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Abstract

In online convex optimization (OCO), Lipschitz continuity of the functions is com-
monly assumed in order to obtain sublinear regret. Moreover, many algorithms
have only logarithmic regret when these functions are also strongly convex. Re-
cently, researchers from convex optimization proposed the notions of “relative
Lipschitz continuity” and “relative strong convexity”. Both of the notions are gen-
eralizations of their classical counterparts. It has been shown that subgradient
methods in the relative setting have performance analogous to their performance
in the classical setting.

In this work, we consider OCO for relative Lipschitz and relative strongly convex
functions. We extend the known regret bounds for classical OCO algorithms to the
relative setting. Specifically, we show regret bounds for the follow the regularized
leader algorithms and a variant of online mirror descent. Due to the generality
of these methods, these results yield regret bounds for a wide variety of OCO
algorithms. Furthermore, we further extend the results to algorithms with extra
regularization such as regularized dual averaging.

1 Introduction

In online convex optimization (OCO), at each of many rounds a player has to pick a point from a
convex set while an adversary chooses a convex function that penalizes the player’s choice. More
precisely, in each round t ∈ N, the player picks a point xt from a fixed convex set X ⊆ R

n and
an adversary picks a convex function ft depending on xt. At the end of the round, the player suf-
fers a loss of ft(xt). Besides modeling a wide range of online learning problems [Shalev-Shwartz,
2011], algorithms for OCO are often used in batch optimization problems due to their low computa-
tional cost per iteration. For example, the widely used stochastic gradient descent (SGD) algorithm
can be viewed as a special case of online gradient descent [Hazan, 2016, Chapter 3] and AdaGrad
[Duchi et al., 2011] is a foundational adaptive gradient descent method originally proposed in the
OCO setting. The performance measure usually used for OCO algorithms is the regret. It is the
difference between the cost incurred to the player and a comparison point z ∈ X ⊆ R

n (usually
with minimum cumulative loss), that is to say,

RegretT (z) :=

T
∑

t=1

ft(xt)−
T
∑

t=1

ft(z).

*Equal contributions.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

http://arxiv.org/abs/2010.12033v2


Classical results show that if the cost functions are Lipschitz continuous, then there are algorithms

which suffer at most O(
√
T ) regret in T rounds [Zinkevich, 2003]. Additionally, if the cost func-

tions are strongly convex, there are algorithms that suffer at most O(log T ) regret in T rounds
[Hazan et al., 2007b]). However, not all loss functions that appear in applications, such as in inverse
Poisson problems [Antonakopoulos et al., 2020] and support vector machines training [Lu, 2019],
satisfy these conditions on the entire feasible set.

Recently, there has been a line of work investigating the performance of optimization methods
beyond conventional assumptions [Bauschke et al., 2017, Lu et al., 2018, Lu, 2019]. Intriguingly,
much of this line of work proposes relaxed assumptions under which classical algorithms enjoy
convergence rates similar to the ones from the classical setting.

In particular, Lu [2019] proposed the notion of relative Lipschitz-continuity and showed how mirror

descent (with properly chosen regularizer/mirror map) converges at a rate of O(1/
√
T ) in T iter-

ations for non-smooth relative Lipschitz-continuous functions. Furthermore, they show a O(1/T )
convergence rate when the function is also relatively strongly-convex (a notion proposed by Lu et al.

[2018]). Although the former result can be translated to a O(
√
T ) regret bound for online mirror

descent (OMD), the latter does not directly yield regret bounds in the online setting. Moreover,
Orabona and Pál [2018] showed that OMD is not suitable when we do not know a priori the number
of iterations since it may suffer linear regret in this case. Finally, at present it is not known how
foundational OCO algorithms such as follow the regularized leader (FTRL) [Shalev-Shwartz, 2011,
Hazan, 2016] and regularized dual averaging [Xiao, 2010] (RDA) perform in the relative setting.

Our results. We analyze the performance of two general OCO algorithms: FTRL and dual-

stabilized OMD (DS-OMD, see [Fang et al., 2020]). We give O(
√
T ) regret bounds in T rounds for

relative Lipschitz loss functions. Moreover, this is the first paper to show O(log T ) regret if the loss
functions are also relative strongly-convex.1 In addition, we are able to extend these bounds for prob-
lems with composite loss functions, such as adding the ℓ1-norm to induce sparsity. The generality
of these algorithms lead to regret bounds for a wide variety of OCO algorithms (see Shalev-Shwartz
[2011], Hazan [2016] for some reductions). We demonstrate this flexibility by deriving convergence
rates for dual averaging Nesterov [2009] and regularized dual averaging [Xiao, 2010].

1.1 Related Work

Analyses of gradient descent methods in the differentiable convex setting usually require the ob-
jective function f to be Lipschitz smooth, that is, the gradient of the objective function f is Lip-
schitz continuous. Bauschke et al. [2017] proposed a generalized Lipschitz smoothness condition,
called relative Lipschitz smoothness, using Bregman divergences of a fixed reference function. They
proposed a proximal mirror descent method2 called NoLips with a O(1/T ) convergence rate for
such functions. Van Nguyen [2017] independently developed similar ideas for analyzing the con-
vergence of a Bregman proximal gradient method applied to convex composite functions in Banach
spaces. Bolte et al. [2018] extended the framework of Bauschke et al. [2017] to the non-convex set-
ting. Building upon this work, Lu et al. [2018] slightly relaxed the definition of relative smoothness
and gave simpler analyses for mirror descent and dual averaging. Hanzely and Richtárik [2018]
propose and analyse coordinate and stochastic gradient descent methods for relatively smooth func-
tions. These ideas were later applied to non-convex problems by Mukkamala and Ochs [2019].
More recently, Gao et al. [2020] analysed the coordinate descent method with composite Lipschitz
smooth objectives. Unlike those prior works, in this paper we focus on the online case with non-
differentiable loss functions.

For non-differentiable convex optimization, Lipschitz continuity of the objective function is usu-

ally needed to obtain a O(1/
√
T ) convergence guarantee for classical methods. Lu [2019] showed

that this condition can be relaxed to what they called relative Lipschitz continuity of the objective

function. Under this latter assumption, they gave O(1/
√
T ) convergence rates for deterministic and

1This can be seen as analogous to the known logarithmic regret bounds when the loss functions are strongly
convex [Hazan et al., 2007b].

2They propose an algorithm in the general case with composite functions, but when we set f := 0 in their
algorithm it boils down to classical mirror descent. In this case the novelty comes from the convergence analysis
at a O(1/T ) rate without the use of classical Lipschitz smoothness.
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stochastic mirror descent. In a similar vein, Grimmer [2019] showed how projected subgradient

descent enjoys a O(1/
√
T ) convergence rate without Lipschitz continuity given that one has some

control on the norm of the subgradients. None of these works considered online algorithms. Al-
though the results from Lu [2019] for mirror descent can be adapted to the online setting, it is not
clear how other foundational OCO algorithms such as FTRL or RDA perform in this setting.

Antonakopoulos et al. [2020] generalized the Lipschitz continuity condition from the perspective of
Riemannian geometry. They proposed the notion of Riemann-Lipschitz continuity (RLC) and an-

alyzed how OCO algorithms perform in this setting. They showed O(
√
T ) regret bounds for both

FTRL and OMD with RLC cost functions in both the online and stochastic settings. In Appendix A
we discuss in detail the relationship between RLC and relative Lipschitzness and how some of our re-
gret bounds compare to those due to Antonakopoulos et al. [2020]. In related work, Maddison et al.
[2018] relaxed the Lipschitz smoothness condition by proposing a new family of optimization meth-
ods motivated from physics, to be more specific, the conformal Hamiltonian dynamics.

Moreover, in the presence of both Lipschitz continuity and strong convexity we can obtain O(1/T )
convergence rates in classical convex optimization [Bubeck, 2015, Section 3.4.1] and O(log T ) re-
gret in the online case [Hazan et al., 2007b]. By replacing the squared norm in the usual strong
convexity inequality by a Bregman divergence of a fixed reference function yields the notion of
relative strong convexity. This idea dates back to the work of Hazan et al. [2007a]. In recent work,
Lu et al. [2018] showed algorithms with O(1/T ) convergence rates in the offline setting when the
objective function is both relative Lipschitz continuous and relative strongly convex. Still, this latter
work does not obtain regret bounds for the online case. Hazan et al. [2007a] analyze the online case
and show logarithmic regret bounds for online mirror descent when the cost functions are strongly
convex relative to the mirror map. However, they assume (classical) strong convexity of the mirror
map, which ultimately implies that the cost function need also be strongly convex.3 To the best of
our knowledge, this is the first work studying conditions beyond strong convexity (and exp-concavity
[Hazan et al., 2007b]) to obtain logarithmic regret bounds.

2 Formal Definitions

Throughout this paper, Rn denotes a n-dimensional real vector space endowed with an inner-product
〈·, ·〉 and norm ‖·‖. We take X ⊆ R

n to be a fixed convex set. The dual norm of ‖·‖ is defined by
‖x‖∗ := supy∈Rn : ‖y‖≤1〈x, y〉 for each x ∈ R

n. Moreover, for any convex function f : X → R and

any x ∈ R
n, a vector g ∈ R

n is a subgradient of f at x if G satisfies the subgradient inequality

f(z) ≥ f(x) + 〈g, x− z〉, ∀z ∈ R
n. (2.1)

We denote by ∂f(x) the set of all subgradients of f at x, called the subdifferential of f at x. The
normal cone of X at a point x ∈ X is the set NX (x) := { a ∈ R

n : 〈a, z − x〉 ≤ 0 for all z ∈ X}.

