
On the Complexity of Reconfiguration Problems

Takehiro Ito1, Erik D. Demaine2, Nicholas J. A. Harvey2,
Christos H. Papadimitriou3, Martha Sideri4, Ryuhei Uehara5, and Yushi Uno6

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan.

2 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA.

3 Computer Science Division, University of California at Berkeley,
Soda Hall 689, EECS Department, Berkeley, CA 94720, USA.

4 Department of Computer Science,
Athens University of Economics and Business,

Patision 76, Athens 10434, Greece.
5 School of Information Science, JAIST,

Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan.
6 Graduate School of Science, Osaka Prefecture University,

1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan.
takehiro@ecei.tohoku.ac.jp, edemaine@mit.edu, nickh@mit.edu,
christos@cs.berkeley.edu, sideri@aueb.gr, uehara@jaist.ac.jp,

uno@mi.s.osakafu-u.ac.jp

Abstract. Reconfiguration problems arise when we wish to find a step-
by-step transformation between two feasible solutions of a problem such
that all intermediate results are also feasible. We demonstrate that a
host of reconfiguration problems derived from NP-complete problems
are PSPACE-complete, while some are also NP-hard to approximate. In
contrast, several reconfiguration versions of problems in P are solvable
in polynomial time.

1 Introduction

Consider the bipartite graph with weighted vertices in Fig.1(a) (both solid and
dotted edges). It models a situation in which power stations with fixed capacity
(the square vertices) provide power to customers with fixed demand (the round
vertices). It can be seen as a feasible solution of a particular instance of a search
problem which we may call the power supply problem [10, 11]: Given a bipar-
tite graph G = (U, V, E) with weights on the vertices, is there a forest covering
all vertices in G, and with exactly one vertex from U in each component, such
that the sum of the demands of the V vertices (customers) in each component
is no more than the capacity of the U vertex (power station) in it?

But suppose now that we are given two feasible solutions of this instance (the
leftmost and rightmost ones in Fig.1), and we are asked: Can the solution on the
left be transformed into the solution on the right by moving only one customer at

a time, and always remaining feasible? This problem, which we call the power

supply reconfiguration problem, is an exemplar of the kind of problems we

10 15 20

10 2753

10 15 20

10 2753

10 15 20

10 2753

(a) (b) (c)

Fig. 1. A sequence of feasible solutions for the power supply problem.

discuss in this paper. (In this particular instance, it turns out that the answer
is “yes”; see Fig.1.) As one may have expected, the most basic reconfiguration
problem is the satisfiability reconfiguration problem: Given a CNF for-
mula and two satisfying truth assignments s0 and st, are these connected in the
subgraph of the hypercube induced by the satisfying truth assignments? This
problem has been shown PSPACE-complete in [6].

In more generality, reconfiguration problems have the following structure:
Fix a search problem S (a polynomial-time algorithm which, on instance I and
candidate solution y of length polynomial in that of I, determines whether y is
a feasible solution of I); and fix a polynomially-testable symmetric adjacency

relation A on the set of feasible solutions, that is, a polynomial-time algorithm
such that, given an instance I of S and two feasible solutions y′ and y′′ of I,
it determines whether y′ and y′′ are adjacent. (In almost all problems discussed
in this paper, the feasible solutions can be considered as sets of elements, and
two solutions are adjacent if their symmetric difference has size 1 — or, in some
cases such as power supply reconfiguration, 2.) The reconfiguration

problem for S and A is the following computational problem: Given instance
I of S and two feasible solutions y0 and yt of I, is there a sequence of feasible
solutions y0, y1, . . . , yt of I such that yi−1 and yi are adjacent for i = 1, 2, . . . , t?

Reconfiguration problems can also arise from optimization problems, if one
turns the optimization problem into a search problem by giving a threshold.
For example, the clique reconfiguration problem is the following: Given a
graph G, an integer k, and two cliques C0 and Ct of G, both of size at least k,
is there a way to transform C0 into Ct via cliques, each of which results from
the previous one by adding or subtracting one node of G, without ever going
through a clique of size less than k − 1?

