
Semi-Matchings for Bipartite Graphs
and Load Balancing

Nicholas J. A. Harvey1, Richard E. Ladner2, László Lovász1, and Tami Tamir2

1 Microsoft Research, Redmond, WA, USA,
{nickhar, lovasz}@microsoft.com

2 Department of Computer Science and Engineering,
University of Washington, Seattle, WA, USA,

{ladner, tami}@cs.washington.edu

Abstract. We consider the problem of fairly matching the left-hand
vertices of a bipartite graph to the right-hand vertices. We refer to this
problem as the semi-matching problem; it is a relaxation of the known
bipartite matching problem. We present a way to evaluate the quality of a
given semi-matching and show that, under this measure, an optimal semi-
matching balances the load on the right hand vertices with respect to
any Lp-norm. In particular, when modeling a job assignment system, an
optimal semi-matching achieves the minimal makespan and the minimal
flow time for the system.

The problem of finding optimal semi-matchings is a special case of cer-
tain scheduling problems for which known solutions exist. However, these
known solutions are based on general network optimization algorithms,
and are not the most efficient way to solve the optimal semi-matching
problem. To compute optimal semi-matchings efficiently, we present and
analyze two new algorithms. The first algorithm generalizes the Hun-
garian method for computing maximum bipartite matchings, while the
second, more efficient algorithm is based on a new notion of cost-reducing
paths. Our experimental results demonstrate that the second algorithm is
vastly superior to using known network optimization algorithms to solve
the optimal semi-matching problem. Furthermore, this same algorithm
can also be used to find maximum bipartite matchings and is shown to
be roughly as efficient as the best known algorithms for this goal.

1 Introduction

One of the classical combinatorial optimization problems is finding a maximum
matching in a bipartite graph. The bipartite matching problem enjoys numer-
ous practical applications [2, Section 12.2], and many efficient, polynomial time
algorithms for computing solutions [8] [12] [14]. Formally, a bipartite graph is a
graph G = (U ∪ V,E) in which E ⊆ U × V . A matching in G is a set of edges,
M ⊆ E, such that each vertex in U ∪V is an endpoint of at most one edge inM ;
that is, each vertex in U is matched with at most one vertex in V and vice-versa.

In this paper we consider a relaxation of the maximum bipartite matching
problem. We define a semi-matching to be a set of edges,M ⊆ E, such that each
vertex in U is an endpoint of exactly one edge in M . Clearly a semi-matching
does not exist if there are isolated U -vertices, and so we require that each U -
vertex in G have degree at least 1. Note that it is trivial to find a semi-matching
— simply match each U -vertex with an arbitrary V -neighbor. Our objective is to
find semi-matchings that match U -vertices with V -vertices as fairly as possible,
that is, minimizing the variance of the matching edges at each V -vertex.

Our work is motivated by the following load balancing problem: We are given
a set of tasks and a set of machines, each of which can process a subset of the
tasks. Each task requires one unit of processing time, and must be assigned to
some machine that can process it. The tasks are to be assigned to machines in
a manner that minimizes some optimization objective. One possible objective
is to minimize the makespan of the schedule, which is the maximal number of
tasks assigned to any given machine. Another possible goal is to minimize the
average completion time, or flow time, of the tasks. A third possible goal is to
maximize the fairness of the assignment from the machines’ point of view, i.e.,
to minimize the variance of the loads on the machines.

These load balancing problems have received intense study in the online
setting, in which tasks arrive and leave over time [4]. In this paper we consider
the offline setting, in which all tasks are known in advance. Problems from the
online setting may be solved using an offline algorithm if the algorithm’s runtime
is significantly faster than the tasks’ arrival/departure rate, and tasks may be
reassigned from one machine to another without expense. In particular, the
second algorithm we present can incrementally update an existing assignment
after task arrivals or departures.