Let R : D → R be a convex function such that it is differentiable in Do := intD and such that we
have X ⊆ Do. The Bregman divergence (with respect to R) is given by

DR(x, y) := R(x)−R(y)− 〈∇R(y), x− y〉, ∀x ∈ D, y ∈ Do.

An interesting and useful identity regarding Bregman divergences, sometimes called three-point
identity [Bubeck, 2015], is

DR(x, y) +DR(z, x)−DR(z, y) = 〈∇R(x) −∇R(y), x− z〉, ∀z ∈ D, ∀x, y ∈ Do. (2.2)

Although the Bregman divergence with respect to R is not a metric, we can still interpret DR as a
way of measuring distances through the lens ofR. An instructive example is the Bregman divergence
associated with the squared ℓ2-norm R := 1

2‖·‖22. In this case, we have DR(x, y) =
1
2‖x− y‖22 for

all x, y ∈ R
n, that is, the divergence boils down to the squared ℓ2-distance. In light of this, a possible

way to generalize Lipschitz continuity and strong convexity is to replace the norm in the classical
definitions by the square root of the Bregman divergence [Lu et al., 2018].

3More precisely, the regret bound in [Hazan et al., 2007a, Theorem 1] requires the cost functions (gt)t∈N

to be strongly convex relative to the mirror map f . In turn, the result also requires f to be strongly convex (in
the classical sense) with respect to a fixed norm ‖·‖. This implies that the cost functions (gt)t∈N are strongly
convex w.r.t. ‖·‖ as well.
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First, recall that a function f : X → R is L-Lipschitz continuous with respect to ‖·‖ on X ′ ⊆ X if

|f(x)− f(y)| ≤ L‖x− y‖, ∀x, y ∈ X ′.

Additionally, if f is convex, then the above definition implies4 that ‖g‖∗ ≤ L for all x ∈ X and all
g ∈ ∂f(x). Recall as well that a convex function f : X → R is M -strongly convex with respect to
‖·‖ on X ′ ⊆ X for some M > 0 if

f(y) ≥ f(x) + 〈g, y − x〉+ M

2
‖y − x‖2, ∀x, y ∈ X ′, ∀g ∈ ∂f(x).

Let us now state generalizations of the above definitions due to Lu et al. [2018] and Lu [2019].

Definition 2.1 (Relative Lipschitz continuity). A convex function f : X → R is L-Lipschitz con-
tinuous relative to R if

〈g, x− y〉 ≤ L
√

2DR(y, x), ∀x, y ∈ X , ∀g ∈ ∂f(x).

In particular, if f : X → R is L-Lipschitz continuous relative to R, then

f(x)− f(y)
(2.1)

≤ 〈g, x− y〉 ≤ L
√

2DR(y, x), ∀x, y ∈ X , ∀g ∈ ∂f(x). (2.3)

The original definition of Lu [2019] requires ‖g‖∗‖x − y‖ ≤ L
√

2DR(x, y) for all x, y ∈ X and
g ∈ ∂f(x). Since 〈a, b〉 ≤ ‖a‖∗‖b‖ for any a, b ∈ R

n, the above definition is slightly more general
and does not depend on the choice of a norm.

Definition 2.2 (Relative strong convexity [Lu et al., 2018]). A convex function f : X → R is M -
strongly convex relative to R if

f(y) ≥ f(x) + 〈g, y − x〉+MDR(y, x), ∀y, x ∈ X , ∀g ∈ ∂f(x). (2.4)

A notable special case of relative Lipschitz-continuity or relative strong convexity is when we pick
R := 1

2‖·‖22 and the classical definitions with respect to the ℓ2-norm are recovered.

Example (A function that is relative Lipschitz but not Lipschitz). Consider the function f given
by f(x) := x2 for each x ∈ R. Since the derivative of f is unbounded on R, it is not Lipschitz
continuous on the entire line. Define the function R by R(x) := 2x4 for all x ∈ R. Then,

DR(y, x) = 2y4 − 2x4 − 8x3(y− x) =
1

2
(x2 − y2)2 + x2(x− y)2 ≥ x2(x− y)2, ∀x, y ∈ R.

Thus, (f ′(x)(x−y))2 = 4x2(x−y)2 ≤ 2 ·2DR(y, x) for any x, y ∈ R
n. That is, f is

√
2-Lipschitz

continuous relative to R.

Lu [2019] discusses more substantial examples in detail, such as training of support vector ma-
chines, and finding a point in the intersection of several ellipsoids. Furthermore, he also gives a
systematic way of picking a reference function for any objective functions whose subgradients at x
have ℓ2-norm bounded by a polynomial in ‖x‖2. This useful construction allows many optimization
problems to benefit from algorithms that are designed for the relative setting.

2.1 Conventions and Assumptions used Throughout the Paper

We collect here some additional notation and assumptions used throughout the paper.5 First, X ⊆
R

n denotes a closed convex set and {ft}t≥1 denotes a sequence of convex functions such that

ft : X → R is subdifferentiable6 on X for each t ≥ 1. We denote by {ηt}t≥0 a sequence of scalars
such that ηt ≥ ηt+1 > 0 for each t ≥ 0. Moreover, D ⊆ R

n denotes a convex set with non-empty
interior Do := int(D) such that X ⊆ Do. This latter set will be the domain of the regularizer
for FTRL and of the mirror map for OMD. Namely, in Section 3 we denote by R : D → R the
regularizer of FTRL, a convex function which is differentiable on Do. In Section 5 we denote
by Φ: D → R the mirror map of online mirror descent (whose precise definition we postpone to
Section 5).

4On the boundary of X this implication is not as strong: we can only guarantee the existence of one sub-
gradient with small norm. For our purposes this will not be of fundamental importance. For a more precise
statement see [Ben-Tal and Nemirovski, 2001, §5.3]

5The only exception is Lemma 3.1, which does not need convexity or differentiability of any of the functions.
6This is not too restrictive since convex functions are subdifferentiable on the relative interior of their do-

mains [Rockafellar, 1997, Theorem 23.4].
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3 Follow the Regularized Leader

The follow the regularized leader (FTRL) algorithm is a classical method for OCO. At each round,
FTRL picks a point that minimizes the cost incurred by the previously seen functions plus a regular-
izer convex function (an FTRL regularizer). Intuitively, the latter helps the choices of the algorithm
not to change too widely from one round to the next. In Algorithm 1 we formally outline the FTRL
algorithm. It is well known [Hazan, 2016] that, in a game with T rounds, FTRL with properly

tuned step sizes suffers at most O(
√
T ) regret against Lipschitz continuous functions.7 When the

loss functions are additionally strongly convex, FTRL suffers at most regret O(log T ). In this sec-
tion we describe one of our main results: the FTRL algorithm preserves these asymptotic regret
guarantees in the relative setting.

Algorithm 1 Follow the Regularized Leader (FTRL) Algorithm

Compute x1 ∈ argminx∈X R(x)
Set F0 := 0
for t = 1, 2, . . . do

Observe ft and suffer cost ft(xt)

Set Ft := Ft−1 + ft =
∑t

i=1 fi
Compute xt+1 ∈ argminx∈X

(

Ft(x) +
1
ηt
R(x)

)

The usual first step in the analyses of FTRL algorithms is to use basic properties of the iterates
(without relying on convexity) to bound the algorithm’s regret by easier-to-analyse terms. Such
bounds are usually the sum of two terms: the “diameter” of the feasible set through the lens of the
FTRL regularizer and a sum of the difference in “quality” between consecutive iterates. For a classic
example, see [Shalev-Shwartz, 2011, Lemma 2.3]. For our analysis we shall use a slightly tighter
bound given by the Strong FTRL Lemma due to McMahan [2017]. For the sake of completeness we
give a proof of this lemma (and discuss its applications in the composite setting) in Appendix C.1.

Lemma 3.1. (Strong FTRL Lemma [McMahan, 2017]) Let {ft}t≥1 be a sequence of functions such
that ft : X → R for each t ≥ 1. Let {ηt}t≥1 be a positive non-increasing sequence. Let R : X → R

be such that {xt}t≥1 given as in Algorithm 1 is properly defined. If Ft : X → R is defined as in
Algorithm 1 for each t ≥ 1, then,

RegretT (z) ≤
T
∑

t=0

(

1

ηt
− 1

ηt−1

)

(R(z)−R(xt)) +

T
∑

t=1

(

Ht(xt)−Ht(xt+1)
)

∀T > 0,

where η0 := 1, 1
η
−1

:= 0, x0 := x1, and Ht := Ft +
1
ηt
R for each t ≥ 1.

