
On the Complexity of Reconfiguration Problems

Takehiro Itoa,∗, Erik D. Demaineb, Nicholas J. A. Harveyc, Christos H. Papadimitrioud, Martha Siderie, Ryuhei
Ueharaf , Yushi Unog

a Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan.
b MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA.

c Department of Combinatorics and Optimization, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada.
d Computer Science Division, University of California at Berkeley, Soda Hall 689, EECS Department, Berkeley, CA 94720, USA.

e Department of Computer Science, Athens University of Economics and Business, Patision 76, Athens 10434, Greece.
f School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan.

g Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan.

Abstract

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of
a problem such that all intermediate results are also feasible. We demonstrate that a host of reconfiguration problems
derived from NP-complete problems are PSPACE-complete, while some are also NP-hard to approximate. In contrast,
several reconfiguration versions of problems in P are solvable in polynomial time.

Keywords: approximation, graph algorithm, PSPACE-complete, reachability on solution space

1. Introduction

Consider the bipartite graph with weighted vertices in Figure 1(a) (both solid and dotted edges). It models a
situation in which power stations with fixed capacity (the square vertices) provide power to customers with fixed
demand (the round vertices). It can be seen as a feasible solution of a particular instance of a search problem which
we may call thepower supply problem [8, 10]: Given a bipartite graphG = (U,V,E) with weights on the vertices, can
G be partitioned into subtrees, each of which contains exactly one vertex fromU, such that the sum of the demands
of theV vertices (customers) in each subtree is no more than the capacity of theU vertex (power station) in it?

But suppose now that we are giventwo feasible solutions of this instance (the leftmost and rightmost ones in Figure
1), and we are asked: Can the solution on the left be transformed into the solution on the rightby moving only one
customer at a time, and always remaining feasible?This problem, which we call thepower supply reconfiguration
problem, is an exemplar of the kind of problems we discuss in this paper. (In this particular instance, it turns out
that the answer is “yes”; see Figure 1.) As one may have expected, the most basic reconfiguration problem is the
satisfiability reconfiguration problem: Given a CNF formula and two satisfying truth assignmentss0 andst, are
these connected in the subgraph of the hypercube induced by the satisfying truth assignments? This problem has been
shown PSPACE-complete [3].

In more generality,reconfiguration problemshave the following structure: Fix a search problemS (a polynomial-
time algorithm which, on instanceI and candidate solutiony of length polynomial in that ofI , determines whether
y is a feasible solution ofI); and fix a polynomially-testable symmetricadjacency relation Aon the set of feasible
solutions, that is, a polynomial-time algorithm such that, given an instanceI of S and two feasible solutionsy′ and
y′′ of I , it determines whethery′ andy′′ are adjacent. (In almost all problems discussed in this paper, the feasible
solutions can be considered as sets of elements, and two solutions are adjacent if their symmetric difference has size

∗Corresponding author.
Email addresses:takehiro@ecei.tohoku.ac.jp (Takehiro Ito),edemaine@mit.edu (Erik D. Demaine),harvey@math.uwaterloo.ca

(Nicholas J. A. Harvey),christos@cs.berkeley.edu (Christos H. Papadimitriou),sideri@aueb.gr (Martha Sideri),uehara@jaist.ac.jp
(Ryuhei Uehara),uno@mi.s.osakafu-u.ac.jp (Yushi Uno)

Preprint submitted to Theoretical Computer Science December 4, 2010

10 15 20

10 2753

10 15 20

10 2753

10 15 20

10 2753

(a) (b) (c)

Figure 1: A sequence of feasible solutions for thepower supply problem.

1.) Thereconfiguration problem for S and A is the following computational problem: Given instanceI of S and two
feasible solutionsy0 andyt of I , is there a sequence of feasible solutionsy0, y1, . . . , yt of I such thatyi−1 andyi are
adjacent fori = 1,2, . . . , t?

Reconfiguration problems can also arise from optimization problems, if one turns the optimization problem into
a search problem by giving a threshold. For example, theclique reconfiguration problem is the following: Given a
graphG, an integerk, and two cliquesC0 andCt of G, both of size at leastk, is there a way to transformC0 into Ct via
cliques, each of which results from the previous one by adding or subtracting a single node ofG, without ever going
through a clique of size less thank− 1?

Reconfiguration problems are useful and entertaining, have been coming up in recent literature [1, 3, 6, 9], and
are interesting for a variety of reasons. First, they may reflect, as in thepower supply reconfiguration problem above,
a situation where we actually seek to implement such a sequence of elementary changes in order to transform the
current configuration to a more desirable one, in a context in which intermediate steps must also be fully feasible,
and only restricted changes can occur — in our example, no two customers can change providers simultaneously,
and we certainly do not wish customers to be without power. In a complex, dynamic environment in which changing
circumstances affect the feasible solution of choice, determining whether such adaptation is possible may be crucial.
Reconfiguration problems also model questions ofevolvability: Can genotypey0 evolve into genotypeyt via individual
mutations which are each of adequate fitness? Here a genotype is considered feasible if its fitness is above a threshold,
and two genotypes are considered adjacent if one is a simple mutation of the other. Finally, reconfiguration versions
of constraint satisfaction problems (the first kind studied in the literature [3]) yield insights into the structure of the
solution space, which may help in understanding heuristics, such as survey propagation, whose performance depends
crucially on connectivity and other properties of the solution space.

In this paper, we embark on a systematic investigation of the complexity of reconfiguration problems. Our main
focus is showing that a host of reconfiguration problems (including all those mentioned above and many more) are
PSPACE-complete. The proof for thepower supply reconfiguration problem and those for certain other problems are
explained in Section 2. We then point out in Section 3 that certain reconfiguration problems arising from problems
in P (such asminimum spanning tree andmatching) can be solved in polynomial time. In Section 4 we show certain
approximability and inapproximability results for reconfiguration problems. An extended abstract of the paper has
been presented in [7].

2. PSPACE-completeness

In this section we show that a host of reconfiguration problems are PSPACE-complete. In Section 2.1 we first
give a proof for thepower supply reconfiguration problem, and in Section 2.2 we then give proof sketches for certain
other reconfiguration problems.

2.1. Power supply reconfiguration

The power supply reconfiguration problem was defined informally in the Introduction. An instance is given in
terms of a bipartite graphG = (U,V,E), where each vertex inU is called asupply vertexand each vertex inV is
called ademand vertex. Each supply vertexu ∈ U is assigned a positive integer sup(u), called thesupply of u, while
each demand vertexv ∈ V is assigned a positive integer dem(v), called thedemand of v. We wish to partitionG into
subtrees, by deleting edges fromG, such that each subtreeT has exactly one supply vertex whose supply is at least

2

the sum of demands of all demand vertices inT. We call an assignmentf : V → U aconfiguration of Gif there is an
edge

(
v, f (v)

)
∈ E for each demand vertexv ∈ V. A configurationf of G is feasibleif the following condition holds:

for each supply vertexu ∈ U,

sup(u) ≥
∑{

dem(v) | v ∈ V such thatf (v) = u
}
.