Reconfiguration problems are useful and entertaining, have been coming up in
recent literatures [1, 6, 9], and are interesting for a variety of reasons. First, they
may reflect, as in the power supply reconfiguration problem above, a situa-
tion where we actually seek to implement such a sequence of elementary changes
in order to transform the current configuration to a more desirable one, in a con-
text in which intermediate steps must also be fully feasible, and only restricted
changes can occur — in our example, no two customers can change providers
simultaneously, and we certainly do not wish customers to be without power.
In a complex, dynamic environment in which changing circumstances affect the
feasible solution of choice, determining whether such adaptation is possible may
be crucial. Reconfiguration problems also model questions of evolvability: Can
genotype y0 evolve into genotype yt via individual mutations which are each of

adequate fitness? Here a genotype is considered feasible if its fitness is above a
threshold, and two genotypes are considered adjacent if one is a simple mutation
of the other. Finally, reconfiguration versions of constraint satisfaction problems
(the first kind studied in the literature [6]) yield insights into the structure of the
solution space, and heuristics, such as survey propagation, whose performance
depends crucially on connectivity and other properties of the solution space.

In this paper we embark on a systematic investigation of the complexity of re-

configuration problems. Our main focus is showing that a host of reconfiguration
problems (including all those mentioned above and many more) are PSPACE-
complete. The proof for the power supply reconfiguration problem and
those for certain other problems are explained in Section 2. In Section 3 we point
out that certain reconfiguration problems arising from problems in P (such as the
minimum spanning tree and matching problems) can be solved in polynomial
time, and in Section 4 we show certain approximability and inapproximability
results for reconfiguration problems.

2 PSPACE-completeness

In this section we show that a host of reconfiguration problems are PSPACE-
complete. We first give a proof for the power supply reconfiguration prob-
lem in Subsection 2.1, and then give proof sketches for certain other reconfigu-
ration problems in Subsection 2.2.

2.1 Power supply reconfiguration

The power supply reconfiguration problem was defined informally in the
Introduction. An instance is given in terms of a bipartite graph G = (U, V, E),
where each vertex in U is called a supply vertex and each vertex in V is called a
demand vertex. Each supply vertex u ∈ U is assigned a positive integer sup(u),
called the supply of u, while each demand vertex v ∈ V is assigned a positive
integer dem(v), called the demand of v. We wish to find a forest which covers all
vertices in G such that each tree T in the forest has exactly one supply vertex
whose supply is at least the sum of demands of all demand vertices in T . We call
an assignment f : V → U a configuration of G if there is an edge

(

v, f(v)
)

∈ E

for each demand vertex v ∈ V . A configuration f of G is called feasible if the
following condition holds: for each supply vertex u ∈ U ,

sup(u) ≥
∑

{

dem(v) | v ∈ V such that f(v) = u
}

.

The adjacency relation on the set of feasible configurations is defined as follows:
two feasible configurations f and f ′ are adjacent if

∣

∣{v ∈ V : f(v) 6= f ′(v)}
∣

∣ =
1, that is, f ′ can be obtained from f by changing the assignment of a single
demand vertex. Then, for given a bipartite graph G = (U, V, E) and two feasible
configurations f0 and ft of G, the power supply reconfiguration problem is
to determine whether there is a sequence of feasible configurations f0, f1, . . . , ft

of G such that fi−1 and fi are adjacent for i = 1, 2, . . . , t.

Fig.1 illustrates three feasible configurations of a bipartite graph G, where
each supply vertex is drawn as a square, each demand vertex as a round, and
the supply or demand is written inside. Fig.1 also illustrates an example of a
transformation from the feasible configuration in Fig.1(a) to one in Fig.1(c),
where the demand vertex whose assignment was changed from the previous one
is depicted by a thick round. The optimization problem for finding a certain
configuration of a given graph has been studied in [10, 11].

Theorem 1. Power supply reconfiguration is PSPACE-complete.