3.1 Sublinear Regret with Relative Lipschitz Functions

In the following theorem we formally state our sublinear O(
√
T ) regret bound of FTRL in T rounds

in the setting where the cost functions are Lipschitz continuous relative to the regularizer function
used in the FTRL method. The proof, which we defer to Appendix C.2, boils down to bounding
the terms Ht(xt) − H(xt+1) from the Strong FTRL Lemma by (roughly) L2ηt−1/2. We do so
by combining the optimality conditions from the definition of the iterates in Algorithm 1 with the
L-Lipschitz continuity relative to R of the loss functions.

Theorem 3.2. Let {xt}t≥1 be defined as in Algorithm 1 and suppose ft is L-Lipschitz continuous
relative to R for all t ≥ 1. Let z ∈ X and let K ∈ R be such that K ≥ R(z)−R(x1). Then,

RegretT (z) ≤
K

ηT
+

T
∑

t=1

L2ηt−1

2
, ∀T > 0.

In particular, if ηt :=
√
K/(L

√
t+ 1) for each t ≥ 0, then RegretT (z) ≤ 2L

√

K(T + 1).

7The big-O notation in this case hides constants that may depend on the dimension and other properties of
the problem at hand. The best dependence on the Lipschitz constant and “distance to the comparison point” is
usually achieved when the loss functions are Lipschitz continuous and the FTRL regularizer is strongly convex,
both with respect to the same norm.
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3.2 Logarithmic Regret with Relative Strongly Convex Functions

Hazan et al. [2007b] showed that if the cost functions are not only Lipschitz continuous but strongly
convex as well, then the follow the leader (FTL) method—FTRL without any regularizer—attains
logarithmic regret. Similarly, in this section we show that if the cost functions are relative Lipschitz
continuous and relative strongly convex, both relative to the same fixed function, then FTL suffers
regret at most logarithmic in the number of rounds. The proof of the next theorem is similar to the
proof of Theorem 3.2 and is deferred to Appendix C.3.

Theorem 3.3. Let {xt}t≥1 be defined as in Algorithm 1 with R := 0. Assume that ft is L-Lipschitz
continuous and M -strongly convex relative to a differentiable convex function h : D → R for each
t ≥ 1. Then, for all z ∈ X ,

RegretT (z) ≤
L2

2M
(log(T ) + 1), ∀T > 0.

One might wonder whether requiring both Lipschitz continuity and strong convexity relative to
the same function is too restritive. Indeed, let f be both L-Lipschitz continuous and M -strongly
convex relative to R. Moreover, assume f is differentiable for the sake of simplicity. If x∗ ∈ X
is a minimizer of f over X , then optimality conditions imply −∇f(x∗) ∈ NX (x∗). Thus, by the
definition of relative strong convexity,

f(y)− f(x∗) ≥ 〈∇f(x∗), y − x∗〉+MDR(y, x
∗) ≥ MDR(y, x

∗), ∀y ∈ X
At the same time, by relative Lipschitz continuity (see (2.3)) we have

f(y)− f(x∗) ≤ L
√

2DR(x∗, y), ∀y ∈ X .

This means that f has a Ω(DR(·, x∗)) lower-bound and a O(
√

DR(x∗, ·)) upper-bound. If the
Bregman divergence between y and x∗ were to go to infinity as y ranges over X , for example when
X = R

n and R is the squared ℓ2 norm, then the lower-bound would eventually exceed the upper-
bound on X . Therefore, relative Lipschitz continuity and relative strong convexity can only coexist
when X and the Bregman divergence with respect to R of a minimizer and any point in X are both
bounded. Although this is a somewhat restrictive condition, classical logarithmic regret results such
as the ones due to Hazan et al. [2007b] also only hold over bounded sets. Moreover, as the next
example shows, there are cases where logarithmic regret is attainable but do not fit into classical
logarithmic regret results.

Example (A class functions that are both relative Lipschitz continuous and relative strongly convex).
Define f := 1

p
‖·‖p2 for some p ≥ 2 and suppose X = [−α, α]n for some α > 0. First, note

that ∇f(x) = ‖x‖p−2
2 x and ∇2f(x) = ‖x‖p−2

2 I + (p − 2)‖x‖p−4
2 xxT for any x ∈ R

n. By

Proposition 5.1 in Lu [2019], f is 1-continuous relative to R := 1
2p‖·‖

2p
2 on R

n since ‖∇f(x)‖22 =

‖x‖2(p−2)
2 · ‖x‖22 = ‖x‖2p−2

2 . Moreover, to show that f is M -strongly convex relative to R, it
suffices to show that f −MR is convex (see Proposition 1.1 in Lu et al. [2018]). For any M > 0
and x ∈ R

n we have

∇2f(x)−M∇2R(x) = ‖x‖p−2
2 I + (p− 2)‖x‖p−4

2 xxT −M(‖x‖2p−2
2 I + (2p− 2)‖x‖2p−4

2 xxT ),

= ‖x‖p−2
2 (1−M‖x‖p2)I + ‖x‖p−4

2 (p− 2−M(2p− 2)‖x‖p2)xxT ,

� ‖x‖p−4
2 (1−M‖x‖p2 + p− 2−M(2p− 2)‖x‖p2)xxT ,

= ‖x‖p−4
2 (p− 1−M(2p− 1)‖x‖p2)xxT ,

where the only inequality follows since ‖x‖22I � xxT for any x ∈ R
n. By setting M :=

p−1
(2p−1)(

√
nα)p

we have

p− 1−M(2p− 1)‖x‖p2 ≥ p− 1−M(2p− 1)(
√
nα)p = 0, ∀x ∈ X = [−α, α]n.

Thus, we have ∇2f(x) −M∇2R(x) � 0. Therefore, f −MR is convex, which implies that f is
strongly convex relative to R on X . Note that f is not classically strongly convex (that is, strongly
convex with respect to the ℓ2 norm) for p ≥ 4. To see this, note that ∇2f(x) −MI is not positive
semidefinite around 0 for any M > 0, and thus f − M‖·‖22 is not convex around 0 no matter how
small we pick M > 0 to be.
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4 Dual Averaging and Composite Loss Functions

FTRL is a cornerstone algorithm in OCO, but sometimes it is not practical. Each iterate requires
exact minimization of the loss functions (plus the regularizer) which might not have always a closed
form solution. A notable special case of FTRL that mitigates this problem is the (online) dual
averaging (DA) method whose offline version is due to Nesterov [2009]. In each iteration, DA picks
a point from X that minimizes the sum of past subgradients (scaled by the step size) plus a FTRL
regularizer R. Formally, for real convex functions {ft}t≥1 on X , the online DA method computes
iterates {xt}t≥1 such that

xt+1 ∈ argmin
x∈X

(

ηt

t
∑

i=1

〈gi, x〉+R(x)
)

∀t ≥ 0, (4.1)

where gt ∈ ∂ft(xt) for each t ≥ 1.

Intuition. It is well-known that the DA algorithm reduces to FTRL applied to the linearized func-

tions {f̃t}t≥1 given by f̃t := 〈gt, ·〉 for each t ∈ N (for details see Hazan [2016, Lemma 5.4]). This

reduction obviously preserves the property of being Lipschitz continuous since the gradient of f̃t is
gt everywhere. A natural idea would be to use this same reduction in the relative setting. Unfortu-
nately, this reduction does not preserve the property of being relative Lipschitz! Luckily, our proof
only requires a weaker condition: being “relative Lipschitz” at the particular point xt. Namely, the

relative L-Lipschitzness (see (2.3)) of ft implies 〈∇f̃t(xt), xt−y〉 = 〈gt, xt−y〉 ≤ L
√

2DR(y, xt)
for all y ∈ X . That is all we need for the proof of Theorem 3.2 to go through, although we did state
the theorem with this exact condition for the sake of simplicity. This discussion leads to the follow-
ing corollary of Theorem 3.2.

Corollary 4.1. Let {xt}t≥1 be defined as in (4.1) and suppose ft is L-Lipschitz continuous relative
to R for all t ≥ 1. Let z ∈ X and let K ∈ R be such that K ≥ R(z) − R(x1). If ηt :=√
2K/(L

√
t+ 1) for all t ≥ 1, then RegretT (z) ≤ 2L

√

K(T + 1).

Another important consideration for applications is a variant of OCO in which the loss functions are
composite [Duchi et al., 2010, Xiao, 2010]. More specifically, in this case we have a known “extra
regularizer” Ψ, a (not necessarily differentiable) convex function, and add it to the loss functions.
The goal is to induce some kind of structure in the iterates, such as adding ℓ1-regularization to
promote sparsity. Note that OCO algorithms would still apply in this setting by replacing the loss
functions ft with ft+Ψ at each round t. However, in this case we are not exploiting the fact that the
function Ψ is known. In the case of the relative setting, for example, it may be the case that the loss
functions ft are relative Lipschitz-continuous with respect to a certain function R, while Ψ is not. In
Appendix D we extend the sublinear (composite) regret bound of Theorem 3.2 and show how this
yields convergence bounds for regularized dual averaging [Xiao, 2010] in the relative setting.