Theadjacency relationon the set of feasible configurations is defined as follows: two feasible configurationsf and f ′

areadjacentif
∣∣∣{v ∈ V : f (v) , f ′(v)}

∣∣∣ = 1, that is,f ′ can be obtained fromf by changing the assignment of a single
demand vertex. Given a bipartite graphG = (U,V,E) and two feasible configurationsf0 and ft of G, thepower supply
reconfiguration problem is to determine whether there is a sequence of feasible configurationsf0, f1, . . . , ft of G such
that fi−1 and fi are adjacent fori = 1,2, . . . , t. Note thatpower supply reconfiguration, as well as any reconfiguration
problem defined in this paper, does not ask an actual reconfiguration sequence.

Figure 1 illustrates three feasible configurations of a bipartite graphG, where each supply vertex is drawn as
a square, each demand vertex as a circle, and the supply or demand is written inside. Figure 1 also illustrates an
example of a transformation from the feasible configuration in Figure 1(a) to one in Figure 1(c), where the demand
vertex whose assignment was changed from the previous one is depicted by a thick circle.

We have the following theorem.

Theorem 1. Power supply reconfiguration is PSPACE-complete.

Proof. It is easy to see that this problem, as well as any reconfiguration version of a problemS in NP, can be solved
in polynomial space, as follows. SinceS is in NP, we can enumerate all feasible solutions ofS in nondeterministic
polynomial time. Since NP⊆ PSPACE [11, p. 148], this enumeration can be done in PSPACE. We then nondetermin-
istically traverse the solutions that are adjacent with the current solution. (By the assumption, the adjacency can be
checked in polynomial time for each enumerated solution.) Savitch’s Theorem [12] says that this NPSPACE algorithm
can be converted into a PSPACE algorithm.

We give a polynomial-time reduction from thesatisfiability reconfiguration problem to this problem. In that
problem we are given a Boolean formulaϕ in conjunctive normal form, say withn variablesx1, x2, . . . , xn andm
clausesC1,C2, . . . ,Cm, and two satisfying truth assignmentss0 andst of ϕ. Then, we are asked whether there is a
sequence of satisfying truth assignments, starting withs0 and ending inst, and each differing from the previous one
in only one variable. This problem is known to be PSPACE-complete [3]. One may assume without loss of generality
that the formulaϕ has no clause which contains both positive and negative literals of the same variable. Letc be the
maximum number of occurrences of a literal in the clauses, and hence each literal appears in at mostc clauses inϕ.

Given such an instance ofsatisfiability reconfiguration, we construct an instance ofpower supply reconfigura-
tion as follows. We first make avariable gadget Gxi for each variablexi , 1 ≤ i ≤ n; Gxi is a binary tree with three
vertices as illustrated in Figure 2(a); the rootFi is a demand vertex of demandc, and the two leavesxi and x̄i are
supply vertices of supplyc. Then the bipartite graphGϕ corresponding to the formulaϕ is constructed as follows. For

x1 x1 x3 x3x2 x2

1

C3

1

C2

1

C1

2 2

2

2 2

2

2 2

2

F3F2F1

Gx1
Gx2

Gx3

(a) Gxi (b) Gφ

xi xic c

c

Fi

Figure 2: (a) Variable gadgetGxi , and (b) bipartite graphGϕ corresponding to a Boolean formulaϕ with three clausesC1 = (x1 ∨ x̄2), C2 =

(x̄1 ∨ x2 ∨ x3) andC3 = (x̄2 ∨ x̄3), and hencec = 2.

3

each variablexi , 1 ≤ i ≤ n, add the variable gadgetGxi to the graph; and, for each clauseC j , 1 ≤ j ≤ m, add a demand
vertexC j of demand 1 to the graph. Finally, join a supply vertexxi (or x̄i) in Gxi , 1 ≤ i ≤ n, with the clause demand
vertexC j , 1 ≤ j ≤ m, if and only if the literalxi (respectively, ¯xi) is in the clauseC j . (See Figure 2(b) as an example.)
Clearly,Gϕ is a bipartite graph.

Consider a feasible configuration ofGϕ. Then each demand vertexFi , 1 ≤ i ≤ n, must be assigned to one of
xi and x̄i ; a literal is considered false if Fi is assigned to its corresponding supply vertex.Notice that, since supply
vertices have supplyc and theFi ’s have demandc, a false-literal supply vertex cannot provide power to any of the
other demand vertices. Hence, all clause demand verticesC j , 1 ≤ j ≤ m, must be assigned to true-literal supply
vertices that occur in them. Since each literalxi (or x̄i), 1 ≤ i ≤ n, appears in at mostc clauses inϕ, the corresponding
supply vertexxi (respectively, ¯xi) in Gxi can provide power to all clause demand verticesC j whose corresponding
clauses havexi (respectively, ¯xi).

To complete the reduction, we now create two feasible configurationsf0 and ft of Gϕ corresponding to the sat-
isfying truth assignmentss0 andst of ϕ, respectively. Each demand vertexFi , 1 ≤ i ≤ n, is assigned to the supply
vertex whose corresponding literal is false, while each clause demand vertexC j , 1 ≤ j ≤ m, is assigned to an arbi-
trary true-literal supply vertex adjacent toC j . Sinces0 andst are satisfying truth assignments ofϕ, both f0 and ft
are feasible configurations ofGϕ. This completes the construction of the corresponding instance of thepower supply

reconfiguration problem.

We know that a feasible configuration ofGϕ corresponds to a satisfying truth assignment ofϕ plusan assignment
of each clause to a true literal. It is easy to see that this correspondence goes backwards: every satisfying truth
assignment ofϕ can be mapped to at least one (in general, to exponentially many) feasible configurations ofGϕ.

How about adjacent configurations — defined to be configurations differing in the assignment of just one demand
vertex? One can easily observe that there are only two types of reassignments to go from a feasible configuration of
Gϕ to an adjacent one, as follows:

(1) One could change the assignment of a demand vertexFi from xi to x̄i , or vice versa,if no clause demand
vertex is currently assigned to supply vertices xi or x̄i .

(2) Alternatively, if a clause demand vertexC j is adjacent to more than one true-literal supply vertex, then one
could change the assignment ofC j from the current one to another.

