkipNet root ring and after the merge has been fully
completed.

net result is a failed lookups ratio of very close to 100%.
In contrast, both versions of SkipNet do better the

more locality of reference there is. When no lookups are
forced to be local, SkipNet fails to access the 85% of data
that is non-local to the organization. As the percentage
of local lookups is increased to 100%, the percentage of
failed lookups goes to 0.

To experimentally confirm the behavior of SkipNet’s
disconnection and merge algorithms described in Sec-
tion 6, we extended the simulator to support disconnec-
tion of AS subnetworks. Figure 15 shows the routing
performance we observed between a previously discon-
nected organization and the rest of the system once the
organization’s SkipNet root ring has been connected to
the global SkipNet root ring. We also show the rout-
ing performance observed when all higher level pointers
have been repaired.
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load balanced (CLB) as a function of network size. Con-
figuration: 100 organizations with Zipf-like sizes, nodes
and data names are Zipf-clustered.

9.5 Constrained Load Balancing

Figure 16 explores the routing performance of two
different CLB configurations, and compares their perfor-
mance with Pastry. For each system, all lookup traffic is
organization-local data. The organization sizes as well
as node and data placement are clustered with a Zipf-like
distribution. The Basic CLB configuration uses only the
R-Table described in Section 3, whereas Full CLB makes
use of the R-Table and the C-Table, as described in Sec-
tion 5.4.

The Full CLB curve shows a significant performance
improvement over Basic CLB, justifying the cost of
maintaining the extra routing tables. However, even with
the additional tables, the Full CLB performance trails
Pastry’s performance. We plan to investigate further
techniques to reduce the latency of CLB. The key ob-
servation, however, is that in order to mimic the CLB
functionality with a traditional peer-to-peer overlay net-
work, multiple routing tables are required, one for each
domain that you want to load-balance across.

9.6 Network Proximity

Figure 17 shows the performance of SkipNet routing
using the P-Table. The x-axis varies the configuration
parameter k which controls the density of P-Table point-
ers. The y-axis shows the routing performance in terms
of RDP, and each data point is labelled with the aver-
age number of unique pointers per node. Note that the
C-Table was not enabled so the pointers are from the R-
table, P-Table and leaf set. Figure 17 shows that for small
values of k, increasing k yields a large RDP improve-
ment with a small increase in the number of pointers.
As k grows, we see minimal improvement in RDP but
significantly more pointers. This suggests that choosing
k = 8 provides most of the RDP benefit with a reason-
able number of pointers.
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Figure 17. RDP for Full SkipNet as a function of the
density configuration parameter k. The labels next to
each point represent the average number of unique point-
ers per node. Configuration: 216 nodes, 1000 organi-
zations with Zipf-like sizes, nodes and data names are
Zipf-clustered.

We also analyzed the sensitivity of P-Table perfor-
mance to the choice of the initial seed node. We com-
pared the performance when choosing a seed node at
random with choosing the seed as the closest node in
the system. Our results show virtually identical perfor-
mance, which indicates that the P-Table join mechanism
is effective at locating a nearby seed.

10 Conclusion

To become broadly acceptable application infrastruc-
ture, peer-to-peer systems need to support both content
and path locality: the ability to control where data is
stored and to guarantee that routing paths remain lo-
cal within an administrative domain whenever possible.
These properties provide a number of advantages, in-
cluding improved availability, performance, manageabil-
ity, and security. To our knowledge, SkipNet is the first
peer-to-peer system design that achieves both content
and routing path locality. SkipNet achieves this with-
out sacrificing the performance goals of previous peer-
to-peer systems: Nodes maintain a logarithmic amount
of state and operations require a logarithmic number of
message hops.

SkipNet provides content locality at any desired de-
gree of granularity. Constrained load balancing encom-
passes placing data on a particular node, as well as tra-
ditional DHT functionality, and any intermediate level of
granularity. This granularity is only limited by the hier-
archy encoded in nodes’ name IDs.

Clustering node names by organization allows Skip-
Net to perform gracefully in the face of a common type
of Internet failure: When an organization loses connec-
tivity to the rest of the network, SkipNet fragments into
two segments that are still able to route efficiently inter-
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nally. SkipNet also provides a mechanism to efficiently
re-merge these segments with the global SkipNet when
the network partition heals. With uncorrelated and in-
dependent node failures, SkipNet behaves comparably to
other peer-to-peer systems.