5 Dual-Stabilized Online Mirror Descent

The mirror descent algorithm is a generalization of the classical gradient descent method that
was first proposed by Nemirovsky and Yudin [1983]. A modern treatment was first given
by Beck and Teboulle [2003]. The algorithm fits almost seamlessly into the OCO setting via a
variant known as online mirror descent (OMD) (see [Hazan, 2016]). Recently, Orabona and Pál
[2018] showed that OMD with a dynamic learning rate may suffer linear regret. (A dynamic learn-
ing rate is useful when we do not known the number of iterations ahead of time.) Moreover, this can
happen even in simple and well-studied scenarios such as in the problem of prediction with expert
advice, which corresponds to OMD equipped with negative entropy as a mirror map. In general, they
showed that this may happen in cases where the Bregman divergence (with respect to the mirror map
chosen) is not bounded over the entire feasible set. To resolve this issue, Fang et al. [2020] proposed
a modified version of OMD called dual-stabilized online mirror descent (DS-OMD). In contrast
to classical OMD, the regret bounds for the dual-stabilized version depend only on the Bregman
divergence between the feasible set and the initial iterate.

We formally describe the DS-OMD method in Algorithm 2. Compared to OMD, DS-OMD adds an
extra step in the dual space to mix the current dual iterate with the dual of the initial point. This step
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at iteration t is controlled by a stabilization parameter γt and it can be seen as a way to “stabilize” the
algorithm in the dual space. Throughout this section we closely follow the notation and assumptions
of Bubeck [2015, Chapter 4]. We assume that we have a mirror map for X , that is, a differentiable
strictly-convex function Φ: D → R for X such that the gradient of Φ diverges on the boundary
of D, that is, limx→∂D‖∇Φ(x)‖2 = ∞ where ∂D := D \ D◦. These conditions on the mirror
map guarantee that the algorithm is well-defined (for example, they guarantee the existence and
uniqueness of the last step of Algorithm 2).

Algorithm 2 Dual-Stabilized Online Mirror Descent

Input: Stabilization coefficient γt and an initial iterate x1 ∈ X .
for t = 1, 2, . . . do

Observe ft and suffer cost ft(xt)
Compute gt ∈ ∂ft(xt)
x̂t := ∇Φ(xt)
ŵt+1 := x̂t − ηtgt
ŷt+1 := γtŵt+1 + (1− γt)x̂1

yt+1 := ∇Φ∗(ŷt+1)
Compute xt+1 ∈ argminx∈X DΦ(x, yt+1) = Φ(x) − Φ(yt+1)− 〈∇Φ(yt+1), x− yt+1〉

5.1 Sublinear Regret with Relative Lipschitz Functions

In this section, we give a regret bound for DS-OMD when the cost functions are all Lipschitz con-
tinuous relative to the mirror map Φ. In this setting, if we set the stabilization coefficients to be

γt := ηt+1/ηt and step size O(1/
√
t), DS-OMD obtains sublinear regret. This is formally stated in

the following theorem.

Theorem 5.1. Let {xt}t≥1 be defined as in Algorithm 2 with γt := ηt+1/ηt for each t ≥ 1. Assume
that ft is L-Lipschitz continuous relative to Φ for all t ≥ 1. Let z ∈ X and K ∈ R be such that
K ≥ DΦ(z, x1). Then,

RegretT (z) ≤
K

ηT+1
+

T
∑

t=1

ηtL
2

2
, ∀T > 0.

In particular, if ηt :=
√
K/L

√
t for each t ≥ 1, then RegretT (z) ≤ 2L

√

K(T + 1).

The proof is based on Theorem E.3, which gives an abstract regret upper bound for DS-OMD. Next
we compute specific upper bounds of DΦ(xt, wt+1) for each t ≥ 1 by relative Lipschitz continu-
ity to make the abstract regret bound more specific. The whole proof of Theorem 5.1 is given in
Appendix E.1.

If we set each ft to be a fixed function f and take average of all iterates, then we get the following
convergence rate for classical convex optimization as a corollary.

Corollary 5.2. Let Φ be a mirror map for X and let f : X → R be a convex L-Lipschitz-continuous
function relative to Φ. Let {xt}t≥1 be given as in Algorithm 2 with loss functions ft := f , step sizes

ηt :=
√
K/L

√
t for some K ≥ supz∈X DΦ(z, x1), and stabilization parameter γt := ηt+1/ηt. If

x∗ ∈ X is a minimizer of f , then,

f

(

1

T

T
∑

t=1

xt

)

− f(x∗) ≤ 2L
√
2K√
T

.

This recovers the same bound up to constant 4
√
2/3 in Theorem 4.3 in Lu [2019], if we take k =

T − 1 and ti =
√
K√
TL

for i ≥ 0 therein.

5.2 Logarithmic Regret with Relative Strongly Convex Functions

In Section 3.2 we showed that FTRL suffers at most logarithmic regret when the loss functions
are Lipschitz continuous and strongly convex, both relative to the same fixed reference function.
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Similarly, we show that OMD suffers at most logarithmic regret if we have Lipschitz continuity and
strong convexity, both relative to the mirror map Φ. Interestingly, in this case the dual-stabilization
step can be skipped (that is, we can use γt := 1 for all t) and Algorithm 2 boils down to classic
OMD.

Theorem 5.3. Let {xt}t≥1 be given as in Algorithm 2 with γt := 1 for all t ≥ 1. Assume that ft is

L-Lipschitz continuous and M -strongly convex relative to Φ for all t ≥ 1. If z ∈ X and ηt =
1

tM
for each t ≥ 1, then,

RegretT (z) ≤
L2

2M
(logT + 1), ∀T > 0.

The proof involves modifications of Theorem 5.1 and is deferred to Appendix E.2.

5.3 Sublinear Regret with Composite Loss Functions

We can extend our regret bounds to the setting with composite cost functions with minor modifica-
tions to Algorithm 2. The classical version OMD adapted to this setting is due to Duchi et al. [2010]
and is known by composite objective mirror descent (COMID). They showed that COMID gener-
alizes much prior work like forward-backward splitting and derived new results on efficient matrix
optimization with Schatten p-norms based on this framework. Details of the modification needed on
Algorithm E.3 in this setting together with regret bounds can be found in Appendix E.3.

6 Conclusions and Discussion

In this paper we showed regret bounds for both FTRL and stabilized OMD in the relative setting
proposed by Lu [2019]. All the results hold in the anytime setting in which we do not know the
number of rounds/iterations beforehand. Additionally, we gave logarithmic regret bounds for both
algorithms when the functions are relatively strongly convex, analogous to the results known in the
classical setting. Finally, we extend our results to the setting of composite cost functions, which
is pervasive in practice. These results open up the possibility of a new range of applications for
OCO algorithms and may allow for new analysis for known problems with better dependence on the
instance’s parameters.

At the moment there are at least two interesting directions for future research. The first would be to
investigate the connections among the different notions of relative smoothness, Lipschitz continuity,
and strong convexity in the literature. Another is to investigate systematic ways of choosing a
regularizer/mirror map for any given optimization problem. The latter was already an interesting
questions before notions of relative Lipschitz continuity and strong convexity were proposed, but
these new ideas give more flexibility in the choice of a regularizer.

7 Statement of Broader Impact

In this paper we study the performance of online convex optimization algorithms when the functions
are not necessarily Lipschitz continuous, a requirement in classical regret bounds. This opens up
the range of applications for which we can use OCO with good guarantees and guides how such
parameters such as regularizers/mirror maps and step sizes should be chosen. It is our hope that
this aids practitioners to develop more efficient ways to optimize and train their current models.
Furthermore, we hope theoreticians to be inspired to delve deep into the setting of non-smooth
optimization beyond Lipschitz continuity. It not only opens up the range of applications, but sheds
light onto the fundamental conditions on the cost functions and regularizers/mirror maps needed for
OCO algorithms to have good guarantees. Due to the theoretical nature of this work, we do not see
potentially bad societal or ethical impacts.
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A Relationship with Riemann-Lipschitz Continuity

Antonakopoulos et al. [2020] introduced the idea of Riemann-Lipschitz continuity (RLC). They
show how FTRL and OMD can be used when the cost functions are all RLC in a way that guarantees

O(
√
T ) regret. In this section we shall discuss the relationship between these two generalizations of

Lipschitz continuity. Ultimately, we will see that our results are at least as general but that further
study into the relationship between these ideas is needed. We note that we will closely follow the
notation of Antonakopoulos et al. [2020] and shall not discuss Riemannian metrics in full generality.

Let G : Rn → R
n×n be such that G(x) is a symmetric positive definite matrix for all x ∈ X \ {0}

and G(0) is symmetric positive semidefinite. Then the Riemannian metric (induced by G) is the
collection of bilinear pairings { 〈·, ·〉x : x ∈ X} defined by

〈y, z〉x := yTG(x)z, ∀x, y, z ∈ X .

For conciseness, we shall denote the above metric induced by G simply as the metric G. Moreover,
the local norm induced by such the metric G on x ∈ X is naturally given by

‖z‖x :=
√

〈z,G(x)z〉, ∀z ∈ X .

Let us now give the definition of Riemann-Lispchitz continuity.

Definition A.1. Let L > 0. A function f : X → R is L-Riemann-Lipschitz continuous (RLC)
relative to a Riemannian metric G if

|f(y)− f(x)| ≤ L · distG(x, y) ∀x, y ∈ X ,

where distG(x, y) is the Riemannian distance†† between x and y induced by the Riemannian met-
ric G.