Proof. It is easy to see that this problem, as well as any reconfiguration version
of a problem in NP, can be solved in (most conveniently, nondeterministic [13])
polynomial space.

We give a reduction to this problem from the satisfiability reconfigu-

ration problem, which was recently shown to be PSPACE-complete [6]. In that
problem we are given a Boolean formula φ in conjunctive normal form, say with
n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm, and two satisfying truth
assignments s0 and st of φ. Then, we are asked whether there is a sequence of
satisfying truth assignments, starting with s0 and ending in st, and each differing
from the previous one in only one variable. Let c be the maximum number of
clauses in which a literal occurs, and hence no literal appears in more than c

clauses in φ.
Given such an instance of satisfiability reconfiguration, we construct

an instance of power supply reconfiguration as follows. We first make a
variable gadget Gxi

for each variable xi, 1 ≤ i ≤ n; Gxi
is a binary tree with three

vertices as illustrated in Fig.2(a); the root Fi is a demand vertex of demand c, and
the two leaves xi and x̄i are supply vertices of supply c. Then the corresponding
bipartite graph Gφ is constructed as follows. For each variable xi, 1 ≤ i ≤ n,
put the variable gadget Gxi

to the graph, and for each clause Cj , 1 ≤ j ≤ m,
put a demand vertex Cj of demand 1 to the graph. Finally, for each clause Cj ,
1 ≤ j ≤ m, join a supply vertex xi (or x̄i) in Gxi

, 1 ≤ i ≤ n, with the clause
demand vertex Cj if and only if the literal xi (respectively, x̄i) is in the clause
Cj . (See Fig.2(b) as an example.) Clearly, Gφ is a bipartite graph.

x1 x1 x3 x3x2 x2

1

C3

1

C2

1

C1

2 2

2

2 2

2

2 2

2

F3F2F1Gx1
Gx2

Gx3

(a) Gxi (b) Gφ

xi xic c

c

Fi

1

C4

Fig. 2. (a) Variable gadget Gxi
, and (b) bipartite graph Gφ corresponding to a Boolean

formula φ with four clauses C1 = (x1 ∨ x3), C2 = (x1 ∨ x2 ∨ x3), C3 = (x̄1 ∨ x2 ∨ x̄3)
and C4 = (x̄2 ∨ x̄3), and hence c = 2.

Consider a feasible configuration of Gφ. Then each demand vertex Fi, 1 ≤
i ≤ n, must be assigned to one of xi and x̄i; a literal is considered false if Fi

is assigned to the corresponding supply vertex. Notice that, since supply vertices
have supply c and the Fi’s have demand c, a false-literal supply vertex cannot
provide power to any of the other demand vertices. Hence, all clause demand
vertices Cj , 1 ≤ j ≤ m, must be assigned to true-literal supply vertices that
occur in them. Since each literal xi (or x̄i), 1 ≤ i ≤ n, appears in at most
c clauses in φ, the corresponding supply vertex xi (respectively, x̄i) in Gxi

can
provide power to all clause demand vertices Cj whose corresponding clauses have
xi (respectively, x̄i).

To complete the reduction, we now create two feasible configurations f0 and
ft of Gφ corresponding to the satisfying truth assignments s0 and st of φ, respec-
tively. Each demand vertex Fi, 1 ≤ i ≤ n, is assigned to the supply vertex whose
corresponding literal is false, while each clause demand vertex Cj , 1 ≤ j ≤ m,
is assigned to an arbitrary true-literal supply vertex adjacent to Cj . Clearly, f0

and ft are feasible configurations of Gφ. This completes the construction of the
corresponding instance of the power supply reconfiguration problem.

We know that a feasible configuration of Gφ corresponds to a satisfying truth
assignment of φ plus an assignment of each clause to a true literal. It is easy to
see that this correspondence goes backwards: every satisfying truth assignment
of φ can be mapped to at least one (in general, to exponentially many) feasible
configurations of Gφ.