Therefore, any sequence of adjacent feasible configurations ofGϕ can be broken down to subsequences, intermittently
with a reassignment of type (1) above; in each subsequence, every two adjacent configurations can go from one to
another via a reassignment of type (2) above. Therefore, all feasible configurations in each subsequence correspond to
the same satisfying truth assignment ofϕ, while any two consecutive subsequences correspond to adjacent satisfying
truth assignments (namely, differing in only one variable).

Conversely, for given any sequence of adjacent satisfying truth assignments ofϕ, there is a corresponding sequence
of adjacent feasible configurations ofGϕ, obtained as follows: Consider a flip of a variablexi from true to false. (A flip
of xi from false to true is similar.) Then we wish to change the assignment of the demand vertexFi from the supply
vertexx̄i to xi . (Remember that the literal to whichFi is assigned is considered false.) We first change the assignments
of all clause demand vertices, which are currently assigned toxi , to another true-literal supply vertex: since we are
about to flip the variablexi and we know that the truth assignment ofϕ after the flip will be also satisfiable, there
must be a “second” true-literal supply vertex for every clause demand vertex currently assigned toxi . After all such
reassignments, we finally change the assignment ofFi from x̄i to xi .

It is now easy to see that there is a sequence of adjacent satisfying truth assignments ofϕ from s0 to st if and only
if there is a sequence of adjacent feasible configurations ofGϕ from f0 to ft. This completes the proof of Theorem 1.
�

2.2. Other intractable reconfiguration problems

There is a wealth of reconfiguration versions of NP-complete problems which can be shown PSPACE-complete
via extensions, often quite sophisticated, of the original NP-completeness proofs; in this subsection we only sample
the realm of possibilities.

We have already defined theclique reconfiguration problem in the Introduction as an example of a general scheme
whereby any optimization problem can be transformed into a reconfiguration problem by giving a threshold (upper
bound for minimization problems, lower bound for maximization problems) for the allowed values of the objective

4

C3C1

ex1 ex2 ex3

x1 x1 x2 x2 x3 x3

x1 x2 x3x2x1

x2

x3

C2

Figure 3: Graphρ(ϕ) corresponding to a 3SAT formulaϕ with three clausesC1 = (x1 ∨ x̄2), C2 = (x̄1 ∨ x2 ∨ x3) andC3 = (x̄2 ∨ x̄3).

function of the intermediate feasible solutions; theindependent set reconfiguration andvertex cover reconfiguration
problems are defined similarly. In theinteger programming reconfiguration problem, we are given a 0-1 linear
program seeking to maximizecx subject toAx ≤ b, and we consider two solutions adjacent if they only differ in one
variable.

Theorem 2. The following problems arePSPACE-complete: independent set reconfiguration, clique reconfigura-
tion, vertex cover reconfiguration, set cover reconfiguration, integer programming reconfiguration.

Proof sketch. We sketch a proof for theindependent set reconfiguration problem. The reduction can be obtained by
extending the well-known reduction from the 3SAT problem to theindependent set problem [11]. We construct a graph
ρ(ϕ) from a given 3SAT formulaϕ with n variables andmclauses, as follows. (As in the proof of Theorem 1, we may
assume without loss of generality that the formulaϕ has no clause which contains both positive and negative literals
of the same variable.) For each variablex in ϕ, we add an edgeex to the graph; its two endpoints are labeledx and x̄.
Then, for each clauseC in ϕ, we add a clique of size|C| to the graph; each node in the clique corresponds to a literal in
the clauseC. Finally, we add an edge between two nodes in different components if and only if the nodes correspond
to opposite literals. (See Figure 3 as an example.) Then, it is easy to see thatρ(ϕ) has a maximum independent set
of sizek = n + m if and only if ϕ is satisfiable;n nodes are chosen from the endpoints ofn edges corresponding
to the variables;a literal is considered true if the corresponding endpoint is chosen. Consider all independent sets
of sizek = n + m in ρ(ϕ); they can be partitioned into subclasses of the formρ(s) corresponding to the satisfying
truth assignmentssof ϕ (the various independent sets in the subclassρ(s) correspond to the different possible ways to
satisfy each clause bys). It is easy to see that all independent sets inρ(s) are connected via intermediate independent
sets of size at leastk−1. Therefore, by similar arguments in the proof of Theorem 1, it is easy to observe that deciding
whether two independent sets of sizek in ρ(ϕ) can be transformed into one another via intermediate independent sets
of size at leastk− 1 is PSPACE-complete.

It is easy to see that a subsetI ⊆ V of vertices in a graphG = (V,E) is an independent set ofG if and only if I
induces a clique in the complement ofG. Also, I is an independent set ofG if and only if V \ I is a vertex cover of
G [2, Lemma 3.1]. Thus, the result forindependent set reconfiguration yields those forclique reconfiguration and
vertex cover reconfiguration. Then, the result forset cover reconfiguration is immediate since it is a generalization
of vertex cover reconfiguration. Integer programming reconfiguration generalizesclique reconfiguration via the
well-known integer program forclique. �

One might compare ourindependent set reconfiguration problem with thesliding Token problem, which is also
known to be PSPACE-complete [6]. AToken configuration T of a graph Gis an independent set ofG such that a Token
is placed on each vertex inT. In thesliding Token problem, we are given a graphG and two Token configurations
(independent sets)T0 andTt of G, both have the same number of Tokens, and we are asked whether there is a sequence
of Token configurations ofG, starting withT0 and ending inTt, and each resulting from the previous one by sliding
only one Token from one vertexto an adjacent vertex. Therefore, the two problems have slightly different adjacency
relations: in ourindependent set reconfiguration problem, a Token can “jump” from one vertex to any other vertex

5

(a) (b)

Figure 4: (a) Initial independent set (Token configuration) and (b) target independent set (Token configuration).

if it results in an independent set ofG; while, in thesliding Token problem, we can just slide a Tokenalong an edge
of G. Consider the instance in Figure 4, where the vertices in independent sets (or Token configurations) are colored
with black. Then, this is an Yes-instance forindependent set reconfiguration with k = 2, but a No-instance for
sliding Token. However, the PSPACE-completeness proof forsliding Token by [6] indeed works to prove our result
for independent set reconfiguration. Then, we can prove thatindependent set reconfiguration andvertex cover
reconfiguration remain PSPACE-complete even for planar graphs of maximum degree 3.

3. Reconfiguration Problems in P

Reconfiguration problems arise in relation to problems in P as well. For example, in theminimum spanning tree

reconfiguration problem, we are given an edge-weighted graphG, a thresholdk, and two spanning trees ofG, both of
weight at mostk, and wish to transform one tree into another via edge exchanges, without ever getting into a tree with
weight> k. Thematching reconfiguration problem is defined similarly (the formal definition will be given later). We
show in this section that both problems can be solved in polynomial time.