The above definition is notably hard to work with. In the case of differentiable functions, RLC boils
down to a much simpler and more intuitive condition.

Proposition A.2 ([Antonakopoulos et al., 2020, Proposition 1]). Suppose that f : X → R is differ-
entiable. Then f is L-RLC if and only if

‖gradf(x)‖x ≤ L for all x ∈ X , (A.1)

where‡‡ gradf(x) := G(x)−1∇f(x) is the Riemannian gradient of f at x with respect to the
metric G.

Finally, Antonakopoulos et al. [2020] use the notion of a strong convexity of a closed convex func-
tion R : X → R with respect to a metric G. For the sake of conciseness and simplicity, we shall
use the equivalent condition given by Antonakopoulos et al. [2020, Lemma 1] and assume that R
is differentiable, but the arguments of this section hold even if R is a closed convex function with
a continuous selection of subgradients. More specifically, a differentiable convex function R is
K-strongly convex with respect to the metric G for K > 0 if

K

2
‖x− y‖2x ≤ DR(y, x), ∀x, y ∈ X .

We are now in place to discuss the relationship between the notions of relative Lipchitz continuity
and RLC. First, one should note that Proposition A.2 requires differentiability to hold. Since the
regret bounds in Antonakopoulos et al. [2020] rely on (A.1), they also rely on the cost functions

being differentiable. Since most O(
√
T ) regret bounds in the online convex optimization literature

(as well as the regret bounds in this text) do not rely on differentiability of the cost functions, it would
be interesting to investigate if differentiability of the cost functions is in fact needed for the regret
bounds of Antonakopoulos et al. [2020] to hold. In particular, in a way similar to classic Lipschitz

*Equal contributions.
††We do not give here the full definition of a Riemannian metric as given by Antonakopoulos et al. [2020]

since it will not be used in any of our discussions.
‡‡Here we overlook the case when x = 0 (and, thus, when G(x) is not necessarily invertible), for the sake

of simplicity.
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continuity, it might be the case that (A.1) holds for at least one subgradient (after transformation by
the metric G) at each point x ∈ X in the non-differentiable case.

Assuming that the cost functions are indeed differentiable, we can show that relative Lipschitz conti-
nuity is at least as general as RLC. In the following proposition we show that if f is a RLC function
with respect to a metric G and if we have a differentiable convex function R which is strongly con-
vex w.r.t. G (which is used as a regularizer or a mirror map in FTRL and OMD), then f is Lipschitz
continuous relative to R.

Proposition A.3. Let f : X → R be a differentiable convex function and let R : X → R be a
differentiable convex function such that R is K-strongly convex with respect to the Riemannian
metric G. If f is L-RLC with respect to G, then f is L′-Lipschitz continuous relative to R where

we set L′ := L
√

K/2.

Proof. Let x ∈ X . First, note that

‖gradf(x)‖2x = grad f(x)TG(x) grad f(x) = ∇f(x)TG(x)−1G(x)G(x)−1∇f(x)

= ∇f(x)TG(x)−1∇f(x) = ‖∇f(x)‖2x,∗,
where ‖·‖x,∗ is the dual norm of ‖·‖x. Therefore, for any y ∈ X ,

∇f(x)T(x− y) ≤ ‖∇f(x)‖x,∗‖x− y‖x (by the definition of dual norm),

≤ L‖x− y‖x, (by RLC),

≤ L

√

K

2
DR(y, x), (by strong convexity of R w.r.t. G).

The above proposition shows that Riemann-Lipschitz continuity (together with a strongly convex
function with respect to the Riemannian metric) implies relative Lipschitz continuity. Thus, our re-
gret bounds can be seen as generalizations of the regret bounds due to Antonakopoulos et al. [2020].
Moreover, the modularity of our proofs makes it easier to extend the results to the different set-
tings (as demonstrated to the extension of some regret bounds to the composite setting as shown in
Section 4, for example ).

Regarding the implication in the other direction, that is, whether relative Lipschitz continuity implies
Riemannian Lipschitz continuity with respect to some metric G, it is not clear if it holds in general.
The problem is that we do not know a systematic way of obtaining a metric G given a function f
Lipschitz continuous relative to a function R such that f is RLC with respect to G and R is strongly
convex with respect to G. Still, in some examples such a metric G does seem to exist. It is not clear
at the moment if both concepts of Lipschitz continuity are equivalent or not.

B Arithmetic Inequalities

Lemma B.1. Let {at}t≥1 be a non-negative sequence with a1 > 0. Then,

T
∑

t=1

at
√

∑t
i=1 ai

≤ 2

√

√

√

√

T
∑

t=1

at, ∀T ∈ N.

Proof. The proof is by induction on T . The statement holds trivially for T = 1. Let T > 1 and

define s :=
∑T

t=1 at. By the induction hypothesis,

T
∑

t=1

at
√

∑t
i=1 ai

≤ 2

√

√

√

√

T−1
∑

t=1

at +
aT

√

∑T
i=1 ai

= 2
√
s− aT +

aT√
s
.

Finally, note that

2
√
s− aT +

aT√
s
≤ 2

√
s ⇐⇒ 2

√

s(s− aT ) ≤ 2s− aT ⇐⇒ 4s(s− aT ) ≤ (2s− aT )
2,

⇐⇒ 4s2 − 4saT ≤ 4s2 − 4saT + a2T ⇐⇒ 0 ≤ a2T .
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C Proofs for Section 3

C.1 Strong FTRL Lemma

In this section we give a proof of Lemma 3.1 for completeness. We also show how the lemma can be
used for the composite setting. For further discussions on the lemma and on FTRL, see the thorough
survey of McMahan [2017].

Proof of Lemma 3.1. Fix T > 0. Define rt := ( 1
ηt

− 1
ηt−1

)R for each t ≥ 0 (recall that η0 := 1 and

1/η−1 := 0), define ht := rt + ft for each t ≥ 1, and set h0 := r0. In this way, we have

t
∑

i=0

ht =

t
∑

i=1

ft +

t
∑

i=0

rt =

t
∑

i=1

ft +
1

ηt
R = Ht, ∀t ≥ 0.

In particular,

xt ∈ argmin
x∈X

Ht−1(x) = argmin
x∈X

t−1
∑

i=0

hi(x), ∀t ≥ 0. (C.1)

Let us now bound the regret of the points x1, . . . , xT with respect to the functions h1, . . . , hT and
to a comparison point z ∈ X (plus a −h0(z) term):

T
∑

t=1

(ht(xt)− ht(z))− h0(z) =

T
∑

t=1

ht(xt)−HT (z) =

T
∑

t=1

(Ht(xt)−Ht−1(xt))−HT (z),

(C.1)

≤
T
∑

t=1

(Ht(xt)−Ht−1(xt))−HT (xT+1),

=

T
∑

t=1

(Ht(xt)−Ht(xt+1))−H0(x1),

where in the last equation we just re-indexed the summation, placing HT+1(xT+1) inside the sum-
mation, and leaving H0(x1) out. Re-arranging the terms and using H0 = h0 = r0 and x0 = x1

yield

T
∑

t=1

(ft(xt) + rt(xt)− ft(z)− rt(z)) =

T
∑

t=1

(ht(xt)− ht(z)),

≤ r0(z)− r0(x0) +
T
∑

t=1

(Ht(xt)−Ht(xt+1)),

which implies

RegretT (z) =

T
∑

t=1

(ft(xt)− ft(z)) ≤
T
∑

t=0

(rt(z)− rt(xt)) +

T
∑

t=1

(Ht(xt)−Ht(xt+1)).

Since rt = ( 1
ηt

− 1
ηt−1

)R for all t ≥ 0, we have

T
∑

t=0

(rt(z)− rt(xt)) =

T
∑

t=0

( 1

ηt
− 1

ηt−1

)

(R(z)−R(xt)).

For the composite setting (see Section D), we modify the definition of rt for t ≥ 1 (maintaining the
definition of r0) in the above proof for

rt :=
( 1

ηt
− 1

ηt−1

)

R+Ψ, ∀t ≥ 1.

In this case, we have

Ht =

t
∑

i=1

ft +

t
∑

i=0

rt =

t
∑

i=1

ft +
1

ηt
R+ tΨ.
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Proceeding in the same way as in the proof of Lemma 3.1, we get

T
∑

t=1

(ft(xt)− f(z)) ≤
T
∑

t=0

( 1

ηt
− 1

ηt−1

)

(R(z)−R(xt)),

+

T
∑

t=1

(Ψ(z)−Ψ(xt)) +

T
∑

t=1

(Ht(xt)−Ht(xt+1)),

Re-arranging yields

RegretΨT (z) ≤
T
∑

t=0

( 1

ηt
− 1

ηt−1

)

(R(z)−R(xt)) +
T
∑

t=1

(Ht(xt)−Ht(xt+1)). (C.2)

C.2 Sublinear Regret with Relative Lipschitz Functions

With the Strong FTRL Lemma, to derive regret bounds we can focus on bounding the difference
in cost between consecutive iterates. In this section we will prove the sublinear regret bound for
FTRL from Theorem 3.2. In the next lemma we give a bound on these costs based on the Bregman
divergence of the FTRL regularizer, this time relying on convexity (but not on much more). Loosely
saying, the first claim of the next lemma follows from the optimality conditions of the iterates of
FTRL and the second follows from the subgradient inequality.

