
Generating Random Spanning Trees
via Fast Matrix Multiplication

Nicholas J. A. Harvey and Keyulu Xu

University of British Columbia,
Vancouver, BC, Canada

nickhar@cs.ubc.ca,keyulu.x@gmail.com

Abstract. We consider the problem of sampling a uniformly random
spanning tree of a graph. This is a classic algorithmic problem for which
several exact and approximate algorithms are known. Random spanning
trees have several connections to Laplacian matrices; this leads to al-
gorithms based on fast matrix multiplication. The best algorithm for
dense graphs can produce a uniformly random spanning tree of an n-
vertex graph in time O(n2.38). This algorithm is intricate and requires
explicitly computing the LU-decomposition of the Laplacian.
We present a new algorithm that also runs in time O(n2.38) but has
several conceptual advantages. First, whereas previous algorithms need
to introduce directed graphs, our algorithm works only with undirected
graphs. Second, our algorithm uses fast matrix inversion as a black-box,
thereby avoiding the intricate details of the LU-decomposition.

Keywords: Uniform Spanning Trees · Spectral Graph Theory · Fast
Matrix Multiplication · Laplacian Matrices

1 Introduction

Enumerating and sampling spanning trees of a graph is a classic problem in
combinatorics dating back to Kirchhoff’s celebrated matrix-tree theorem [16]
from 1847. From this result, one can fairly easily derive a polynomial-time algo-
rithm to generate a uniformly random spanning tree. Over the past few decades,
researchers have developed several startling algorithms for this problem with
improved running times.

The existing algorithms fall into three broad classes.

Laplacian-based algorithms Properties of the graph’s Laplacian matrix al-
low one to compute the number of spanning trees in the graph. Similarly, one
can compute the probability that a given edge is in a uniformly random span-
ning tree. A sequence of papers [12, 18, 8, 9] developed improved algorithms
following this approach. This culminated in the algorithm of Colbourn, Myr-
vold and Neufeld which has running time O(nω), where ω < 2.373 is the
best-known exponent for matrix multiplication. These algorithms are most
efficient on dense graphs.

2 Nicholas J. A. Harvey and Keyulu Xu

Random walks Aldous [1], Broder [3] and Wilson [21] showed that remarkably
simple algorithms using random walks can be used to generate a uniformly
random spanning tree. These algorithms are particularly efficient on graphs
whose cover time or mean hitting time is small.

Approximate algorithms Recent advances in algorithmic spectral graph the-
ory have led to nearly-linear time algorithms for approximately solving lin-
ear systems involving Laplacian matrices [17]. These methods can be used
to accelerate the random walk algorithms by identifying regions of the graph
where the random walk will be slow [15, 20]. These algorithms are most ef-
ficient on sparse graphs.

1.0.0.1 Applications. The interest in enumerating and sampling spanning
trees is not only due to its origins as a foundational problem in combinatorics.
Random spanning trees have also turned out to be useful in many other con-
texts in combinatorics and computer science. For example, Colbourn et al. [7]
showed how the coefficients of the reliability polynomial can be estimated using
random spanning trees. Goyal, Rademacher and Vempala [11] have used ran-
dom spanning trees to generate expander graphs. Recent breakthroughs on the
traveling salesman problem [2, 10] involve so-called “λ-random spanning trees”,
which are essentially uniformly random spanning trees in multigraphs. Other
distributions on spanning trees have been used to show results in spectral graph
theory [14]. More generally, random distributions on matroid bases have had
interesting applications in submodular optimization [6].

1.1 Related Work

Consider the following algorithm for sampling any subgraph [18, Algorithm A].
Consider the edges in order; for each edge, decide if it is in the subgraph or not
with probability conditioned on the previous decisions. It is a trivial consequence
of the chain rule for conditional probabilities that this generates a random sub-
graph according to the desired distribution.

This algorithm can be used to generate uniformly random spanning trees if
one can determine the probability of an edge being in the tree, conditioned on
all previous decisions. It turns out that conditioning on an edge not being in the
tree is the same as deleting the edge, whereas conditioning on an edge being in
the tree is the same as contracting the edge. Thus, we may use the matrix-tree
theorem to determine the sampling probability for each edge, by considering
the graph with all the necessary deletions and contractions. Guenoche [12] and
Kulkarni [18] discussed this method and showed that it can be implemented in
time O(n3m). A more detailed discussion of this method is given in Section 3.