One example of an online load balancing problem that can be efficiently
solved by an offline solution comes from the Microsoft Active Directory sys-
tem [1], which is a distributed directory service. Corporate deployments of this
system commonly connect thousands of servers in geographically distributed
branch offices to servers in a central “hub” data center; the branch office servers
periodically replicate with the hub servers to maintain database consistency.
Partitioning the database according to corporate divisions creates constraints
on which hub servers a given branch server may replicate with. Thus, the as-
signment of branch servers to hub servers for the purpose of replication is a
load balancing problem: the branch servers are the “tasks”, and the hub servers
are the “machines”. Since servers are only rarely added or removed, and servers
can be efficiently reassigned to replicate with another server, this load balancing
problem is amenable to the offline solutions that we present herein.

Load balancing problems of the form described above can be represented as
instances of the semi-matching problem as follows: Each task is represented by
a vertex u ∈ U , and each machine is represented by a vertex v ∈ V . There is an
edge {u, v} if task u can be processed by machine v. Any semi-matching in the
graph determines an assignment of the tasks to the machines. Furthermore, we
show that a semi-matching that is as fair as possible gives an assignment of tasks
to machines that simultaneously minimizes the makespan and the flow time.

The primary contributions of this paper are: (1) the semi-matching model for
solving load balancing problems of the form described above, (2) two efficient
algorithms for computing optimal semi-matchings, and (3) a new algorithmic
approach for the bipartite matching problem. We also discuss in Section 2 rep-
resentations of the semi-matching problem as network optimization problems,
based on known solutions to scheduling problems. Section 3 presents several im-
portant properties of optimal semi-matchings. One of these properties provides
a necessary and sufficient condition for a semi-matching to be optimal. Specifi-
cally, we define a cost-reducing path, and show that a semi-matching is optimal
if and only if no cost reducing path exists. Sections 4 and 5 present two al-
gorithms for computing optimal semi-matchings; the latter algorithm uses the
approach of identifying and removing cost-reducing paths. Finally, Section 6 de-
scribes an experimental evaluation of our algorithms against known algorithms
for computing optimal semi-matchings and maximum bipartite matchings. Due
to space limitations this paper omits proofs for some of the theorems.

2 Preliminaries

Let G = (U ∪ V,E) be a simple bipartite graph with U the set of left-hand
vertices, V the set of right-hand vertices, and edge set E ⊆ U × V . We denote
by n and m the sizes of the left-hand and the right-hand sides of G respectively
(i.e., n = |U | and m = |V |). Since our work is motivated by a load balancing
problem, we often call the U -vertices “tasks” and the V -vertices “machines”.

We define a setM ⊆ E to be a semi-matching if each vertex u ∈ U is incident
with exactly one edge inM . We assume that all of the vertices in U have degree
at least 1 since isolated U -vertices can not participate in the matching. A semi-
matching gives an assignment of each task to a machine that can process it.

For v ∈ V , let deg(v) denote the degree of vertex v; in load balancing terms,
deg(v) is the number of tasks that machine v is capable of executing. Let degM (v)
denote the number of edges in M that are incident with v; in load balancing
terms, degM (v) is the number of tasks assigned to machine v. We frequently
refer to degM (v) as the load on vertex v. Note that if several tasks are assigned
to a machine then one task completes its execution after one time unit, the next
task after two time units, etc. However, semi-matchings do not specify the order
in which the tasks are to be executed.

We define costM (v) for a vertex v ∈ V to be

degM (v)∑

i=1

i =
degM (v) · (degM (v) + 1)

2
.

This expression gives the total latency experienced by all tasks assigned to
machine v. The total cost of a semi-matching, M , is defined to be T (M) =∑m

i=1 costM (vi). A semi-matching with minimal total cost is called an optimal
semi-matching. We show in Section 3 that an optimal semi-matching is also

optimal with respect to other optimization objectives, such as maximizing the
load balance on the machines (by minimizing, for any p, the Lp-norm of the
load vector), minimizing the variance of the machines’ load, and minimizing the
maximum load on any machine.