The result for theminimum spanning tree reconfiguration problem can be obtained from the following more
general proposition.

Proposition 1. Let M = (S,B) be a matroid, and let w: S → R be a weight function on S . Let B0 and Bt be two
bases inB such thatmax{w(B0),w(Bt)} ≤ k. Then, there always exists a sequence of|B0 \ Bt | (= |Bt \ B0|) exchanges
that transforms one into the other, without ever exceeding weight k, and maintaining a base at each step.

Proof. Since the adjacency relation is symmetric, we may assume without loss of generality thatw(B0) ≤ w(Bt).
SinceB0 andBt are bases,|B0| = |Bt | and hence letm= |B0 \ Bt | = |Bt \ B0|. The proposition trivially holds ifm= 1.
Therefore, by applying induction, it suffices to prove the following claim: there existsy ∈ B0 \ Bt andz ∈ Bt \ B0 such
thatB0− y+ z is a base inB andw(B0− y+ z) ≤ w(Bt), where we use the shorthand notationB− y+ z= (B\ {y})∪ {z}.
Observe that

∣∣∣(B0 − y+ z) \ Bt

∣∣∣ = ∣∣∣Bt \ (B0 − y+ z)
∣∣∣ = m− 1 andw(B0 − y+ z) ≤ k if the claim holds.

By Brualdi’s exchange property [14, Corollary 39.12a], we can always writeB0\Bt = {y1, y2, . . . , ym} andBt \B0 =

{z1, z2, . . . , zm} such thatB0 − yi + zi is a base inB for every indexi, 1 ≤ i ≤ m. Suppose for a contradiction that

w(B0 − yi + zi) = w(B0) − w(yi) + w(zi) > w(Bt)

for all indicesi = 1,2, . . . ,m. Then,w(zi) − w(yi) > w(Bt) − w(B0), and hence

w(Bt) = w(B0) +
∑

1≤i≤m

(
w(zi) − w(yi)

)
> w(B0) +

∑
1≤i≤m

(
w(Bt) − w(B0)

)
= w(B0) +m ·

(
w(Bt) − w(B0)

)
≥ w(B0) +

(
w(Bt) − w(B0)

)
= w(Bt),

a contradiction. Therefore, there must exist some indexi such thatw(B0 − yi + zi) ≤ w(Bt), as required. �

6

In thematching reconfiguration problem, we are given an unweighted graphG, a thresholdk, and two matchings
M0 andMt of G, both of size at leastk, and we are asked whether there is a sequence of matchings ofG, starting with
M0 and ending inMt, and each resulting from the previous one by either addition or deletion of a single edge inG,
without ever going through a matching of size less thank− 1.

Proposition 2. Matching reconfiguration can be solved in polynomial time.

In the remainder of this section, as a proof of Proposition 2, we give a polynomial-time algorithm which solves
matching reconfiguration.

We first introduce some terms. LetM be a matching of a graphG. A vertexv is calledM-coveredif v is incident
with an edge inM; otherwise,v is calledM-exposed. A path (or a cycle) ofG is calledM-alternating if the edges
along the path (respectively, along the cycle) belong alternatively toM and not toM. An M-augmenting pathis an
M-alternating path whose endpoints are bothM-exposed. For two matchingsM andN of G, we denote byM △ N
the symmetric difference ofM and N, that is, M △ N = (M \ N) ∪ (N \ M). A path (or a cycle) ofG is called
(M,N)-alternatingif the edges along the path (respectively, along the cycle) belong alternatively toM and toN. The
length of a pathP in a graph is defined as the number of edges inP.

We may assume without loss of generality that|M0| ≤ |Mt |. Consider the subgraphH of G induced by all edges
in M0 △ Mt. Then, sinceM0 and Mt are both matchings ofG, each vertex inH has degree at most 2. Therefore,
H consists of single edges, (M0,Mt)-alternating paths and (M0,Mt)-alternating cycles. Thegreedy algorithmfor
transformingM0 into Mt is the following. Divide the components ofH into the following four categories:

(1) single edges ofMt \ M0;
(2) (M0,Mt)-alternating paths which start and end with edges ofMt \ M0;
(3) (M0,Mt)-alternating cycles; and
(4) all the rest.

In this category order, transformM0 into Mt by repeatedly adding edges ofMt \ M0 and deleting edges ofM0 \ Mt

along each component ofH. It is easy to see that intermediate matchings have size at least|M0| − 1 (≥ k − 1) for
exchanging edges in Category (2). Therefore, we can always exchange the edges in Categories (1) and (2). Moreover,
since each component in Categories (1) and (2) is anM0-augmenting path, the matchingM obtained by exchanging all
edges in Categories (1) and (2) has size at least|Mt | (≥ |M0|). We then exchange the edges in an (M0,Mt)-alternating
cycleC in Category (3), as follows: we first delete an arbitrary edge inC∩M0, and then exchange the remaining edges
along the obtained (M0,Mt)-alternating path. Therefore, intermediate matchings have size at least|M| − 2 ≥ |Mt | − 2
for exchanging the edges in Category (3). Similarly, the edges in Category (4) can be exchanged without ever going
through a matching of size less than|Mt | − 2.

We show that the greedy algorithm correctly solvesmatching reconfiguration in polynomial time.

Case (a): |Mt | ≥ k+ 1.
In this case, since the greedy algorithm transformsM0 into Mt without ever going through a matching of size less

than|Mt | − 2, all the intermediate matchings have size at least|Mt | − 2 ≥ k− 1, as required.

Case (b): |Mt | = k, andMt is nota maximum matching ofG.
In this case, we first transformMt into a matchingM′t of sizek + 1 along an arbitraryMt-augmenting pathP;

clearly, the intermediate matchings for exchanging the edges inP have size at least|Mt | − 1 = k− 1. Then, the greedy
algorithm can transformM0 into M′t so that all intermediate matchings are of size≥ k − 1. Finally, we transformM′t
into Mt along the pathP. In this way, a desired sequence always exists for this case.

Case (c): |Mt | = k, andMt is a maximum matching ofG.
Sincek ≤ |M0| ≤ |Mt |, M0 is also a maximum matching ofG. Then,H consists only of (M0,Mt)-alternating

paths with even-length and (M0,Mt)-alternating cycles; otherwise, this contradicts thatM0 andMt are both maximum
matchings ofG. Therefore,H contains components only of Categories (3) and (4).

Since every component in Category (4) is an even-length (M0,Mt)-alternating path, each path starts with an edge
of Mt \ M0 and ends at an edge ofM0 \ Mt. It is easy to see that all intermediate matchings have size at least
|Mt | − 1 ≥ k − 1 for exchanging edges in the path. Therefore, ifH contains no component of Category (3), then the
greedy algorithm can transformM0 into Mt without ever going through a matching of size less thank− 1.