Lemma C.1. Let {xt}t≥1 and {Ft}t≥0 be defined as in Algorithm 1. Then, for each t ∈ N there

is pt ∈ NX (xt) such that −pt − 1
ηt−1

∇R(xt) ∈ ∂Ft−1(xt), where η0 ∈ R can be any positive

constant. Moreover, this implies

Ft−1(xt)− Ft−1(xt+1) ≤
1

ηt−1

(

R(xt+1)−R(xt)−DR(xt+1, xt)
)

.

Proof. Let t ≥ 1. By the definition of the FTRL algorithm, we have xt ∈ argminx∈X (Ft−1(x) +
1

ηt−1
R(x)). By the optimality conditions for convex programs, we have

∂
(

Ft−1 +
1

ηt−1
R
)

(xt) ∩ (−NX (xt)) 6= ∅.

Since ∂
(

Ft−1 +
1

ηt−1
R
)

(xt) = ∂Ft−1(xt) +
1

ηt−1
∇R(xt), the above shows there is pt ∈ NX (xt)

such that

−pt −
1

ηt−1
∇R(xt) ∈ ∂Ft−1(xt).

Using the subgradient inequality (2.1) with the above subgradient yields,

Ft−1(xt)− Ft−1(xt+1)

≤ −〈pt, xt − xt+1〉 − 1
ηt−1

〈∇R(xt), xt − xt+1〉,
≤ − 1

ηt−1
〈∇R(xt), xt − xt+1〉 (by the definition of normal cone),

= 1
ηt−1

(

R(xt+1)−R(xt)−DR(xt+1, xt)
)

,

where in the last equation we used that, by definition of the Bregman divergence, DR(xt+1, xt) =
R(xt+1)−R(xt)− 〈∇R(xt), xt+1 − xt〉 and, thus, −〈∇R(xt), xt − xt+1〉 = R(xt+1)−R(xt)−
DR(xt+1, xt).

Proof of Theorem 3.2. For each t ≥ 0 let Ht be defined as in the Strong FTRL Lemma and fix t ≥ 0.
We have

Ht(xt)−Ht(xt+1) = Ft(xt)− Ft(xt+1) +
1

ηt
(R(xt)−R(xt+1)). (C.3)

Using Ft = Ft−1 + ft together with Lemma C.1 we have

Ft(xt)− Ft(xt+1) = Ft−1(xt)− Ft−1(xt+1) + ft(xt)− ft(xt+1),

≤ 1

ηt−1

(

R(xt+1)−R(xt)−DR(xt+1, xt)
)

+ ft(xt)− ft(xt+1).
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Plugging the above inequality onto (C.3) yields

(C.3) ≤ ft(xt)− ft(xt+1)−
DR(xt+1, xt)

ηt−1
+
( 1

ηt
− 1

ηt−1

)

(R(xt)−R(xt+1)). (C.4)

Since ft is L-relative Lipschitz continuous with respect to R, we apply (2.3) followed by the
the arithmetic-geometric mean inequality

√
αβ ≤ (α + β)/2 with α := L2ηt−1 and β :=

2DR(xt+1, xt)/ηt−1 to get

ft(xt)− ft(xt+1)−
DR(xt+1, xt)

ηt−1

(2.3)

≤ L
√

2DR(xt+1, xt)−
DR(xt+1, xt)

ηt−1
≤ L2ηt−1

2
.

Applying the above on (C.4) yields

(C.4) ≤ L2ηt−1

2
+
( 1

ηt
− 1

ηt−1

)

(R(xt)−R(xt+1)).

Plugging the above inequality into the the Strong FTRL Lemma together with R(x1) ≤ R(xt) for
each t ≥ 1 (which follows by the definition of x1) yields

RegretT (z) ≤
T
∑

t=0

( 1

ηt
− 1

ηt−1

)

(R(z)− R(xt) +R(xt)−R(xt+1)) +

T
∑

t=1

L2ηt−1

2
,

=
T
∑

t=0

( 1

ηt
− 1

ηt−1

)

(R(z)− R(xt+1)) +
T
∑

t=1

L2ηt−1

2
,

≤ 1

ηT
(R(z)−R(x1)) +

T
∑

t=1

L2ηt−1

2
≤ K

ηT
+

T
∑

t=1

L2ηt−1

2
.

If we set ηt :=
√
2K/(L

√
t+ 1) and since

∑T
t=1

1√
t
≤ 2

√
T by Lemma B.1 in Appendix B, then

RegretT (z) ≤ L
√

K(T + 1)+
L
√
K

2

T
∑

t=1

1√
t
≤ L

√

K(T + 1)+L
√
KT ≤ 2L

√

K(T + 1).

C.3 Logarithmic Regret

The next lemma strengthens the bound from Lemma C.1 in the case where the loss functions are
relative strongly convex with respect to a fixed reference function. We further simplify matters by
taking R = 0, that is, regularization is not needed for FTRL in the relative strongly convex case.

Lemma C.2. Let {xt}t≥1 be defined as in Algorithm 1 with R := 0. Moreover, let h : D → R be a
differentiable convex function such that ft is M -strongly convex relative to h for each t ≥ 1. Then,
for all T ≥ 1,

Ft−1(xt)− Ft−1(xt+1) ≤ −(t− 1)MDh(xt+1, xt).

Proof. Let t ≥ 1. Note that Ft−1 is (t − 1)M -strongly convex relative to R since it is the sum of
t− 1 functions that are each M -strongly convex relative to R. Additionally, let pt ∈ NX (xt) be as
given by Lemma C.1. By this lemma we have −pt ∈ ∂Ft−1(xt). Thus, using inequality (2.4) from
the definition of relative strong convexity with this subgradient yields

Ft−1(xt)− Ft−1(xt+1) ≤ −〈pt, xt − xt+1〉 − (t− 1)MDh(xt+1, xt).

By the definition of normal cone we have −〈pt, xt − xt+1〉 = 〈pt, xt+1 −xt〉 ≤ 0, which yields the
desired inequality.

Proof of Theorem 3.3. For each t ≥ 0 let Ht : X → R be defined as in the Strong FTRL Lemma
and fix t ≥ 0. Since R = 0, we have Ht = Ft. This together with Lemma C.2 yields

Ht(xt)−Ht(xt+1) = Ft(xt)− Ft(xt+1) = Ft−1(xt)− Ft−1(xt+1) + ft(xt)− ft(xt+1),

≤ −(t− 1)MDh(xt+1, xt) + ft(xt)− ft(xt+1). (C.5)
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Let gt ∈ ∂ft(xt). Since ft is L-Lipschitz continuous and M -strongly convex, both relative to h, we
have

ft(xt)−ft(xt+1)
(2.4)

≤ 〈gt, xt−xt+1〉−MDh(xt+1, xt)
(2.3)

≤ L
√

2DR(xt+1, xt)−MDR(xt+1, xt).

Applying the above to (C.5) together with the fact that
√
αβ ≤ (α + β)/2 with α := L2/(Mt) and

β := 2tMDR(xt+1, xt) yields

Ht(xt)−Ht(xt+1) ≤ L
√

2DR(xt+1, xt)− tMDR(xt+1, xt) ≤
L2

2Mt
.

Finally, plugging the above inequality into the Strong FTRL Lemma (with R = 0) gives

RegretT (z) ≤
T
∑

t=0

(Ht(xt)−Ht(xt+1)) ≤
L2

2M

T
∑

t=1

1

t
≤ L2

2M
(log(T ) + 1).

D Sublinear Regret Bounds for FTRL with Composite Loss Functions

In this section we extend the results from Section 3 to the case where the loss functions are composite.
Specifically, there is a known non-negative convex function Ψ: X → R+ (sometimes called extra
regularizer) which is subdifferentiable on X and at round t the loss function presented to the player
is ft+Ψ. Usually Ψ is a simple function which is easy to optimize over (such as the ℓ1-norm). Thus,
although ft+Ψ might not preserve relative Lipschitz continuity of ft, one might still hope to obtain
good regret bounds in this case. We shall see that FTRL does not need any modifications to enjoy
of good theoretical guarantees in this setting. Yet, its analysis in the composite case will allow us to
derive regret bounds for the regularized dual averaging method due to Xiao [2010].

In the composite case we measure the performance of an OCO algorithm by its composite regret
(against a point z ∈ X ) given by

RegretΨT (z) :=

T
∑

t=1

(ft(xt) + Ψ(xt))− inf
z∈X

T
∑

t=1

(ft(z) + Ψ(z)), ∀T > 0. (D.1)

In the case of FTRL, practically no modifications to the algorithm are needed. Namely, the update
of Algorithm 1 becomes

xt+1 ∈ argmin
x∈X

(

t
∑

i=1

fi(x) + tΨ(x) +
1

ηt
R(x)

)

, ∀t ≥ 0.

We do make the additional assumption that Ψ(x1) = 0, that is, x1 minimizes Ψ and tha latter has
minimum value of 0. In practice one has some control on Ψ, so this assumption is not too restrictive.
The next theorem shows that we can recover the regret bound from Theorem 3.2 for the composite
setting even if Ψ is not relative Lipschitz-continuous with respect to the FTRL regularizer.