For a given semi-matching M in G, define an alternating path to be a se-
quence of edges P = ({v1, u1}, {u1, v2}, . . . , {uk−1, vk}) with vi ∈ V , ui ∈ U ,
and {vi, ui} ∈M for each i. Without the possibility of confusion, we sometimes
treat paths as though they were a sequence of vertices (v1, u1, . . . , uk−1, vk).
The notation A ⊕B denotes the symmetric difference of sets A and B; that is,
A ⊕ B = (A \ B) ∪ (B \ A). Note that if P is an alternating path relative to
a semi-matching M then P ⊕M is also a semi-matching, derived from M by
switching matching and non-matching edges along P . If degM (v1) > degM (vk)+1
then P is called a cost-reducing path relative to M . Cost-reducing paths are so
named because switching matching and non-matching edges along P yields a
semi-matching P ⊕M whose cost is less than the cost of M . Specifically,

T (P ⊕M) = T (M)− (degM (v1)− degM (vk)− 1).

2.1 Related Work

The maximum bipartite matching problem is known to be solvable in polynomial
time using a reduction from maximum flow [2] [9] or by the Hungarian method
[14] [15, Section 5.5]. Push-relabel algorithms are widely considered to be the
fastest algorithms in practice for this problem [8].

The load balancing problems we consider in this paper can be represented as
restricted cases of scheduling on unrelated machines. These scheduling problems
specify for each job j and machine i the value pi,j , which is the time it takes
machine i to process job j. When pi,j ∈ {1,∞} ∀i, j, this yields an instance of
the semi-matching problem, as described in Section 2.2. In standard scheduling
notation [11], this problem is known as R | pi,j ∈ {1,∞} | ∑

j Cj . Algorithms are
known for minimizing the flow time of jobs on unrelated machines [2, Application
12.9] [7] [13]; these algorithms are based on network flow formulations.

The online version of this problem, in which the jobs arrive sequentially and
must be assigned upon arrival, has been studied extensively in recent years [3]
[5] [6]. A comprehensive survey of the field is given in [4].

2.2 Representation as Known Optimization Problems

The optimal semi-matching problem can be represented as special instances of
two well-known optimization problems: weighted assignment and min-cost max-
flow. However, Section 6 shows that the performance of the resulting algorithms
is inferior to the performance of our algorithms presented in sections 4 and 5.

Recall that the scheduling problem R || ∑
j Cj , and in particular the case in

which pi,j ∈ {1,∞}, can be reduced to a weighted assignment problem [7] [13].

v
1

v
2

u
1

u
2

u
3

u
4

(a)

v
1

v
2

u
1

u
2

u
3

u
4

c
2

c
3

c
1

ts

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

1,1

2,1

1,1

2,1

3,1

0,

0,

0,

∞

∞

∞

(b)

Fig. 1. (a) shows a graph in which the bold edges form an optimal semi-matching.
(b) shows the corresponding min-cost max-flow problem. Each edge is labeled with two
numbers: a cost, and a capacity constraint. Bold edges carry one unit of flow and
doubly-bold edges carry two units of flow.

A semi-matching instance can be represented as an R | pi,j ∈ {1,∞} | ∑
j Cj

instance as follows: Each U -vertex represents a job, and each V -vertex represents
a machine. For any job j and machine i, we set pi,j = 1 if the edge {uj, vi} exists,
and otherwise pi,j = ∞. Clearly, any finite schedule for the scheduling problem
determines a feasible semi-matching. In particular, a schedule that minimizes
the flow time determines an optimal semi-matching. Thus, algorithms for the
weighted assignment problem can solve the optimal semi-matching problem.

The min-cost max-flow problem is one of the most important combinatorial
optimization problems; its objective is to find a minimum-cost maximum-flow
in a network [2]. Indeed, the weighted assignment problem can be reduced to
min-cost max-flow problem. Thus, from the above discussion, it should be clear
that a semi-matching problem instance can be recast as a min-cost max-flow
problem. We now describe an alternative, more compact, transformation of the
optimal semi-matching problem to a min-cost max-flow problem.