Colbourn, Day and Nel [8] showed that the runtime of this method can be
improved to O(n3). Their algorithm is recursive and applies partial Gaussian
elimination. Colbourn, Myrvold and Neufeld [9] presented a different algorithm
that also has runtime O(n3). Their first observation is that the desired sam-
pling probabilities can be determined in constant time from the inverse of the
(modified) Laplacian matrix (which they call the Kirchhoff matrix). Then, they
observe that, after contracting an edge, the new inverse of the Laplacian matrix

Generating Random Spanning Trees via Fast Matrix Multiplication 3

can be computed in O(n2) time by the Sherman-Morrison formula. Since the
algorithm performs n− 1 contractions, the total runtime is O(n3).

The best running time for dense graphs is obtained by another algorithm of
Colbourn, Myrvold and Neufeld (CMN) [9]. They show that fast matrix mul-
tiplication can be used to give an algorithm with runtime O(nω). This algo-
rithm abandons the Sherman-Morrison formula and instead computes the LU-
decomposition of the Laplacian matrix via a “six-way divide-and-conquer algo-
rithm”. The rather intricate details of this approach are strongly reminiscent of
the Bunch-Hopcroft algorithm [4] for fast matrix inversion.

1.2 Our Techniques

In this paper, we present a new algorithm for sampling a uniformly random
spanning tree in O(nω) time. Our approach is different from, and arguably sim-
pler than, the CMN algorithm. We recursively enumerate all edges in the graph,
and lazily update the inverse of the Laplacian matrix as edges are chosen to be
added to the tree or not. The updates are determined by an extension of the
Sherman-Morrison formula and can be performed using fast matrix inversion as
a black box. This avoids many of the intricacies of the approach based on LU-
decomposition. Our idea for this approach originates from a similar algorithm
for non-bipartite matching that also uses fast matrix inversion [13].

Nevertheless, there are numerous challenges that must be addressed in the
present work. One challenge is that the Laplacian matrix is not invertible. Previ-
ous algorithms dealt with that by deleting the row and column associated with
an arbitrary vertex and inverting the resulting matrix instead. We avoid this
issue by working with the Moore-Penrose pseudoinverse of the Laplacian, which
always exists. We must then derive a new extension of the Sherman-Morrison
formula for updating the pseudoinverse. Such formulas are known, but quite
complicated in general — a standard reference [5, §3.1] describes an algorithm
that involves six different cases! Our formulas are much simpler.

Another challenge relates to the contraction of edges. Normally contracting
an edge involves decreasing the number of vertices by one. Performing the corre-
sponding operation to the Laplacian and its pseudoinverse is quite cumbersome.
The CMN algorithm avoids this issue by working with directed graphs and sam-
pling arboresences. In a directed graph, the analog of this contraction operation
is to delete all-but-one incoming arc to a vertex; this does not affect the number
of vertices. We adopt a different approach that avoids unnecessarily resorting to
directed graphs. We effectively contract an edge by increasing its weight to be
a large value k. In the limit k → ∞, this is equivalent to contracting the edge,
from the point of view of electrical networks and spanning trees.

2 Preliminaries

The graph G is assumed to be undirected, simple, connected and unweighted.

4 Nicholas J. A. Harvey and Keyulu Xu

2.1 Notations

In this section, we explain the notations that we use in the algorithms and
theorems.

Definition 1. Given an unweighted graph G = (VG, EG) with |VG| = n, its
Laplacian matrix LG = (li,j)n×n is defined as LG = D − A, where D is the
degree matrix and A is the adjacency matrix, i.e.

li,j =

deg(vi) (if i = j)

−1 (if i 6= j and vivj ∈ EG)

0 otherwise

.

Given any set E ⊆ EG, we may define its Laplacian LE to be the Laplacian of
the subgraph (VG, E).

We also define the Laplacian of a graph with finite weights. Suppose that
w : E → R≥0 assigns weights to the edges of G. Then the weighted Laplacian is
Lw = (li,j)n×n where

li,j =

∑

e incident on i we (if i = j)

−we (if e = {i, j} ∈ E)

0 (otherwise)

Definition 2. Let A be a matrix. A submatrix containing rows S and columns
T is denoted AS,T . A submatrix containing all rows (resp., columns) is denoted
A∗,T (resp., AS,∗).

Remark 1. Throughout this paper we will use the notation of Definition 2 for
matrices such as LG whose notation already involves a subscript. Mathemati-
cal correctness would suggest using the notation (LG)S,T but for typographical
clarity we will instead use the notation LGS,T

.