Theorem D.1. Let Ψ: X → R+ be a nonnegative convex function such that {xt}t≥1 as given as in
Algorithm 1 are such that Ψ(x1) = 0. Assume that ft is L-Lipschitz continuous relative to R for
all t ≥ 1. Let z ∈ X and K ∈ R be such that K ≥ R(z)−R(x1). Additionally, assume Ψ(x1) = 0.
Then,

RegretΨT (z) ≤
2K

ηT
+

T
∑

t=1

L2ηt−1

2
, ∀T > 0.

In particular, if ηt :=
√
2K/(L

√
t+ 1) for each t ≥ 1, then RegretΨT (z) ≤ 2L

√

K(T + 1)

The proof is largely identical to the proof of Theorem 3.2. One of the main differences in the analysis
is the following version of Lemma C.1 tweaked for the composite setting. It follows by adding
(t− 1)Ψ to Ft−1 in the proof of the original lemma and using the properties of the subgradient. We
give the full proof for the sake of completeness.

Lemma D.2. Let Ψ: X → R+ be a nonnegative convex function such that {xt}t≥1 as given as in
Algorithm 1 are such that Ψ(x1) = 0. Then, for each t ∈ N there is pt ∈ NX (xt) such that

−pt −
1

ηt−1
∇R(xt) ∈ ∂

(

Ft−1 + (t− 1)Ψ
)

(xt),
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and the above implies

Ft−1(xt)− Ft−1(xt+1) + (t− 1)(Ψ(xt)−Ψ(xt+1))

≤ 1

ηt−1

(

R(xt+1)−R(xt)−DR(xt+1, xt)
)

(t− 1).

Proof. Let t ≥ 1. By the definition of the FTRL algorithm, we have xt ∈ argminx∈X (Ft−1(x) +
(t− 1)Ψ(x) + 1

ηt−1
R(x)). By the optimality conditions for convex programs, we have

∂
(

Ft−1 + (t− 1)Ψ(x) + 1
ηt−1

R
)

(xt) ∩ (−NX (xt)) 6= ∅.

Since ∂(Ft−1+(t−1)Ψ(x)+ 1
ηt−1

R)(xt) = ∂(Ft−1+(t−1)Ψ(x))(xt)+
1

ηt−1
∇R(xt), the above

shows there is pt ∈ NX (xt) such that

−pt −
1

ηt−1
∇R(xt) ∈ ∂(Ft−1 + (t− 1)Ψ(x))(xt).

Using the subgradient inequality (2.1) with the above subgradient yields,

Ft−1(xt) + (t− 1)Ψ(xt)− Ft−1(xt+1)− (t− 1)Ψ(xt+1)

≤ −〈pt, xt − xt+1〉 − 1
ηt−1

〈∇R(xt), xt − xt+1〉,
≤ − 1

ηt−1
〈∇R(xt), xt − xt+1〉 (by the definition of normal cone),

= 1
ηt−1

(

R(xt+1)−R(xt)−DR(xt+1, xt)
)

,

where in the last equation we used that, by definition of the Bregman divergence, DR(xt+1, xt) =
R(xt+1)−R(xt)− 〈∇R(xt), xt+1 − xt〉 and, thus, −〈∇R(xt), xt − xt+1〉 = R(xt+1)−R(xt)−
DR(xt+1, xt).

Now we are in position to prove Theorem D.1.

Proof of Theorem D.1. We proceed in a way extremely similar to the proof of Theorem 3.2, but in
place of the standard FTRL Lemma we use its composite version as in (C.2).

For each t ≥ 0 let Ht be define das in the (composite) Strong FTRL Lemma so that Ht =
∑t

i=1 fi+

tΨ+ 1
ηt
R and fix t ≥ 0. In this case we have

Ht(xt)−Ht(xt+1) = Ft(xt)− Ft(xt+1) + t(Ψ(xt)−Ψ(xt+1)) +
1

ηt
(R(xt)−R(xt+1)).

Using Ft = Ft−1 + ft together with Lemma D.2 we have

Ft(xt)− Ft(xt+1) + t(Ψ(xt)−Ψ(xt+1))

≤ 1

ηt−1

(

R(xt+1)−R(xt)−DR(xt+1, xt)
)

+ ft(xt)− ft(xt+1) + Ψ(xt)−Ψ(xt+1).

Proceeding as in the proof of Theorem 3.2 (with the addition of a Ψ(xt)−Ψ(xt+1) term) we have

Ht(xt)−Ht(xt+1) ≤
L2ηt−1

2
+
( 1

ηt
− 1

ηt−1

)

(R(xt)−R(xt+1)) + Ψ(xt)−Ψ(xt+1).

When summing over t ∈ {1, . . . , T }, the terms Ψ(xt) − Ψ(xt+1) telescope so that, since x1 mini-
mizes Ψ, we have

T
∑

t=1

(Ψ(xt)−Ψ(xt+1) = Ψ(x1)−Ψ(xT+1) ≤ 0.

Therefore, the remainder of the proof follows as in the proof of Theorem 3.2.
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D.1 Regularized Dual Averaging

As previously discussed, applying OCO algorithms such as dual averaging in an out-of-the-box
fashion when the loss functions are composite case does not exploit the structure of the extra-
regularization given by Ψ and may have poor performance in practice. For example, McMahan
[2017] shows that applying DA in the composite case with Ψ := ‖·‖1 does not yield sparse solu-
tions. Xiao [2010] proposed the regularized dual averaging (RDA) method to solve this issue. The
algorithm is identical to DA but it does not linearize the function Ψ. Formally, the initial iterate x1

is in argminx∈X (R(x) and is such that Ψ(x1) = 0, that is, x1 minimizes Ψ. For the following
rounds, RDA computes

xt+1 ∈ argmin
x∈X

(

t
∑

i=1

〈gi, x〉 + tΨ(x) +
1

ηt
R(x)

)

∀t ≥ 1. (D.2)

With an argument analogous to the one made in Section 4, we can write RDA as an instance of FTRL
(with composite loss functions) and obtain the following corollary of Theorem D.1.

Corollary D.3. Let Ψ: Rn → R+ be a nonnegative convex function. Let {xt}t≥1 be defined as
in (D.2) and assume Ψ(x1) = 0. Moreover, suppose ft is L-Lipschitz continuous relative to R for

all t ≥ 1. Let z ∈ X and let K ∈ R be such that K ≥ R(z)−R(x1). If ηt :=
√
2K/(L

√
t+ 1) for

all t ≥ 1, then RegretΨT (z) ≤ 2L
√

K(T + 1).

E Proofs for Section 5

In this section we give the missing proofs of Section 5. Throughout this section, let {xt}t≥1 and
{ŵt}t≥1 be defined as in Algorithm 2, and define

wt := ∇Φ∗(ŵt), ∀t ≥ 1.

First, let us state inequality (4.9) and Claim 4.2 (without substituting exactly value of γt) from
Fang et al. [2020] at the beginning, which will appear multiple times throughout this section, respec-
tively as:

Claim E.1. If γt = ηt+1/ηt ∈ (0, 1] for each t ≥ 1, then

ft(xt)− ft(z) ≤
1

ηt
(DΦ(xt, wt+1)−DΦ(z, wt+1) +DΦ(z, xt)).

Claim E.2. If γt ∈ (0, 1] for all t ≥ 1, then,

1

ηt
(DΦ(xt, wt+1)−DΦ(z, wt+1) +DΦ(z, xt))

≤ DΦ(xt, wt+1)

ηt
+

1

ηt

(

( 1

γt
− 1
)

DΦ(z, x1)−
1

γt
DΦ(z, xt+1) +DΦ(z, xt)

)

.

E.1 Sublinear Regret for Relative Lipschitz Functions

In this subsection we prove sublinear regret for DS-OMD with relative Lipschitz continuous cost
functions. First we use Theorem 4.1 in Fang et al. [2020]. This theorem is analogous to the bound
given in the analysis of classic OMD given by Bubeck [2015, Theorem 4.2].

Theorem E.3 (Fang et al. [2020, Theorem 4.1]). If γt := ηt+1/ηt for each t ≥ 1, then

RegretT (z) ≤
T
∑

t=1

DΦ(xt, wt+1)

ηt
+

DΦ(z, x1)

ηT+1
, ∀T > 0.

Now we are ready to use Theorem E.3 to prove Theorem 5.1.

Proof of Theorem 5.1. We first need to bound the terms DΦ(xt, wt+1) for each t ≥ 1. Fix t ≥ 1.
By the three-point identity for Bregman divergences (see (2.2)),

DΦ(xt, wt+1) = −DΦ(wt+1, xt) + 〈∇Φ(xt)−∇Φ(wt+1), xt − wt+1〉 . (E.1)
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From the definition of the iterates in Algorithm 2, we have ηtgt = ∇Φ(xt)−∇Φ(wt+1). Thus,

(E.1) = −DΦ(wt+1, xt) + ηt 〈gt, xt − wt+1〉 ,
(2.3)

≤ −DΦ(wt+1, xt) + ηtL
√

2DΦ(wt+1, xt) ≤
η2tL

2

2
, (E.2)

where first inequality is from (2.3) ( since ft is Lipschitz continuous relative to Φ) and the second
inequality comes from the fact that

√
αβ ≤ (α + β)/2 with α := η2tL

2 and β := DΦ(wt+1, xt).
Plugging the above in Theorem E.3, we get

RegretT (z) ≤
T
∑

t=1

ηtL
2

2
+

DΦ(z, x1)

ηT+1
≤

T
∑

t=1

ηtL
2

2
+

K

ηT+1
.