GivenG = (U∪V,E), a bipartite graph giving an instance of a semi-matching
problem, we show how to construct a network N such that a min-cost max-flow
in N determines an optimal semi-matching in G. The network N is constructed
from G by adding at most |U |+ 2 vertices and 2|U |+ |E| edges (see Figure 1).
The additional vertices are a source, s, a sink, t, and a set of “cost centers”
C = {c1, . . . , c∆}, where ∆ ≤ |U | is the maximal degree of any V -vertex. Edges
with cost 0 and capacity 1 connect s to each of the vertices in U . The original
edges connecting U and V are directed from U to V and are given cost 0 and
capacity 1. For each v ∈ V , v is connected to cost centers c1, . . . , cdeg(v) with
edges of capacity 1 and costs 1, 2, . . . , deg(v) respectively. Edges with cost 0 and
infinite capacity connect each of the cost centers to the sink, t.

3 Properties of Optimal Semi-Matchings

This section presents various important properties of optimal semi-matchings.
Section 3.1 characterizes when a semi-matching is optimal. Section 3.2 states

that an optimal semi-matching always contains a maximum matching and dis-
cusses various consequences. Section 3.3 states that an optimal semi-matching
is also optimal with respect to any Lp-norm and the L∞-norm.

3.1 Characterization of Optimal Semi-Matchings

An important theorem from network flow theory is that a maximum flow has
minimum cost if and only if no negative-cost cycle exists [2, Theorem 3.8]. We
now prove an analogous result for semi-matchings. In Section 5 we describe the
Algorithm ASM2 which is based on this property.

Theorem 1. A semi-matching M is optimal if and only if no cost-reducing path
relative to M exists.

Proof. Let G be an instance of a semi-matching problem, and let M be a semi-
matching in G. Clearly, if M is optimal then no cost-reducing path can exist.
We show that a cost-reducing path must exist if M is not optimal.

Let O be an optimal semi-matching in G, chosen such that the symmetric
difference O ⊕M = (O \M) ∪ (M \ O) is minimized. Assume that M is not
optimal, implying that M has greater total cost than O: i.e., T (O) < T (M).
Recall that degO(v) and degM (v) denote the number of U -vertices matched with
v by O and M respectively. Let Gd be the subgraph of G induced by the edges
of O⊕M . Color with green the edges of O \M and with red the edges ofM \O.
Direct the green edges from U to V and the red edges from V to U . We will use
the following property of Gd (proof omitted).

Claim 1 The graph Gd is acyclic, and for every directed path P in Gd from
v1 ∈ V to v2 ∈ V , we have degO(v2) ≤ degO(v1).

Both O andM are semi-matchings, implying that
∑

v degO(v) =
∑

v degM (v) =
|U |. Since T (O) < T (M), there must exist v1 ∈ V such that degM (v1) >
degO(v1). Starting from v1, we build an alternating red-green path, P ′, as fol-
lows. (1) From an arbitrary vertex v ∈ V , if degM\O(v) ≥ 1 and degM (v) ≥
degM (v1)− 1, we build P ′ by following an arbitrary red edge directed out from
v. (2) From an arbitrary vertex u ∈ U , we build P ′ by following the single green
edge directed out from u. (3) Otherwise, we stop.

By Claim 1, Gd is acyclic and therefore P ′ is well-defined and finite. Let
v2 ∈ V be the final vertex on the path. There are two cases.

(1) degM (v2) < degM (v1)− 1: Thus P ′ is a cost-reducing path relative to M .

(2) degM\O(v2) = 0. In this case, we know that degM (v2) < degO(v2) since P ′

arrived at v2 via a green edge. By Claim 1, we must also have that degO(v2) ≤
degO(v1). Finally, recall that v1 was chosen such that degO(v1) < degM (v1).
Combining these three inequities yields: degM (v2) < degO(v2) ≤ degO(v1) <
degM (v1). This implies that degM (v2) < degM (v1) − 1, and so P ′ is a cost-
reducing path relative to M .