Definition 3. Let A ∈Mm×n, a pseudoinverse of A is defined as A+ ∈Mn×m
satisfying all of the following criteria: AA+A = A, A+AA+ = A+, (AA+)T =
AA+, (A+A)T = A+A.

Definition 4. Define ω ∈ R as the infimum over all c ∈ R such that multiplying
two n × n matrices takes O (nc) time. Matrix inverse of an n × n matrix can
also be computed in O(nω) time.

2.2 Facts

We will use the following basic facts. Proofs of these facts can be found in books
on linear algebra and spectral graph theory.

Fact 1 (Sherman-Morrison-Woodbury formula). Let M ∈ Mn×n, U ∈
Mn×k, V ∈Mn×k. Suppose M is non-singular. Then M + UV T is non-singular
if and only if I + V TM−1U is non-singular. If M + UV T is non-singular, then

(M + UV T)−1 = M−1 −M−1U(I + V TM−1U)−1V TM−1

Generating Random Spanning Trees via Fast Matrix Multiplication 5

Fact 2. For any L ∈ Mn×n with kernel span(1), we have LL+ = I − 11T

n . We

call I − 11T

n the projection matrix P .P := I − 11T /n

Fact 3 (Facts about Submatrices).

1. For any A,B ∈Mm×n and index set S, (A+B)S,S = AS,S +BS,S.
2. For any matrices C,D,E, F and index set S, if C = DEF , then CS,S =

DS,∗EF∗,S.
3. For any A ∈ Mm×n, B ∈ Mn×l and index set S, if A or B is only non-zero

in S, S, then (AB)S,S = AS,S ×BS,S.
4. For any matrices C = DEF and index set S. If D∗,Sc = 0 and FSc,∗ = 0,

then C = D∗,SES,SFS,∗.
5. Suppose D = [M 0

0 0] and E = [A B
X Y] where M,A are n-by-n and MA − I is

non-singular. Then we have

(DE − I)−1 =

[
(MA− I)−1 (MA− I)−1MB

0 −I

]
Fact 4. Let A,B ∈ Mn×n with B symmetric positive semi-definite. Suppose
x is an eigenvector of AB corresponding to eigenvalue λ. Then B1/2x is an
eigenvector of B1/2AB1/2 corresponding to eigenvalue λ.

Fact 5. Let G be a graph with n vertices. Let λ1 ≤ · · · ≤ λn be the eigenvalues
of LG with the corresponding eigenvectors v1, · · · , vn. Then LG is symmetric
positive semi-definite. λ1 = 0 and v1 = 1. Moreover, λ2 > 0 if and only if G is
connected, i.e. G is disconnected if and only if ∃z with zT1 = 0 and zTLGz = 0.
Everything above holds for L+

G as well.

3 The Chain-Rule Algorithm
Given a simple undirected connected graph G = (VG, EG), let T be the set of
all spanning trees of G. We want to sample a uniformly random spanning tree
T̂ ⊆ EG such that for any T ∈ T , P(T̂ = T) = 1/|T |.

As described in Section 1.1, there is a simple algorithm for generating uni-
formly random spanning trees based on the chain-rule for conditional probabil-
ities [12] [18, Algorithm A8] [19, §4.2]. The algorithm traverses the graph and
samples an edge with the conditional probability of it belonging to the tree.
Fact 6 below shows that this conditional probability is determined by effective
resistances in the graph where edges are contracted or deleted in accordance
with the algorithm’s previous decisions. This algorithm is shown in Algorithm 1.

Fact 6. Given an graph G = (VG, EG) with Laplacian LG, the effective resis-
tance of an edge e = {u, v} ∈ EG is defined as

Reff
e = (Xu −Xv)TL+

G(Xu −Xv).

where Xu is a unit vector of size |VG| with Xu(u) = 1 and 0 otherwise. Let T̂ be
a random variable denoting a uniformly random spanning tree, i.e. P(T̂ = T) =
1/|T | for any T ∈ T , where T is the set of all spanning trees of G. Then for
any e ∈ EG, we have P(e ∈ T̂) = Reff

e .

6 Nicholas J. A. Harvey and Keyulu Xu

Algorithm 1 Sampling a uniformly random spanning tree using the chain-rule.

1: function SampleSpanningTree(G = (V,E))
2: for e = {u, v} ∈ E do
3: Reff

e ← (Xu −Xv)TL+
G(Xu −Xv)

4: Flip a biased coin that turns head with probability Reff
e

5: if head then
6: Add e to the spanning tree
7: Contract e from G and update L+

G

8: else
9: Delete e from G and update L+

G

The algorithm involves three key properties that guarantee correctness.