7

e2

e3

e1 e5

e4e2

e3

(a) (b)

e1

e4

Figure 5: (a) No-instance and (b) Yes-instance formatching reconfiguration, whereM0 = {e1,e3}, Mt = {e2,e4} andk = 2 in both instances.

Suppose now thatH contains components of Category (3). In this case, there does not always exist a desired
sequence of matchings. (See Figure 5 as an example.) Nonetheless, existence can be determined in polynomial time
by the following lemma.

Lemma 1. Suppose that both M0 and Mt are maximum matchings of G, and let k= |M0| = |Mt |. Then, there exists a
sequence of matchings which transforms M0 into Mt so that all intermediate matchings have size at least k− 1 if and
only if, for every(M0,Mt)-alternating cycle C, there exists an M0-alternating path in G starting with an M0-exposed
vertex and ending at a vertex in C.

For the example in Figure 5(b), the (M0,Mt)-alternating cycle{e1,e2,e3, e4} has such anM0-alternating path{e5}. By
Lemma 1 one can easily determine whether there exists a desired sequence for Case (c) in polynomial time; we simply
check if there exists such anM0-alternating pathP in G, assuming that each vertex in an (M0,Mt)-alternating cycle is
the endpoint ofP.

From now on, we prove Lemma 1 to complete the proof of Proposition 2. We first show a useful fact, which is a
part of the Edmonds-Gallai decomposition [14].

For a graphG = (V,E), let

D(G) = {v ∈ V | there exists a maximum matchingN of G in whichv is N-exposed}.

For a maximum matchingM of G, let

EVEN(M) = {v ∈ V | there exists an even-lengthM-alternating path from anM-exposed vertex tov}.

Note that we regard anM-alternating path of length 0 as even-length path, and hence EVEN(M) contains allM-
exposed vertices. We have the following lemma.

Lemma 2. For every maximum matching M of a graph G,EVEN(M) = D(G).

Proof. We first show that EVEN(M) ⊆ D(G). Let v be an arbitrary vertex in EVEN(M). Then, there exists an even-
lengthM-alternating pathP from anM-exposed vertex tov. Consider the matchingM′ = M △ P. (Note thatM′ = M
if P is anM-alternating path of length 0.) Since the length ofP is even,M′ is also a maximum matching ofG andv
is M′-exposed. We thus havev ∈ D(G).

We then show that EVEN(M) ⊇ D(G). Letv be an arbitrary vertex inD(G). If v is M-exposed, thenv ∈ EVEN(M),
of course. Suppose now thatv is M-covered. Sincev ∈ D(G), there exists a maximum matchingN of G in which
v is N-exposed. Consider the subgraphHM,N of G induced by all edges inM △ N. Then, sinceM andN are both
maximum matchings ofG, HM,N consists only of (M,N)-alternating paths with even-length and (M,N)-alternating
cycles. Sincev is M-covered andN-exposed,v must be an endpoint of an even-length (M,N)-alternating pathP.
Clearly, the other endpoint of the pathP is M-exposed (andN-covered), and hencev ∈ EVEN(M). �

Lemma 2 immediately implies the following corollary.

Corollary 1. For every two maximum matchings M and N of G,EVEN(M) = EVEN(N).

8

v2l-1v0

vr x

vr-1

vr +1 vr +1

vr +1 vr +1

v1

(= v2l
)(= v2l

)

(= v2l
)(= v2l

)

(a)

v2l-1v0

vr x

vr-1

v1

(b)

v2l-1v0

vr x

vr-1

v1

(c)

v2l-1v0

vr x

x’ x’

x’ x’

vr-1

v1

(d)

Figure 6: Exchanging the edges in an (M0,Mt)-alternating cycleC = {v0, v1, . . . , v2l } using anM0-alternating pathP starting with anM0-exposed
vertexx and ending atvr ∈ C, where each edge in a matching is drawn as a thick line.

We are now ready to prove Lemma 1.

[Proof of Lemma 1]
Necessity: Suppose that, for every (M0,Mt)-alternating cycle, there exists anM0-alternating path inG starting with an
M0-exposed vertex and ending at a vertex in the cycle. It suffices to show that we can exchange the edges in Category
(3) such that all intermediate matchings are of size≥ k− 1.

Let C = {v0, v1, . . . , v2l} be an (M0,Mt)-alternating cycle wherev2l = v0, and suppose that there exists anM0-
alternating pathP starting with anM0-exposed vertexx and ending atvr in C. (See Figure 6(a).) Letx′ be the vertex
in P adjacent withvr , as illustrated in Figure 6(a). Note that, sincevr is in C, the edge (x′, vr) is not in M0. Then, we
exchange the edges inC as follows: first, exchange the edges of the path{x, . . . , x′} alongP, and obtain a matching
M in which x′ is M-exposed (see Figs. 6(a) and (b)); then, exchange the edges of the path{x′, vr , vr+1, . . . , vr−1} in this
order (see Figs. 6(b) and (c)); finally, exchange the edges of the path{vr−1, vr , x′, . . . , x} in this order (see Figs. 6(c)
and (d)). Clearly, all intermediate matchings have size≥ k− 1.

Let M′ be the matching ofG obtained by the edge exchanges above. LetE(C) be the set of edges inC. Since
M0 ∩ M′ = M0 \ E(C), we can exchange the edges of each (M0,Mt)-alternating cycle independently. In this way, we
can exchange the edges of all components of Category (3) such that all intermediate matchings are of size≥ k − 1,
and hence there exists a way to transformM0 into Mt without ever going through a matching of size less thank− 1.

Sufficiency: Suppose that Category (3) contains an (M0,Mt)-alternating cycleC such that there is noM0-alternating
path inG starting with anM0-exposed vertex and ending at a vertex inC. Then, no vertex inC is contained in
EVEN(M0). Suppose for a contradiction that there is a sequence of matchings which transformsM0 into Mt such that
all intermediate matchings are of size≥ k − 1. Let M0,M1, . . . ,Mt be such a sequence of matchings whose length
(i.e. the number of intermediate matchings) is minimum. LetMq be the first matching in the sequence for which we
remove an edge (u, v) of M0 that belongs toC. Then, sincek is equal to the maximum size of a matching inG, we
clearly have|Mq−1| = k, |Mq| = k− 1 and

Exposed(Mq) = Exposed(Mq−1) ∪ {u, v},

9

where Exposed(M) is the set of allM-exposed vertices inG for a matchingM of G. Since all intermediate matchings
are of size≥ k−1, the matchingMq+1 must be obtained fromMq by adding some edge (y, z). Note thaty andzmust be
both in Exposed(Mq). If both y andzare also in Exposed(Mq−1), then this contradicts the fact thatMq−1 is a maximum
matching ofG. We thus assume thaty = u. If z = v, thenMq−1 = Mq+1; this contradicts thatM0,M1, . . . ,Mt is a
minimum-length sequence. Therefore,z is some vertex in Exposed(Mq−1). But then, the path{z,u, v} is an even-length
Mq−1-alternating path. Sincez is Mq−1-exposed andMq−1 is a maximum matching ofG, v is in EVEN(Mq−1). By
Corollary 1, EVEN(M0) = EVEN(Mq−1) and hencev ∈ EVEN(M0). This contradicts that no vertex inC is contained
in EVEN(M0). �

Besidesmatroid reconfiguration andmatching reconfiguration, it turns out that all polynomial-time solvable
special cases ofsatisfiability, as characterized by Schaefer [13], give rise to polynomially solvable reconfiguration
problems:

Theorem 3 ([3]). Satisfiability reconfiguration for linear, Horn, dual Horn and 2-literal clauses are all inP.