Since P ′ is a cost-reducing path relative to M in both cases, the proof is
complete.

3.2 Optimal Semi-Matchings Contain Maximum Matchings

In this section, we state, omitting the proof, that every optimal semi-matching
must contain a maximum bipartite matching; furthermore, it is a simple process
to find these maximum matchings. Thus, the problem of finding optimal semi-
matchings indeed generalizes the problem of finding maximum matchings.

Theorem 2. Let M be an optimal semi-matching in G. Then there exists S ⊆
M such that S is a maximum matching in G.

We note that the converse of this theorem is not true: Not every maximum
matching can be extended to an optimal semi-matching.

Corollary 1. Let M be an optimal semi-matching in G. Define f(M) to be the
number of right-hand vertices in G that are incident with at least one edge in
M . Then the size of a maximum matching in G is f(M).

In particular, if G has a perfect matching andM is an optimal semi-matching
in G then M is a perfect matching. Corollary 1 yields a simple algorithm for
computing a maximum matching from an optimal semi-matching, M : For each
v ∈ V , if degM (v) > 1, select one arbitrary edge from M that is incident with v.

3.3 Optimality with Respect to Lp- and L∞- norm

Let xi = degM (vi) denote the load on machine i (i.e., the number of tasks as-
signed to machine i). The Lp-norm of the vector X = (x1, . . . , x|V |) is ||X ||p =
(
∑

i x
p
i)

1/p. The following theorem states that an optimal semi-matching is op-
timal with respect to the Lp-norm of the vector X for any finite p; in other
words, optimal semi-matchings minimize ||X ||p. (Note that ||X ||1 = |U | for all
semi-matchings, so all semi-matchings are optimal with respect to the L1-norm).

Theorem 3. Let 2 ≤ p < ∞. A semi-matching has optimal total cost if and
only if it is optimal with respect to the Lp-norm of its load vector.

Another important optimization objective in practice is minimizing the maxi-
mal load on any machine; this is achieved by minimizing the L∞-norm of the ma-
chines’ load vectorX . The following theorem states that optimal semi-matchings
do minimize the L∞-norm of X , and thus are an “ultimate” solution that simul-
taneously minimizes both the variance of the machines’ load (from the L2-norm)
and the maximal machine load (given by the L∞-norm).

Theorem 4. An optimal semi-matching is also optimal with respect to L∞.

The converse of Theorem 4 is not valid; that is, minimizing the L∞-norm
does not imply minimization of other Lp-norms.

4 ASM1: An O(|U ||E|) Algorithm for Optimal
Semi-Matchings

In this section we present our first algorithm,ASM1, for finding an optimal semi-
matching. The time complexity of ASM1 is O(|U ||E|), which is identical to that
of the Hungarian algorithm [14] [15, Section 5.5] for finding maximum bipar-
tite matchings. Indeed, ASM1 is merely a simple modification of the Hungarian
algorithm, as we explain below.

The Hungarian algorithm for finding maximum bipartite matchings considers
each left-hand vertex u in turn and builds an alternating search tree, rooted at
u, in order to find an unmatched right-hand vertex (i.e., a vertex v ∈ V with
degM (v) = 0). If such a vertex v is found, the matching and non-matching edges
along the u-v path are switched so that u and v are no longer unmatched.

Similarly, ASM1 maintains a partial semi-matching M , starting with the
empty set. In each iteration, it considers a left-hand vertex u and builds an
alternating search tree rooted at u, looking for a right-hand vertex v such that
degM (v) is as small as possible. To build the tree rooted at u we perform a
directed breadth-first search in G starting from u, where edges inM are directed
from V to U and edges not in M are directed from U to V . We select in this
tree a path P from u to a least loaded V -vertex reachable from u. We increase
the size of M by forming P ⊕M ; that is, we add to the matching the first edge
in this path, and switch matching and non-matching edges along the remainder
of the path. As a result, u is no longer unmatched and degM (v) increases by 1.