Our evaluation has demonstrated that SkipNet’s per-
formance is similar to other peer-to-peer systems such
as Chord and Pastry under uniform access patterns. Un-
der access patterns where intra-organizational traffic pre-
dominates, SkipNet performs better. Our experiments
show that SkipNet is significantly more resilient to or-
ganizational network partitions than other peer-to-peer
systems.

In future work, we plan to deploy SkipNet across a
testbed of 2000 machines emulating a WAN. This de-
ployment should further our understanding of SkipNet’s
behavior in the face of dynamic node joins and depar-
tures, network congestion, and other real-world scenar-
ios. We also plan to evaluate SkipNet as infrastruc-
ture for implementing a scalable event notification ser-
vice [2].

Finally, we’d like to close by saying that the code
described in this paper is available as part of the pub-
lic SkipNet release [18]. Thus, you can see for your-
selves the actual algorithms and tradeoffs employed in
our SkipNet implementation and several peer-to-peer fa-
cilities and applications built using it.

Acknowledgements

We thank Antony Rowstron, Miguel Castro, and
Anne-Marie Kermarrec for allowing us to use their Pas-
try implementation and network simulator. We thank
Atul Adya, who independently observed that Chord’s
structure suggested the possibility of a Skip List-based
distributed data structure, and provided helpful feedback
on drafts of this paper. We also thank Scott Sheffield for
his insights on the analysis of searching by name.

References

[1] J. Aspnes and G. Shah. Skip Graphs. In Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms, Jan.
2003.

[2] L. F. Cabrera, M. B. Jones, and M. Theimer. Herald: Achiev-
ing a Global Event Notification Service. In Proceedings of the
Eighth Workshop on Hot Topics in Operating Systems (HotOS-
VIII), May 2001.

[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach.
Security for peer-to-peer routing overlays. In Proceedings of the
Fifth Symposium on Operating System Design and Implementa-
tion (OSDI). USENIX, December 2002.

[4] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Topology-
aware routing in structured peer-to-peer overlay networks. Tech-
nical Report MSR-TR-2002-82, Microsoft Research, 2002.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level mul-
ticast infrastructure. IEEE Journal on Selected Areas in Commu-

nications (JSAC) (Special issue on Network Support for Multicast
Communications), 2002.

[6] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In ACM SIGMETRICS 2000, pages 1–12, Santa Clara,
CA, June 2000.

[7] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Dis-
tributed Anonymous Information Storage and Retrieval System.
In Workshop on Design Issues in Anonymity and Unobservability,
pages 311–320, July 2000. ICSI, Berkeley, CA, USA.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, MA, 1990.

[9] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In 18th ACM Sympo-
sium on Operating Systems Principles, Oct. 2001.

[10] J. R. Douceur. The Sybil Attack. In Proceedings of First Inter-
national Workshop on Peer-to-Peer Systems (IPTPS ’02), March
2002.

[11] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and
M. Theimer. Reclaiming space from duplicate files in a serverless
distributed file system. In Proceedings of the 22nd ICDCS, July
2002.

[12] J. Dunagan, N. J. A. Harvey, M. B. Jones, D. Kostic, M. Theimer,
and A. Wolman. FUSE: Lightweight Guaranteed Distributed
Failure Notification. Submitted for publication, 2003.

[13] E. Fredkin. Trie Memory. Communications of the ACM,
3(9):490–499, Sept. 1960.

[14] Gnutella. http://www.gnutelliums.com/.
[15] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable, dis-

tributed data structures for Internet service construction. In Pro-
ceedings of the Fourth Symposium on Operating Systems Design
and Implementation (OSDI 2000), October 2000.

[16] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wol-
man. SkipNet: A Scalable Overlay Network with Practical Lo-
cality Properties. In Proceedings of Fourth USENIX Symposium
on Internet Technologies and Systems (USITS ’03), Mar. 2003.

[17] N. J. A. Harvey, M. B. Jones, M. Theimer, and A. Wolman. Effi-
cient Recovery From Organizational Disconnects in SkipNet. In
Proceedings of Second International Workshop on Peer-to-Peer
Systems (IPTPS ’03), Feb. 2003.

[18] Herald Project. Skipnet public code release.
http://research.microsoft.com/sn/Herald/, February 2004.