How about adjacent configurations — defined to be configurations differing
in the assignment of just one demand vertex? One can easily observe that there
are only two types of reassignments to go from a feasible configuration of Gφ to
an adjacent one, as follows:

(1) One could change the assignment of a demand vertex Fi from xi to x̄i, or
vice versa, if any clause demand vertex is currently assigned to neither supply

vertices xi nor x̄i.

(2) Alternatively, if a clause demand vertex Cj is adjacent to more than one true-
literal supply vertices, then one could change the assignment of Cj from the
current one to another.

Therefore, any sequence of adjacent feasible configurations of Gφ can be broken
down to subsequences, intermittently with a reassignment of type (1) above;
in each subsequence, every two adjacent configurations can go from one to an-
other via a reassignment of type (2) above. Therefore, all feasible configurations
in each subsequence correspond to the same satisfying truth assignment of φ,
while any two consecutive subsequences correspond to adjacent satisfying truth
assignments (namely, differing in only one variable). Conversely, for given any
sequence of adjacent satisfying truth assignments of φ, there is a corresponding
sequence of adjacent feasible configurations of Gφ, obtained as follows: Consider
a flip of a variable xi from true to false. (A flip of xi from false to true is similar.)
Then we wish to change the assignment of the demand vertex Fi from the supply
vertex x̄i to xi. (Remember that the literal to which Fi is assigned is considered

false.) We first change the assignments of all clause demand vertices, which are
currently assigned to xi, to another true-literal supply vertex: since we are about
to flip the variable xi and we know that the truth assignment of φ after the flip
will be also satisfying, there must be a second true-literal supply vertex for every
clause demand vertex currently assigned to xi. After all such reassignments, we
finally change the assignment of Fi from x̄i to xi.

It is easy now to see that there is a sequence of adjacent satisfying truth
assignments of φ from s0 to st if and only if there is a sequence of adjacent
feasible configurations of Gφ from f0 to ft. This completes a proof of Theorem
1. ⊓⊔

2.2 Other Intractable Reconfiguration Problems

There is a wealth of reconfiguration versions of NP-complete problems which
can be shown PSPACE-complete via extensions, often quite sophisticated, of the
original NP-completeness proofs; in this subsection we only sample the realm of
possibilities.

We have already defined the clique reconfiguration problem in the In-
troduction as an example of a general scheme whereby any optimization problem
can be transformed into a reconfiguration problem by giving a threshold (upper
bound for minimization problems, lower bound for maximization problems) for
the allowed values of the objective function of the intermediate feasible solutions;
the independent set reconfiguration and vertex cover reconfigura-

tion problems are defined similarly. In the integer programming recon-

figuration problem, we are given a 0-1 linear program seeking to maximize cx

subject to Ax ≤ b, and we consider two solutions adjacent if they only differ in
one variable.

Theorem 2. The following problems are PSPACE-complete: independent set

reconfiguration, clique reconfiguration, vertex cover reconfigu-

ration, set cover reconfiguration, integer programming reconfig-

uration.

Proof sketch. We sketch a proof for the independent set reconfiguration

problem. The reduction can be obtained by extending the well-known reduction
from the 3SAT problem to the independent set problem [12]. We construct
a graph ρ(φ) from a given 3SAT formula φ with n variables and m clauses,
as follows. For each variable x in φ, we put an edge to the graph; the two
endpoints are labeled x and x̄. Then, for each clause C in φ, we put a clique
of size |C| to the graph; each node in the clique corresponds to a literal in the
clause C. Finally, we add an edge between two nodes in different components
if and only if the nodes correspond to opposite literals. Then, any maximum
independent set in ρ(φ) contains at least n nodes; the n nodes are chosen from the
endpoints of edges corresponding to the variables; a literal is considered true if

the corresponding endpoint is chosen. Clearly, ρ(φ) has a maximum independent
set of size k = n + m if and only if φ is satisfiable. Consider all independent
sets of size k in ρ(φ); they can be partitioned into subclasses of the form ρ(s)

corresponding to the satisfying truth assignments s of φ (the various independent
sets in the subclass ρ(s) correspond to the different possible ways to satisfy each
clause by s). It is easy to see that all independent sets in ρ(s) are connected
via intermediate independent sets of size at least k − 1. Therefore, by similar
arguments in the proof of Theorem 1, one can easily observe that telling whether
two independent sets of size k in ρ(φ) can be transformed into one another via
intermediate independent sets of size at least k − 1 is PSPACE-complete.