4. Approximation

We have seen that an optimization problem gives rise to a reconfiguration problem by bounding the objective of
intermediate configurations. In turn, we can get a natural optimization problem if we try tooptimize the worst objective
among all configurationsin the reconfiguration sequence. For example, in the problem that we call themaxmin clique

reconfiguration problem, we are given a graph and two cliquesC0 andCt, and we are asked to maximize the minimum
size of any clique in a sequence which transformsC0 intoCt by additions and removals of single nodes. In this section,
we give some inapproximability and approximability results for such optimization problems.

4.1. Inapproximability

In this subsection, we show inapproximability results for two max-min type reconfiguration problems.
We first give the following theorem for themaxmin clique reconfiguration problem.

Theorem 4. Maxmin clique reconfiguration cannot be approximated within any constant factor unlessP= NP.

Proof. We give a polynomial-time reduction in an approximation-preserving manner from the (ordinary)clique prob-
lem to this problem. For a given graphG with nnodes, we construct a new graphG′ with 3nnodes as the corresponding
instance ofmaxmin clique reconfiguration: a set ofn nodes is connected asG, while two new sets ofn nodes are
connected each as a clique (these two cliques ofG′ are calledC0 andCt); finally, there are edges inG′ between each
new node and each node inG.

Consider any sequence of cliques ofG′, each resulting from the previous one by insertion or deletion of a single
node, starting fromC0 and ending inCt. We claim that one of them will be a clique ofG — this follows directly from
the absence of any edges betweenC0 andCt. Conversely, for every cliqueC of G, there exists a sequence fromC0 to
Ct via C: add the nodes ofC to the cliqueC0 and obtain the cliqueC0∪C, then remove those ofC0 and obtainC, then
add those ofCt and obtainC ∪Ct, and finally remove those ofC and obtainCt. Since|C0| = |Ct | = n and|C| ≤ n, the
minimum clique size in the sequence is the size ofC, and hence solving (or approximating) this instance ofmaxmin
clique reconfiguration is the same as solving (respectively, approximating) theclique problem forG. Since it is
known thatclique cannot be approximated within any constant factor unless P= NP [4], the result follows. �

In themaxmin maxsat reconfiguration problem, we are given a SAT formula and two truth assignmentss0 and
st (which are not necessarily satisfying), and we are asked to maximize the minimum number of clauses satisfied by
any truth assignment in a path in the hypercube betweens0 andst. Then, a similar argument establishes the following
theorem.

Theorem 5. Maxmin maxsat reconfiguration cannot be approximated within a factor better than15
16 unlessP= NP.

10

Proof. We give a polynomial-time reduction in an approximation-preserving manner from the (ordinary)maxsat

problem to this problem. Suppose that we are given an instanceϕ of maxsat with n variablesx1, x2, . . . , xn andm
clausesC1,C2, . . . ,Cm. We construct a new formulaϕ′ in which each clauseC j , 1 ≤ j ≤ m, is replaced by (C j ∨ y∨ z)
wherey andz are new variables, and the additional clause (¯y∨ z̄) with weight m. Notice that every truth assignment
of ϕ′ with z, y satisfies all 2m clauses, and hence the truth assignmentss0 : z= 1, y = 0, x1 = x2 = · · · = xn = 1 and
st : z= 0, y = 1, x1 = x2 = · · · = xn = 0 are both satisfying all 2mclauses.

For each truth assignments of the original formulaϕ, let s′ be a truth assignment of the corresponding formula
ϕ′ such thatz = y (namely, eitherz = y = 0 or z = y = 1) and eachxi , 1 ≤ i ≤ n, is as ins. Then, it is easy to see
that there is a path in the (n + 2)-dimensional hypercube froms0 to st via s′ such thaty , z in all intermediate truth
assignments except fors′. Clearly, every truth assignment, except fors′, in the path satisfies all 2mclauses, and hence
the objective value for the path is the number of clauses satisfied bys′.

Consider now an optimal path in the (n+ 2)-dimensional hypercube betweens0 andst. Since ats0 : z = 1, y = 0
and atst : z= 0, y = 1, there must exist a truth assignments∗ on this path such thatz= y. Since the clause (¯y∨ z̄) has
weightmand the path is assumed optimal, it must be thatz= y = 0. Thus, the remaining variablesxi , 1 ≤ i ≤ n, must
spell an optimal satisfying truth assignment of the original formulaϕ. Hence, from the optimal value OPT′ for the
corresponding instance ofmaxmin maxsat reconfiguration, we can compute the optimal value OPT for the original
instanceϕ of maxsat: since ats∗ : z= y = 0, we have

OPT= OPT′ −m. (1)

Suppose now that we have anα-approximation formaxmin maxsat reconfiguration, and hence we can compute
an approximate valueA′ for the corresponding instance such that

A′ ≥ α ·OPT′. (2)

One may assume without loss of generality thatA′ ≥ m; otherwise there must exist at least one truth assignment such
thatz = y = 1 in the path; but, by replacing all such truth assignments withz = y = 0, we can easily obtain a better
objective≥ m. Thus, there exists a truth assignment for the original formulaϕ which satisfies a number (A′ −m) of
clauses. LetA = A′ −m. By Eqs. (1) and (2) we have

A = A′ −m≥ α ·OPT′ −m= α ·OPT+ (α − 1)m. (3)

Sincem≥ OPT, by Eq. (3) we haveA ≥ (2α−1)·OPT. Therefore, we can obtain a (2α−1)-approximation formaxsat,
from anα-approximation formaxmin maxsat reconfiguration. Since it is known thatmaxsat cannot be approximated
within a factor better than78 unless P= NP [5], the result follows. �

4.2. Approximability
In this subsection, we show approximability results for two min-max type reconfiguration problems.
In theminmax set cover reconfiguration problem, we are given an universal setU, a familyS of subsets ofU,

each of subsets has a nonnegative cost, and two coversC0 andCt of U, where acoverC of U is a subfamily ofSwhose
union isU. Then, we are asked to minimize the maximum total cost of any cover in a sequence which transformsC0

intoCt via covers ofU, each of which results from the previous one by adding or deleting a single set inS.