We repeat this procedure of building a tree and extending the matching
accordingly for all of the vertices in U . Since each iteration matches a vertex in
U with a single vertex in V and does not change degM (u) for any other u ∈ U ,
the resulting selection of edges is indeed a semi-matching.

Theorem 5. Algorithm ASM1 produces an optimal semi-matching.

Proof. We show that no cost-reducing path is created during the execution of the
algorithm. In particular, no cost reducing path exists at the end of the execution;
thus, by Theorem 1, the resulting matching is optimal.

Assume the opposite and let P ∗ = (v1, u1, . . . , vk−1, uk−1, vk), be the first
cost-reducing path created by ASM1. Let M be the partial semi-matching after
the iteration in which P ∗ is created. Thus, degM (v1) > degM (vk) + 1. Without
loss of generality (by taking a sub-path of P ∗), we can assume that there exists
some x such that degM (v1) ≥ x + 1, degM (vi) = x ∀i ∈ {2, . . . , k − 1}, and
degM (vk) ≤ x − 1. Let u′ be the U -vertex added to the assignment during the
previous iteration in which the load on v1 increased. The algorithm gives that
v1 is a least-loaded V -vertex reachable from u′; thus, the search tree built for u′
includes only V -vertices with load at least x; thus vk is not reachable from u′.

Given that the path P ∗ exists, at some iteration occurring after the one in
which u′ is added, all the edges (ui, vi) of P ∗ are in the matching. Let u∗ be
the U -vertex, added after u′, whose addition to the assignment creates P ∗. The
following claims yield a contradiction in the way u∗ is assigned.

Claim 2 When adding u∗, the load on vk is at most x− 1 and vk is in the tree
rooted at u∗.

Claim 3 When adding u∗, the load on some vertex with load at least x increases.

Claims 2 and 3 contradict the execution of ASM1, and therefore P ∗ cannot exist.

To bound the runtime of ASM1, observe that there are exactly |U | iterations.
Each iteration requires at most O(|E|) time to build the alternating search tree
and at most O(min{|U |, |V |}) time to switch edges along the alternating path.
Thus the total time required is at most O(|U ||E|).

5 ASM2: An Efficient, Practical Algorithm

We present ASM2, our second algorithm for finding optimal semi-matchings.
Our analysis of its runtime gives an upper bound of O(min{|U |3/2, |U ||V |} · |E|),
which is worse than the bound of O(|U ||E|) for algorithm ASM1. However, our
analysis for ASM2 is loose; in practice, ASM2 performs much better than ASM1,
as our experiments in Section 6 show.

Theorem 1 proves that a semi-matching is optimal if and only if the graph
does not contain a cost-reducing path. ASM2 uses that result to find an optimal
semi-matching as follows:

Overview of ASM2

1 Find an initial semi-matching, M.
2 While there exists a cost-reducing path, P
3 Use P to reduce the cost of M.

Since the cost can only be reduced a finite number of times, this algorithm
must terminate. Moreover, if the initial assignment is nearly optimal, the algo-
rithm terminates after few iterations.

Finding an Initial Semi-Matching: The first step of algorithm ASM2 is to
determine an initial semi-matching, M . Our experiments have shown that the
following greedy algorithm works well in practice. First, the U -vertices are sorted
by increasing degree. Each U -vertex is then considered in turn, and assigned to a
V -neighbor with least load. In the case of a tie, a V -neighbor with least degree is
chosen. The purpose of considering vertices with lower degree earlier is to allow
more constrained vertices (i.e., ones with fewer neighbors) to “choose” their
matching vertices first. The same rule of choosing the least loaded V -vertex is
also commonly used in the online case [3]. However, in the online case it is not
possible to sort the U -vertices or to know the degree of the V -vertices in advance.

The total time required to find this initial matching is O(|E|), since every
edge is examined exactly once, and the sorting can be done using bucket sort.