Similarly as the NP-completeness proofs [5, §3.1.3], the result for indepen-

dent set reconfiguration yields those for clique reconfiguration and
vertex cover reconfiguration. Then, the result for set cover recon-

figuration is immediate since it is a generalization of vertex cover recon-

figuration. integer programming reconfiguration generalizes clique

reconfiguration via the well-known integer program for clique. ⊓⊔

3 Reconfiguration Problems in P

Reconfiguration problems arise in relation to polynomially solvable problems as
well. For example, in the minimum spanning tree reconfiguration problem,
we are given an edge-weighted graph G, a threshold k, and two spanning trees
of G, both of weight at most k, and wish to transform one tree into another via
edge exchanges, without ever getting into a tree with weight > k. The match-

ing reconfiguration problem is defined similarly (the formal definition will
be given later). We show in this section that both problems can be solved in
polynomial time.

The result for the minimum spanning tree reconfiguration problem
can be obtained from the following more general proposition.

Proposition 1. Given a weighted matroid M and two bases B0 and Bt of M,

both of weight at most k, there always exists a sequence of |B0 \ Bt| exchanges

that transforms one into the other without ever exceeding weight k.

Proof sketch. For an unweighted matroid, this result follows trivially from the
properties of a base family [15, §39.5]. For a weighted matroid M, we outline
a proof for the case when B0 and Bt are both of maximum weight. Then, the
result follows from the fact that the set of maximum weight bases of M also form
the base family of another matroid [2, p. 287] [3, p. 130]. By generalizing this
proof appropriately, one can obtain the full result. (Due to the page limitation,
we omit the details.) ⊓⊔

In the matching reconfiguration problem, we are given an unweighted
graph G, a threshold k, and two matchings M0 and Mt of G, both of size at
least k, and we are asked whether there is a sequence of matchings of G, starting
with M0 and ending in Mt, and each resulting from the previous one by either
addition or deletion of an edge in G, without ever going through a matching of
size less than k − 1.

Proposition 2. Matching reconfiguration can be solved in polynomial

time.

Proof sketch. Since the adjacency relation is symmetric, we may assume without
loss of generality that |M0| ≤ |Mt|. Consider the subgraph H of G induced
by all edges in (M0 \ Mt) ∪ (Mt \ M0). Then, H consists of single edges, and
alternating paths and cycles with respect to M0 and Mt. The greedy algorithm

for transforming M0 into Mt is the following. Divide the components of H into
the following four categories: (1) single edges of Mt \ M0; (2) alternating paths
starting with an edge of Mt \ M0; (3) alternating cycles; and (4) all the rest. In
this category order, transform M0 into Mt by repeatedly adding edges of Mt\M0

and deleting edges of M0 \ Mt along each component of H . Notice that, after
exchanging the edges in Categories (1) and (2), the obtained matching M has
size at least |Mt| (≥ |M0|). Therefore, one can easily observe that intermediate
matchings have size at least |M0| − 1 for exchanging edges in Category (2), and
have size at least |Mt| − 2 for exchanging edges in Categories (3) and (4).

For the case |Mt| ≥ k + 1, the greedy algorithm always transforms M0 into
Mt without ever going through a matching of size less than k − 1. For the case
|M0| = |Mt| = k, there does not always exist a desired sequence of matchings if
H has components of Category (3). Nonetheless, existence can be determined in
polynomial time, as follows. If M0 and Mt are not maximum matchings of G, we
first transform Mt into a matching M ′

t of size k+1 along an arbitrary augmenting
path with respect to Mt; then, the greedy algorithm works for transforming M0

into M ′

t. Therefore, a desired sequence always exists for this subcase. If M0 and
Mt are maximum matchings of G and H contains alternating cycles, we have
the following lemma, whose proof is omitted due to the page limitation.