Theorem 6. There is a linear-time2-approximation algorithm forminmax set cover reconfiguration.

Proof. For a coverC of U, we denote byω(C) the sum of costs of all subsets inC. Consider an optimal sequence
C0,C1, . . . ,Ct for an instance ofminmax set cover reconfiguration. Let OPT be the objective value for the sequence,
and hence OPT= max{ω(Ci) | 0 ≤ i ≤ t}. Therefore, we clearly have

max{ω(C0), ω(Ct)} ≤ OPT. (4)

As our approximation solution, we consider the following sequence of covers: (i) add the subsets inCt \ C0 one
by one toC0, and obtain the coverC0 ∪ Ct of U; (ii) delete the subsets inC0 \ Ct one by one fromC0 ∪ Ct, and obtain
Ct. Clearly, our approximate valueA is A = ω(C0 ∪ Ct), and hence by Eq. (4) we have

A = ω(C0 ∪ Ct) ≤ ω(C0) + ω(Ct) ≤ 2 ·max{ω(C0), ω(Ct)} ≤ 2 ·OPT.

This completes the proof of Theorem 6. �
11

Returning to thepower supply problem, there is a natural optimization version of the problem, in which the
constraint that the total demand of all demand vertices in each subtreeT be within the supply of the supply vertex in
T is replaced by a “soft” criterion: we allow that the total demand inT exceeds the supply inT, but wish to minimize
the sum of the “deficient power” of all supply vertices in the graph.

We now define theminmax power supply reconfiguration problem. For a configurationf of a bipartite graph
G = (U,V,E) and a supply vertexu ∈ U, thedeficient power d(f ,u) of u on f is defined as follows:

d(f , u) =
∑{

dem(v) | v ∈ V such thatf (v) = u
}
− sup(u).

If f is infeasible, then there is at least one supply vertexu such thatd(f ,u) > 0. On the other hand, iff is feasible,
thend(f ,u) ≤ 0 for all supply verticesu ∈ U; in fact, a nonpositive deficient powerd(f ,u) represents themarginal
powerof u on f . Thecost c(f) of a configuration fis defined as follows:

c(f) =
∑
u∈U
|d(f ,u)|.

Note thatc(f) contains the marginal power of supply vertices, because it is difficult to change the supplies quickly
and hence we waste the marginal power. Clearly,c(f) =

∑
u∈U sup(u) −∑v∈V dem(v) for every feasible configuration

f of G. In the problem that we call theminmax power supply reconfiguration problem, we are given a bipartite graph
G = (U,V,E) and two feasible configurationsf0 and ft of G, and we are asked to minimize the maximum cost of any
configuration in a sequence which transformsf0 into ft by reassignments of single demand vertices. Then, we have
the following observation.

Observation 1. The objective value for a sequence which transforms f0 into ft is
∑

u∈U sup(u) − ∑v∈V dem(v) if and
only if all configurations in the sequence are feasible. Moreover, such a sequence is optimal if it exists.

In the remainder of this subsection, we give a linear-time 2-approximation algorithm for theminmax power supply

reconfiguration problem if a given bipartite graphG has exactly two supply vertices. We first show that the problem
is strongly NP-hard even for more restricted instances.

Lemma 3. Minmax power supply reconfiguration is stronglyNP-hard, even for the restricted problem consisting of
instances on a complete bipartite graph with exactly two supply vertices.

Proof. We give a polynomial-time reduction from the 3-partition problem [2] to this problem for a complete bipartite
graph with exactly two supply vertices. In 3-partition, we are given a positive integer boundb, and a setA of 3m
elementsa1,a2, . . . , a3m; each elementai ∈ A has a positive integer sizes(ai) such thatb/4 < s(ai) < b/2 and such that∑

a∈A s(a) = mb. Then, the 3-partition problem is to determine whetherA can be partitioned intom disjoint subsets
A1,A2, . . . ,Am such that

∑
a∈A j

s(a) = b for eachj, 1 ≤ j ≤ m. 3-partition is known to be strongly NP-complete [2].
For a given instance of 3-partition, we first construct a complete bipartite graphG = (U,V,E) with |U | = 2, as

follows: U consists of two supply verticesu1 andu2 such that sup(u1) = mband sup(u2) = (m+1)b; andV consists of
4mdemand verticesv1, v2, . . . , v3m andb1,b2, . . . , bm such that dem(vi) = s(ai) for eachi, 1 ≤ i ≤ 3m, and dem(b j) = b
for eachj, 1 ≤ j ≤ m. We then give two feasible configurationsf0 and ft of G, as follows:

f0(x) =

{
u1 if x = vi , 1 ≤ i ≤ 3m;
u2 if x = b j , 1 ≤ j ≤ m,

and

ft(x) =

{
u2 if x = vi , 1 ≤ i ≤ 3m;
u1 if x = b j , 1 ≤ j ≤ m.

Clearly,d(f0, u1) = d(ft,u1) = 0 andd(f0, u2) = d(ft,u2) = −b (that is, only the supply vertexu2 has an amountb of
marginal power), and hencec(f0) = c(ft) = b.

It is easy to see that there exists a desired partition{A1,A2, . . . ,Am} for a given instance of 3-partition if and
only if there exists a sequence which consists of only feasible configurations ofG for the corresponding instance of
minmax power supply reconfiguration. Therefore, by Observation 1 we can answer whether the setA has a desired
partition by determining whether the optimal value isb or not for the corresponding instance ofminmax power supply
reconfiguration. �

12

By Lemma 3 it is very unlikely that theminmax power supply reconfiguration problem can be solved even in
pseudo-polynomial time. However, the problem can be solved in linear time for the following special case.

Suppose in the remainder of this subsection that we are given a bipartite graphG = (U,V,E) having exactly two
supply verticesu1 andu2. (Note thatG is not necessarily complete.) For two given feasible configurationsf0 and ft of
G, letW = {v ∈ V | f0(v) , ft(v)}, that is,W is the set of demand vertices which must be reassigned to the other supply
vertex. Notice that all (demand) vertices inW are adjacent to both the two supply vertices. Letv∗ be a demand vertex
in W having the maximum demand, that is, dem(v∗) = max{dem(v) | v ∈W}. Then, we have the following lemma.

Lemma 4. If c(f0) ≥ 2 · dem(v∗), then an optimal sequence for the instance consists of only feasible configurations
of G, and it can be found in linear time.