Finding Cost-Reducing Paths: The key operation of the ASM2 algorithm
is the method for finding cost-reducing paths. As a simple approach, one may
determine if a particular vertex v ∈ V is the ending vertex of a cost-reducing path
simply by growing a tree of alternating paths rooted at v. As a better approach,
one may determine if any v ∈ V is the ending vertex of a cost-reducing path
in O(|E|) time. To do this, simply grow a depth-first search (DFS) forest of
alternating paths where each tree root is chosen to be an unused V -vertex with
lowest load. To find such a vertex, the V -vertices are maintained sorted by their
load in an array of |U |+ 1 buckets.

Analysis of ASM2: As argued earlier, the initial matching can be found in
O(|E|) time. Following this initial step, we iteratively find and remove cost-
reducing paths. Identifying a cost-reducing path or lack thereof requires O(|E|)
time since it performs a depth-first search over all of G. If a cost-reducing path
has been identified, then we switch matching and non-matching edges along that
path, requiring O(min{|U |, |V |}) = O(|E|) time. Thus, the runtime of ASM2 is
O(I · |E|), where I is the number of iterations needed to achieve optimality.

It remains to determine how many iterations are required. A simple bound
of I = O(|U |2) may be obtained by observing that the worst possible initial
matching has cost at most O(|U |2) and that each iteration reduces the cost by
at least 1. The following theorem gives an improved bound.

Theorem 6. ASM2 requires at most O(min{|U |3/2, |U ||V |}) iterations.

Remark 1. For graphs in which the optimal semi-matching cost is O(|U |), the
running time of ASM2 is O(|U ||E|). This bound holds since Awerbuch et al. [3]
show that the cost of the greedy initial assignment is at most 4 ·T (MOPT); thus
ASM2 needs at most O(|U |) iterations to achieve optimality.

Practical Considerations: The description ofASM2 given above suggests that
each iteration builds a depth-first search forest and finds a single cost-reducing
path. In practice, a single DFS forest often contains numerous vertex-disjoint
cost-reducing paths. Thus, our implementation repeatedly performs linear-time
scans of the graph, growing the forest and removing cost-reducing paths. We
repeatedly scan the graph until a scan finds no cost-reducing path, indicating
that optimality has been achieved.

Our bound of O(min{|U |3/2, |U ||V |}) iterations is loose: experiments show
that much fewer iterations are required in practice. We were able to create “bad”
graphs, in which the number of iterations needed is Ω(|U |3/2); however, most of
the cost-reducing paths in these graphs are very short, thus each iteration takes
roughly constant time. While our bound for ASM2 is worse than our bound for
ASM1, we believe that the choice of ASM2 as the best algorithm is justified
already by its actual performance, as described in the next section.

Variants of ASM2, in which each iteration seeks a cost-reducing path with
some property (such as “maximal difference in load between first and last ver-
tex”), will also result in an optimal semi-matching. It is unknown whether such
algorithms yield a better analysis than ASM2, or whether each iteration of such
algorithms can be performed quickly in practice.

6 Experimental Evaluation

We implemented a program to execute ASM1, ASM2 and various known algo-
rithms on a variety of “benchmark” input graphs. All input graphs were created
by the bipartite graph generators used in [8]. Our simulation program was imple-
mented in C and run on a Compaq Evo D500 machine with a 2.2GHz Pentium
4 CPU and 512MB of RAM.

First, we compared ASM1 and ASM2 with known techniques for computing
optimal semi-matchings based on the transformation to the assignment problem.
To solve the assignment problem, we used two available algorithms: CSA [10],
and LEDA [16]. For the CSA algorithm, the transformed graph was augmented
with additional vertices and edges to satisfy CSA’s requirement that a perfect
assignment exist1. Table 1(a) shows the results of these experiments on graphs
with 216 vertices. The Zipf graphs (after being transformed to the assignment
problem) exceeded the memory on our test machine, and no reasonable results
could be recorded. Table 1(a) reports the elapsed execution time of these al-
gorithms, excluding the time to load the input data. The reported value is the
mean over five execution runs, each using a different seed to generate the input
graph. These results show that ASM2 is much more efficient than assignment
algorithms for the optimal semi-matching problem on a variety of input graphs.