Lemma 1. There is a sequence of adjacent matchings from M0 to Mt such that

all intermediate matchings have size at least k−1 if and only if every cycle in H

contains a vertex that begins an even-length alternating path in G with respect

to M0 ending at an unmatched vertex by M0.

By Lemma 1 one can easily determine whether there exists a desired sequence
for this subcase in polynomial time. ⊓⊔

We note in passing that the matching reconfiguration problem for edge-
weighted graphs seems quite a bit more complicated; however, we conjecture
that it also can be solved in polynomial time.

Besides minimum spanning tree reconfiguration and matching re-

configuration, it turns out that all polynomial-time solvable special cases
of satisfiability, as characterized by Schaefer [14], give rise to polynomially
solvable reconfiguration problems:

Theorem 3 ([6]). Satisfiability reconfiguration for linear, Horn, dual

Horn and 2-literal clauses are all in P.

4 Approximation

We have seen that an optimization problem gives rise to a reconfiguration prob-
lem by bounding the objective of intermediate configurations. In turn, we can get
a natural optimization problem if we try to optimize the worst objective among

all configurations in the reconfiguration path. For example, in the problem that
we call the maxmin clique reconfiguration problem, we are given a graph
and two cliques C0 and Ct, and we are asked to transform C0 into Ct by a
sequence of additions and removals of nodes so that the minimum size of any
clique in the sequence is as large as possible.

Theorem 4. Maxmin clique reconfiguration cannot be approximated

within any constant factor unless P = NP.

Proof. We give a reduction in an approximation-preserving manner from the
clique problem to this problem. For a given graph G with n nodes, we construct
a new graph G′ with 3n nodes as a corresponding instance of maxmin clique

reconfiguration: a set of n nodes is connected as G, while two new sets of n

nodes are connected each as a clique (these two cliques of G′ are called C0 and
Ct); finally, there are edges in G′ between each new node and each node in G.

Consider any sequence of cliques of G′, each resulting from the previous one
by insertion or deletion of a node, starting from C0 and ending in Ct. We claim
that one of them will be a clique of G — this follows directly from the absence
of any edges from C0 to Ct. Conversely, for any clique C of G, there exists a
sequence from C0 to Ct via C (add the nodes of C to the clique C0, then remove
those of C0, then add those of Ct). Therefore, the minimum clique size in the
sequence is the size of C, and hence solving (or approximating) this instance
of maxmin clique reconfiguration is the same as solving (respectively, ap-
proximating) the clique problem for G. Since it is known that clique cannot
be approximated within any constant factor unless P = NP [7], the result fol-
lows. ⊓⊔

A similar argument establishes the following:

Theorem 5. Maxmin maxsat reconfiguration cannot be approximated

within a factor better than 15
16 unless P = NP.

Proof. We reduce in an approximation-preserving manner the maxsat problem
to this problem. Suppose that we are given an instance φ of maxsat with n

variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. We construct a new in-
stance φ′ in which each clause Cj , 1 ≤ j ≤ m, is replaced by (Cj ∨ y ∨ z) where
y and z are new variables, and the additional clause (ȳ∨ z̄) with weight m. Note
that the truth assignments s0 : z = 1, y = 0, x1 = x2 = · · · = xn = 1 and
st : z = 0, y = 1, x1 = x2 = · · · = xn = 0 are both satisfying all 2m clauses.