Setting ηt :=
√
K/L

√
t for each t ≥ 1 and by using Lemma B.1 from Appendix Bwe have

RegretT (z) ≤
L2

2
·
√
K2

√
T

L
+K

L
√
T + 1√
K

≤ 2L
√

K(T + 1).

E.2 Proof for Theorem 5.3

In this section we give a logarithmic regret bound for OMD the cost functions are when relative
Lipschitz continuous and relative strongly convex, both relative to the mirror map. The first step
in the proof is the following claim given by modifying Claims E.1 and E.2 and combining them
together.

Claim E.4. Assume that γt = 1 for all t ≥ 1, then

ft(xt)− ft(z) ≤
1

ηt

(

DΦ(xt, wt+1)−DΦ(z, xt+1) +DΦ(z, xt)
)

−MDΦ(z, xt).

Proof of Claim E.4. This proof largely follows the structure of the proof of Claim E.1. First, instead
of using subgradient inequality, we use the definition of relative strong convexity and get

ft(xt)− ft(z) ≤ 〈gt, xt − z〉 −MDΦ(z, xt).

By proceeding as in the proof of Claim E.1 but adding the extra term −MDΦ(z, xt) term we get

ft(xt)− ft(z) ≤
1

ηt

(

DΦ(xt, wt+1)−DΦ(z, wt+1) +DΦ(z, xt)
)

−MDΦ(z, xt).

Then we apply Claim E.2 with γt = 1 to get the desired inequality.

The next step in the proof of the logarithmic regret bound is to sum Claim E.4 over t, yielding

T
∑

t=1

(

ft(xt)− ft(z)
)

≤
T
∑

t=1

DΦ(xt, wt+1)

ηt
+

T
∑

t=2

((

1

ηt
− 1

ηt−1

)

DΦ(z, xt)−MDΦ(z, xt)

)

+
1

η1
DΦ(z, x1)−

1

ηT
DΦ(z, xT+1)−MDΦ(z, x1), (by Claim E.4)

≤
T
∑

t=1

DΦ(xt, wt+1)

ηt
+

T
∑

t=2

((

1

ηt
− 1

ηt−1

)

DΦ(z, xt)−MDΦ(z, xt)

)

. (η1 = 1/M)

Since ηt =
1

Mt
, we have

T
∑

t=2

((

1

ηt
− 1

ηt−1

)

DΦ(z, xt)−MDΦ(z, xt)

)

=

T
∑

i=2

(

MDΦ(z, xt)−MDΦ(z, xt)

)

= 0.
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We have already shown that DΦ(xt, wt+1) ≤ η2
tL

2

2 in (E.2), so

RegretT (z) ≤
T
∑

t=1

DΦ(xt, wt+1)

ηt
+

T
∑

i=2

((

1

ηt
− 1

ηt−1

)

DΦ(z, xt)−MDΦ(z, xt)

)

,

≤
T
∑

t=1

ηtL
2

2
=

L2

2M

T
∑

t=1

1

t
≤ L2

2M
(logT + 1).

The last step comes from upper bound of the harmonic series.

E.3 Sublinear Regret for DS-OMD with Extra Regularization

Following the notation from Appendix D, we let Ψ: X → R+ denote the extra regularizer, a non-
negative convex function. We also assume Ψ is minimized at x1 with value 0 and use composite
regret to measure the performance. The only modification we need to make to Algorithm 2 is to
change the projection step of the algorithm to

xt+1 = argmin
x∈Rn

(

DΦ

(

x, yt+1

)

+ ηt+1Ψ(x)
)

. (E.3)

Here we minimize over Rn instead of over X since we can introduce the constraint of the points
lying in X by adding to Ψ the indicator function of X . That is, by adding to Ψ the function

δX (x) :=

{

0 if x ∈ X ,

+∞ otherwise,
∀x ∈ R

n.

In the remainder of this section we denote by ΠΦ
ηt+1Ψ

(yt+1) the point computed by the right-hand

side of (E.3). If we pick this projection coefficient αt carefully, we can get O(
√
T ) regret, as

specified by the next theorem.

Theorem E.5. Let {xt}t≥1 be given as in Algorithm 2 with composite updates and with parameters
γt := ηt+1/ηt for each t ≥ 1. Assume that Ψ(x1) = 0 and that ft is L-Lipschitz continuous relative
to Φ for all t ≥ 1. Let z ∈ X and K ∈ R be such that K ≥ DΦ(z, x1). Then,

RegretΨT (z) ≤
T
∑

t=1

ηtL
2

2
+

K

ηT+1
, ∀z ∈ X , ∀T > 0.

In particular, for ηt :=
√
K/L

√
t for each t ≥ 1, then RegretΨT (z) ≤ 2L

√

K(T + 1).

The analysis hinges on the following generalization of [Bubeck, 2015, Lemma 4.1], which can be
thought as a “pythagorean Theorem” for Bregman projections.

Lemma E.6. Let x ∈ R
n, y ∈ Do, and set ȳ := ΠΦ

αtΨ
(y). If ȳ ∈ Do, then

DΦ(x, ȳ) +DΦ(ȳ, y) ≤ DΦ(x, y) + αt(Ψ(x)− Ψ(ȳ)).

Proof of Lemma E.6. By the optimality conditions of the projection, we have ∇Φ(y) − ∇Φ(ȳ) ∈
∂(αtΨ)(ȳ). Using the three-point identity of Bregman divergences (see (2.2)) and the subgradient
inequality, we get

DΦ(x, ȳ) +DΦ(ȳ, y)−DΦ(x, y) = 〈∇Φ(y)−∇Φ(ȳ), x− ȳ〉 ≤ αt(Ψ(x)−Ψ(ȳ)).

Rearranging yields the desired inequality.

We are now ready to prove Theorem E.5.

Proof of Theorem E.5. To prove the theorem, we just need to show that Theorem E.3 still holds (with
respect to the composite regret) in the algorithm with composite projections. We modify Claims E.1
and E.2 to get the following claim.

Claim E.7.

ft(xt)− ft(z)

≤ DΦ(xt, wt+1)

ηt
+

(

1

ηt+1
− 1

ηt

)

DΦ(z, x1) +
DΦ(z, xt)

ηt
− DΦ(z, xt+1)

ηt+1
+ (Ψ(z)−Ψ(xt+1)).
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Proof of Claim E.7. Claim E.1 gives us the following inequality:

ft(xt)− ft(z) ≤
1

ηt
(DΦ(xt, wt+1)−DΦ(z, wt+1) +DΦ(z, xt)).

Then we just need to modify Claim E.2 to bound the right side of the above inequality. Using Lemma
E.6, we have

DΦ(z, yt+1)−DΦ(xt+1, yt+1) ≥ DΦ(z, xt+1) + αt(Ψ(xt+1)−Ψ(z)).

Then we substitute the step DΦ(z, yt+1) − DΦ(xt+1, yt+1) ≥ DΦ(z, xt+1) in the original proof
of Claim E.2 in Fang et al. [2020] with the above inequality plus the extra regularization term and
Claim E.7 follows.

Now the regret is bounded by

RegretΨT (z)

=

T
∑

t=1

(

ft(xt) + Ψ(xt)− ft(z)−Ψ(z)

)

,

=

T
∑

t=1

(

(

ft(xt)− ft(z)
)

+
(

Ψ(xt)−Ψ(z)
)

)

,

≤
T
∑

t=1

DΦ(xt, wt+1)

ηt
+ sup

z∈X

DΦ(z, x1)

ηT+1
+

T
∑

t=1

(Ψ(xt)−Ψ(xt+1)),

=

T
∑

t=1

DΦ(xt, wt+1)

ηt
+ sup

z∈X

DΦ(z, x1)

ηT+1
+Ψ(x1)−Ψ(xT+1),

≤
T
∑

t=1

DΦ(xt, wt+1)

ηt
+ sup

z∈X

DΦ(z, x1)

ηT+1
.

The first inequality follows Claim E.7 and the last step comes from the assumption that x1 is the
minimizer of Ψ. This shows Theorem E.3 holds as desired and then the proof of Theorem E.5
follows as in Appendix E.1.

Similarly, by setting all ft to a fixed function f and taking average we get the following corollary.

Corollary E.8. Consider a convex function f and let x∗ be a minimizer of f . Let Φ be a differen-
tiable strictly convex mirror map such that X ⊆ Do. Assume that f is L-Lipschitz continuous to
Φ and there exists non-negative K such that K ≥ DΦ(x

∗, x1). Let {ηt}t≥1 be a sequence of step

sizes. If we pick step size ηt =
1√
t
, αt = ηt+1 and stabilization coefficient γt = ηt+1/ηt, then we

have convergence rate

(f +Ψ)

(

1

T

T
∑

t=1

xt

)

− (f +Ψ)(x∗) ≤ 2L
√
2K√
T

.
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