Next, we compared ASM2 with two algorithms for computing maximum bi-
partite matchings from [8]: BFS, their fastest implementation based on aug-
menting paths, and LO, their fastest implementation based on the push-relabel
method. For this series of experiments, we consider only graphs with 219 vertices.
As before, the reported value is the mean of the execution time over five runs;
these results are shown in Table 1(b). These results show that ASM2 is roughly
as efficient as the best known algorithm for the maximum bipartite matching
problem on a variety of input graphs.

References

1. Active Directory. http://www.microsoft.com/windowsserver2003/technologies.
2. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall, 1993.
3. B. Awerbuch, Y. Azar, E. Grove, M. Y. Kao, P. Krishnan, and J. S. Vitter. Load

Balancing in the Lp Norm. In Proceedings of FOCS, 1995.
4. Y. Azar. On-line Load Balancing. In A. Fiat and G. Woeginger, editors, Online

Algorithms: The State of the Art (LNCS 1442), chapter 8. Springer-Verlag, 1998.
5. Y. Azar, A. Z. Broder, and A. R. Karlin. On-line load balancing. Theoretical

Computer Science, 130(1):73–84, 1994.
6. Y. Azar, J. Naor, and R. Rom. The Competitiveness of On-line Assignments. In

Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 1992.
7. J. L. Bruno, E. G. Coffman, and R. Sethi. Scheduling independent tasks to reduce

mean finishing time. Communications of the ACM, 17:382–387, 1974.

1 We acknowledge Andrew Goldberg’s assistance in finding such a transformation with
a linear number of additional vertices and edges.

Graph ASM1 ASM2 LEDA CSA

FewG 1.834 0.337 30.625 1.274
Grid 0.672 0.131 6.850 1.310
Hexa 1.521 0.319 28.349 2.131
Hilo 0.650 0.299 11.141 2.968
ManyG 1.669 0.200 18.388 1.238
Rope 0.269 0.188 7.588 1.330
Zipf 6.134 0.156 — —

Total 12.749 1.630 >102.941 > 10.251

(a)

Graph ASM2 BFS LO

FewG 3.563 15.018 2.085
Grid 0.545 4.182 1.140
Hexa 3.569 13.990 1.755
Hilo 2.942 3.047 6.559
ManyG 3.607 13.640 2.199
Rope 1.308 2.459 1.400
Zipf 1.105 0.375 0.938

Total 16.639 52.711 16.076

(b)

Table 1. (a) gives the execution time in seconds of four algorithms for the optimal
semi-matching problem, on a variety of graphs with 65,536 vertices. “—” indicates that
no results could be recorded since the graph exceeded the memory of our test machine.
(b) gives the execution time in seconds of three algorithms for the maximum bipartite
matching problem, on a variety of graphs with 524,288 vertices.

8. B. V. Cherkassky, A. V. Goldberg, P. Martin, J. C. Setubal, and J. Stolfi. Aug-
ment or push: a computational study of bipartite matching and unit-capacity flow
algorithms. ACM J. Exp. Algorithmics, 3(8), 1998.
Source code available at http://www.avglab.com/andrew/soft.html.

9. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, second edition, 2001.

10. A. Goldberg and R. Kennedy. An efficient cost scaling algorithm for the assignment
problem. Math. Prog., 71:153–178, 1995.
Source code available at http://www.avglab.com/andrew/soft.html.

11. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Opti-
mization and approximation in deterministic sequencing and scheduling: A survey.
Ann. Discrete Math, 5:287–326, 1979.

12. J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Computing, 2:225–231, 1973.

13. W. A. Horn. Minimizing average flow time with parallel machines. Operations
Research, 21:846–847, 1973.

14. H. W. Kuhn. The Hungarian method for the assignment problem. Naval Res.
Logist. Quart., 2:83–97, 1955.

15. E. Lawler. Combinatorial Optimization: Networks and Matroids. Dover, 2001.
16. LEDA. http://www.algorithmic-solutions.com/.