Consider now an optimal path in the hypercube between s0 and st. Since at
s0 : z = 1, y = 0 and at st : z = 0, y = 1, there must exist a truth assignment on
this path such that y = z. Since the clause (ȳ ∨ z̄) has weight m and the path

is assumed optimal, it must be that y = z = 0. Thus, the remaining variables
must spell an optimum satisfying truth assignment of the original formula φ.
Hence, from an optimum path for the corresponding instance of maxmin maxsat

reconfiguration, we can obtain an optimum truth assignment for the original
instance of maxsat. Similarly, from an α-approximation for maxmin maxsat

reconfiguration, it is easy to see that we get a (2α − 1)-approximation of
the maxsat instance. Since it is known that maxsat cannot be approximated
within a factor better than 7

8 unless P = NP [8], the result follows. ⊓⊔

By a similar maneuver, it can be shown that the minmax set cover re-

configuration problem cannot be approximated within a factor better than
o(log n) unless NP is contained in DTIME

(

nO(log log n)
)

[4].

Returning to the power supply problem, there is a natural optimization
version of the problem, in which the constraint that the total demand of all
demand vertices in each tree T be within the supply of the supply vertex in T is
replaced by a “soft” criterion: we allow that the total demand in T exceeds the
supply in T , but wish to minimize the sum of the “deficient power” of all supply
vertices in the graph.

We now define the minmax power supply reconfiguration problem. For
a configuration f of a bipartite graph G = (U, V, E) and a supply vertex u ∈ U ,
the deficient power d(f, u) of u on f is defined as follows:

d(f, u) =
∑

{

dem(v) | v ∈ V such that f(v) = u
}

− sup(u).

If f is infeasible, then there is at least one supply vertex u such that d(f, u) > 0.
On the other hand, if f is feasible, then d(f, u) ≤ 0 for all supply vertices
u ∈ U ; in fact, a nonpositive deficient power d(f, u) represents the marginal

power of u on f . The cost c(f) of a configuration f is defined to be c(f) =
∑

u∈U |d(f, u)|. Clearly, c(f) =
∑

u∈U sup(u) −
∑

v∈V dem(v) for every feasible
configuration f of G. In the problem that we call the minmax power supply

reconfiguration problem, we are given a bipartite graph G = (U, V, E) and
two feasible configurations f0 and ft of G, and we are asked to transform f0 into
ft by a sequence of reassignments of single demand vertices so that the maximum
cost of any configuration in the sequence is as small as possible. It is easy to
see that a sequence f0, f1, . . . , ft which consists of only feasible configurations is
optimum, and the optimum value is

∑

u∈U sup(u) −
∑

v∈V dem(v).

One can observe that the minmax power supply reconfiguration prob-
lem is strongly NP-hard (by a reduction from the 3-partition problem [5], for
example). However, the problem can be solved in linear time for the following
special case. Suppose in the remainder of this section that we are given a bipar-
tite graph G = (U, V, E) having exactly two supply vertices. For a configuration
f of G, let W (f) = {v ∈ V | f(v) 6= ft(v)}, that is, W (f) is the set of de-
mand vertices which are assigned to “wrong” supply vertices on f . Note that all
(demand) vertices in W (f) are adjacent to both the two supply vertices. For a
given initial configuration f0 of G, let v∗ be a demand vertex in W (f0) having

the maximum demand, that is, dem(v∗) = max{dem(v) | v ∈ W (f0)}. Then, we
have the following lemma.

Lemma 2. If c(f0) ≥ 2 · dem(v∗), then the optimum sequence for minmax

power supply reconfiguration consists of only feasible configurations, and

it can be found in linear time.

Proof. Suppose without loss of generality that W (f0) 6= ∅. If all demand ver-
tices in W (f0) are assigned to the same supply vertex, then we just change the
assignments of all demand vertices in W (f0) from the current supply vertex to
the other. Since both f0 and ft are feasible, all intermediate configurations are
also feasible. Therefore, we assume in the following that each of the two supply
vertices has at least one demand vertex in W (f0).