[19] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentral-
ized, peer-to-peer web cache. In Proceedings of the 21st An-
nual ACM Symposium on Principles of Distributed Computing
(PODC). ACM, July 2002.

[20] F. Kaashoek, R. Morris, F. Dabek, I. Stoica, E. Brunskill,
D. Karger, R. Cox, and A. Muthitacharoen. The Chord Project,
2002. http://www.pdos.lcs.mit.edu/chord/.

[21] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and
R. Panigraphy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web.
In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pages 654–663, May 1997.

[22] P. Keleher, S. Bhattacharjee, and B. Silaghi. Are Virtualized
Overlay Networks Too Much of a Good Thing? In Proceedings
of First International Workshop on Peer-to-Peer Systems (IPTPS
’02), March 2002.

[23] D. E. Knuth. The Art of Computer Programming, Volume 3: Sort-
ing and Searching. Addison-Wesley, Reading, MA, 1973.

[24] C. Labovitz and A. Ahuja. Experimental Study of Internet Sta-
bility and Wide-Area Backbone Failures. In Fault-Tolerant Com-
puting Symposium (FTCS), June 1999.

[25] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and
Dynamic Emulation of the Butterfly. In Proceedings of the 21st
Annual ACM Symposium on Principles of Distributed Computing
(PODC), July 2002.

[26] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-peer
Information System Based on the XOR Metric. In Proceed-

35



ings of the First International Workshop on Peer-to-Peer Systems
(IPTPS’02), MIT, March 2002.

[27] J. Mogul, L. Brakmo, D. E. Lowell, D. Subhraveti, and J. Moore.
Unveiling the Transport. In Proceedings of the Second Workshop
on Hot Topics in Networks (HotNets-II), Nov. 2003.

[28] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do
Internet services fail, and what can be done about it? In Proceed-
ings of Fourth USENIX Symposium on Internet Technologies and
Systems (USITS ’03), Mar. 2003.

[29] T. Papadakis. Skip Lists and Probabilistic Analysis of Algorithms.
PhD thesis, University of Waterloo, 1993. Also available as Tech-
nical Report CS93-28.

[30] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced
Trees. In Workshop on Algorithms and Data Structures, pages
437–449, 1989.

[31] W. Pugh. A Skip List Cookbook. Technical Report CS-TR-
2286.1, University of Maryland, 1990.

[32] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In Proceedings of ACM
SIGCOMM, Aug. 2001.

[33] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-
level Multicast using Content-Addressable Networks. In Pro-
ceedings of the Third International Workshop on Networked
Group Communication, Nov. 2001.

[34] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In
International Conference on Distributed Systems Platforms (Mid-
dleware), pages 329–350, Heidelberg, Germany, Nov. 2001.

[35] A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
18th ACM Symposium on Operating Systems Principles, Oct.
2001.

[36] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
Scribe: The design of a large-scale event notification infrastruc-
ture. In Third International Workshop on Networked Group Com-
munications, Nov 2001.

[37] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proceedings of Mul-
timedia Computing and Networking, San Jose, CA, USA, Jan.
2002.

[38] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A Scalable Peer-To-Peer Lookup Service for In-
ternet Applications. In Proceedings of the ACM SIGCOMM ’01
Conference, pages 149–160, San Diego, California, August 2001.

[39] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A Scalable Peer-To-Peer Lookup Service for In-
ternet Applications. Technical Report TR-819, MIT, March 2001.

[40] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin. The
Impact of Routing Policy on Internet Paths. In INFOCOM, pages
736–742, April 2001.

[41] M. Theimer and M. B. Jones. Overlook: Scalable Name Service
on an Overlay Network. In Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS). IEEE
Computer Society, July 2002.

[42] A. Vahdat, J. Chase, R. Braynard, D. Kostic, and A. Rodriguez.
Self-Organizing Subsets: From Each According to His Abilities,
To Each According to His Needs. In Proceedings of First Inter-
national Workshop on Peer-to-Peer Systems (IPTPS ’02), March
2002.

[43] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to Model
an Internetwork. In Proceedings of IEEE Infocom ’96, April
1996.

[44] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
Infrastructure for Fault-Resilient Wide-area Location and Rout-
ing. Technical Report UCB//CSD-01-1141, U. C. Berkeley, April
2001.

36



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