Proof. Suppose without loss of generality thatW , ∅. If all demand vertices inW are assigned to the same supply
vertex u on f0, then we just reassign the demand vertices inW from u to the other one by one. Notice that all
intermediate configurations are feasible since bothf0 and ft are feasible. Therefore, we may assume in the following
that each of the two supply vertices has at least one demand vertex inW.

Since f0 is feasible,c(f0) = sup(u1)+ sup(u2)−∑v∈V dem(v) and the costc(f0) denotes the sum of marginal power
of the two supply vertices. Moreover, since the sum is at least 2· dem(v∗), one of the two supply vertices has marginal
power of at least dem(v∗). Therefore, we can change the assignment of at least one demand vertexv ∈ W from the
initial supply vertex to the target one, since dem(v) ≤ dem(v∗). Clearly, the resulting configurationf1 is also feasible,
and hence it satisfiesc(f1) = c(f0) ≥ 2 · dem(v∗). In this way, by reassigning the demand vertices inW one by one,
we can obtain a desired sequencef0, f1, . . . , ft which consists of only feasible configurations. By Observation 1 the
sequence is an optimal solution. The length of the sequence is|W| (≤ |V|) since each demand vertex inW moves
exactly once and any of the other demand vertices does not move in the sequence. We can thus find an optimal
solution in linear time. �

Using Lemma 4, we have the following theorem.

Theorem 7. There is a linear-time2-approximation algorithm forminmax power supply reconfiguration if a given
bipartite graph has exactly two supply vertices.

Proof. Let OPT be the optimal value for a given instance ofminmax power supply reconfiguration. Since the demand
vertexv∗ having the maximum demand inW must be reassigned at least once in any sequence fromf0 to ft, it is easy
to observe that

OPT≥ dem(v∗). (5)

By Lemma 4 it suffices to consider the casec(f0) < 2 · dem(v∗). Note that, sincef0 is feasible, sup(u1)+ sup(u2) <
2 · dem(v∗) +

∑
v∈V dem(v) in this case. Consider a slightly modified instance in which the supplies of the two supply

vertices are increased by the same amountε so that the total supply is equal to 2· dem(v∗) +
∑

v∈V dem(v), that is, the
supplysup(u) of a supply vertexu in the modified instance issup(u) = sup(u) + ε where

ε =
1
2

(
2 · dem(v∗) +

∑
v∈V

dem(v) − sup(u1) − sup(u2)
)
.

In the modified instance, both the configurationsf0 and ft remain feasible and ¯c(f0) = c̄(ft) = 2 · dem(v∗), where
c̄(f) denotes the cost of a configurationf in the modified instance. Therefore, by Lemma 4 we can find in linear time
a sequence which consists of only feasible configurations for the modified instance; by Observation 1, the objective
value is 2· dem(v∗). Note that some configurations in the sequence may be infeasible for the original instance.
Consider an arbitrary configurationf in the sequence which is infeasible for the original instance; let V1 ⊆ V be the
set of demand vertices such thatf (v) = u1, and letV2 = V \ V1. Since f is feasible for the modified instance, we have

c̄(f) =
(
sup(u1) −

∑
v∈V1

dem(v)
)
+

(
sup(u2) −

∑
v∈V2

dem(v)
)
= 2 · dem(v∗). (6)

13

On the other hand, sincef is infeasible for the original instance, exactly one ofd(f ,u1) andd(f ,u2) is positive, say
u1; otherwise, eitherf is feasible orf0 would be infeasible in the original instance.Then, we have

c(f) =

(∑
v∈V1

dem(v) − sup(u1)
)
+

(
sup(u2) −

∑
v∈V2

dem(v)
)

=

(∑
v∈V1

dem(v) − sup(u1) + ε
)
+

(
sup(u2) − ε −

∑
v∈V2

dem(v)
)

≤ sup(u2) −
∑
v∈V2

dem(v)

since
∑

v∈V1
dem(v) − sup(u1) ≤ 0. Then, by Eq. (6) we havec(f) ≤ c̄(f) = 2 · dem(v∗). By Eq. (5) we thus have

c(f) ≤ 2 · OPT. Since the cost of a feasible configuration is smaller than the cost of an infeasible configuration, the
objective value of this sequence in the original instance is at most 2·OPT, as required. �

5. Open Problems

There are many open problems raised by this work, and we mention some of these below:

• Can thematching reconfiguration problem for edge-weighted graphs be solved also in polynomial time? We
conjecture that the answer is positive.

• Is thetraveling salesman reconfiguration problem (where two tours are adjacent if they differ in two edges)
PSPACE-complete?

• Are there better approximation algorithms for theminmax power supply reconfiguration problem? Lower
bounds?

• Are the problems in Section 4 PSPACE-hard to approximate (not just NP-hard)?

Acknowledgements

We thank the referees for their fruitful comments, one of which leads us to an improvement of the approximation
ratio forminmax power supply reconfiguration.

References

[1] P. Bonsma and L. Cereceda, Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances, Theoretical
Computer Science 410 (2009) 5215–5226.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA,
1979.

[3] P. Gopalan, P. G. Kolaitis, E. N. Maneva and C. H. Papadimitriou, The connectivity of Boolean satisfiability: computational and structural
dichotomies, SIAM J. Computing 38 (2009) 2330–2355.

[4] J. Håstad, Clique is hard to approximate withinn1−ε, Acta Mathematica 182 (1999) 105–142.
[5] J. Håstad, Some optimal inapproximability results, J. ACM 48 (2001) 798–859.
[6] R. A. Hearn and E. D. Demaine, PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint

logic model of computation, Theoretical Computer Science 343 (2005) 72–96.
[7] T. Ito, E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M. Sideri, R. Uehara and Y. Uno, On the complexity of reconfiguration problems,

Proc. of ISAAC 2008, LNCS 5369 (2008) 28–39.
[8] T. Ito, E. D. Demaine, X. Zhou and T. Nishizeki, Approximability of partitioning graphs with supply and demand, J. of Discrete Algorithms

6 (2008) 627–650.
[9] T. Ito, M. Kamiński, E. D. Demaine, Reconfiguration of list edge-colorings in a graph, Proc. of WADS 2009, LNCS 5664 (2009) 375–386.

[10] T. Ito, X. Zhou and T. Nishizeki, Partitioning trees of supply and demand, International J. Foundations of Computer Science 16 (2005)
803–827.

[11] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[12] W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J. of Computer and System Sciences 4 (1970)

177–192.
[13] T. J. Schaefer, The complexity of satisfiability problems, Proc. of 10th ACM Symposium on Theory of Computing, pp. 216–226, 1978.
[14] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer-Verlag, 2003.

14