Since f0 is feasible, the cost c(f0) denotes the sum of marginal powers of
the two supply vertices. Moreover, since the sum is at least 2 · dem(v∗), one of
the two supply vertices has marginal power of at least dem(v∗). Therefore, we
can change the assignment of at least one demand vertex v ∈ W (f0) from the
“wrong” supply vertex to the “correct” one, since dem(v) ≤ dem(v∗). Clearly,
the resulting configuration f1 is also feasible, and satisfies c(f1) ≥ 2 · dem(v∗).
By repeatedly executing such a reassignment, we can obtain a desired sequence
f0, f1, . . . , ft which consists of only feasible configurations. Therefore, the se-
quence is an optimum solution. The length of the sequence is |W (f0)| (≤ |V |)
since each demand vertex in W (f0) moves exactly once and any of the other
demand vertices does not move in the sequence. We can thus find an optimum
solution in linear time. ⊓⊔

Theorem 6. There is a linear-time 2-approximation algorithm for minmax

power supply reconfiguration having exactly two supply vertices.

Proof. Let OPT be the optimum value for an instance of minmax power sup-

ply reconfiguration. Since we have to change the assignment of the demand
vertex v∗ for obtaining the target configuration ft, we have OPT ≥ dem(v∗).

By Lemma 2 it suffices to consider the case c(f0) < 2 · dem(v∗). In this case,
consider a slightly modified instance in which the supplies of the two supply
vertices are increased so that the total supply is equal to 2 · dem(v∗). In the
modified instance, both the configurations f0 and ft remain feasible and c(f0) =
2 · dem(v∗). Therefore, by Lemma 2 we can find in linear time an optimum
sequence which consists of only feasible configurations for the modified instance;
the optimum value is thus 2 · dem(v∗). Note that some configurations in the
sequence may be infeasible for the original instance. We take the sequence as
our approximation solution for the original instance, and hence our approximate
value A is A = 2 · dem(v∗) ≤ 2 · OPT. ⊓⊔

5 Open Problems

There are many open problems raised by this work, and we mention some of
these below:

– Do all problems in P give rise, in a natural way, to polynomially solvable
reconfiguration problems? We conjecture that the answer is negative, but we
have yet to identify a counterexample (even a conjectured one).

– Is the traveling salesman reconfiguration problem (where two tours
are adjacent if they differ in two edges) PSPACE-complete?

– Are there better approximation algorithms for the minmax power supply

reconfiguration problem? Lower bounds?
– Are the problems in Section 4 PSPACE-complete to approximate (not just

NP-hard)?

References

1. P. Bonsma and L. Cereceda, Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances, Proc. of MFCS2007, LNCS 4708
(2007) 738–749.

2. W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver, Combina-
torial Optimization, Wiley, 1997.

3. J. Edmonds, Matroids and the greedy algorithm, Math. Programming 1 (1971)
127–136.

4. U. Feige, A threshold of ln n for approximating set cover, J. ACM 45 (1998)
634–652.

5. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

6. P. Gopalan, P. G. Kolaitis, E. N. Maneva and C. H. Papadimitriou, The connec-
tivity of Boolean satisfiability: computational and structural dichotomies, Proc. of
ICALP 2006, LNCS 4051 (2006) 346–357.

7. J. H̊astad, Clique is hard to approximate within n1−ε, Acta Mathematica 182
(1999) 105–142.

8. J. H̊astad, Some optimal inapproximability results, J. ACM 48 (2001) 798–859.
9. R. A. Hearn and E. D. Demaine, PSPACE-completeness of sliding-block puzzles

and other problems through the nondeterministic constraint logic model of com-
putation, Theoretical Computer Science 343 (2005) 72–96.

10. T. Ito, X. Zhou and T. Nishizeki, Partitioning trees of supply and demand, Inter-
national J. Foundations of Computer Science 16 (2005) 803–827.

11. T. Ito, E. D. Demaine, X. Zhou and T. Nishizeki, Approximability of partitioning
graphs with supply and demand, Proc. of ISAAC 2006, LNCS 4288 (2006) 121–130.

12. C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
13. W. J. Savitch, Relationships between nondeterministic and deterministic tape

complexities, J. of Computer and System Sciences 4 (1970) 177–192.
14. T. J. Schaefer, The complexity of satisfiability problems, Proc. of 10th ACM

Symposium on Theory of Computing, pp. 216–226, 1978.
15. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer-

Verlag, 2003.