– P1: It visits every edge of EG exactly once.
– P2: It examines L+

G to compute the correct conditional probability of sam-
pling an edge.

– P3: It updates L+
G to incorporate the contraction or deletion of that edge.

The naive method to update L+
G is to recompute it from scratch, which would

require O(n3) time. There are at most n2 edges, so overall the algorithm runs in
O(n5) time.

4 A Recursive Algorithm with Lazy Updates

In this section, we present Algorithm 2, which, based on Algorithm 1, provides
a faster way to update the Laplacian pseudoinverse and reduces the runtime
to O(nω). The only difference between Algorithm 2 and Algorithm 1 is that
Algorithm 2 visits the edges in a specific order to exploit lazy updates to L+

G.

4.1 Update Formulas

In this subsection, we present our update formulas for L+
G. We first observe that

the effective resistance of any edge only depends on one entry of L+
G. To see that,

for any edge {u, v}, it follows from Fact 3.4 that

Reff
e = (Xu −Xv)TL+

G(Xu −Xv) = [1, −1]L+
G{u,v},{u,v}

[
1
−1

]
Therefore, when we are deciding whether to sample an edge, all we need to

ensure is that the value of the corresponding entry in the Laplacian pseudoinverse
is correct, which makes lazy updates desirable. Suppose we have made sampling
decisions for some edges of a graph G but have not changed L+

G to reflect these
decisions. Let F be the set of edges sampled and D be the set of edges discarded.
We want to (partially) update L+

G to the Laplacian pseudoinverse of the graph
obtained by contracting edges in F and deleting edges in D from G.

Because the order of updates does not matter, we make the deletion updates
altogether before making the contraction updates. Theorem 1 and Corollary 1
give update formulas for deletion. Lemma 1 states that these formulas are well-
defined.

Generating Random Spanning Trees via Fast Matrix Multiplication 7

Lemma 1. Let G = (VG, EG) be a connected graph and D ⊆ EG. I − LDL
+
G is

non-singular iff G \D contains at least one spanning tree.

Proof. I −LDL
+
G is singular iff 1 ∈ eig(LDL

+
G) because I only has eigenvalue 1.

eig(LDL
+
G) = eig((LG−LG\D)L+

G). By Fact 5, 1 lies in the kernel of L+
G. Suppose

1 ∈ eig(LDL
+
G). Let x ⊥ 1 be an eigenvector of (LG − LG\D)L+

G corresponding

to eigenvalue 1. Let y = (L+
G)1/2x/‖(L+

G)1/2x‖. By Fact 4, y is an eigenvector of
(L+

G)1/2(LG − LG\D)(L+
G)1/2 corresponding to eigenvalue 1. We have

yT (L+
G)1/2(LG − LG\D)(L+

G)1/2y = 1

Also, it is clear that

yT (L+
G)1/2LG(L+

G)1/2y = yTL+
GLGy = yTPy = yT (I − 1T1/n)y = yT y = 1

It follows that yT (L+
G)1/2LG\D(L+

G)1/2y = 0. Also, yT (L+
G)1/21 = xTL+

G1 = 0.

By Fact 5, G \D is disconnected. Hence LDL
+
G is non-singular if G \D contains

at least one spanning tree.
Conversely, suppose G \ D is disconnected. Then by Fact 5 and Fact 4,

there exists y ⊥ 1 of length 1 such that yT (L+
G)1/2LG\D(L+

G)1/2y = 0. Also,

yT (L+
G)1/2LG(L+

G)1/2y = yT y = 1. Hence yT (L+
G)1/2(LG − LG\D)(L+

G)1/2y = 1.

It follows that 1 ∈ eig(LDL
+
G) and I − LDL

+
G is singular.

(LG−LD)+ is the Laplacian pseudoinverse of the graph obtained by deleting
edges in D from G. The runtime of each update in Theorem 1 is O(|VG|ω).

Theorem 1. Let G = (VG, EG) be a connected graph and D ⊆ EG. If G \ D
contains at least one spanning tree, then

(LG − LD)+ = L+
G − L

+
G

(
LDL

+
G − I

)−1
LDL

+
G

Proof. By Lemma 1, (LDL
+
G − I)−1 is well-defined. Since G and G \ D are

connected, by Fact 5 and Fact 2, (LG − LD)(LG − LD)+ = P . We have

(LG − LD)(L+
G − L

+
G(LDL

+
G − I)−1LDL

+
G)

=LGL
+
G − LDL

+
G − ((LGL

+
G − LDL

+
G)(LDL

+
G − I)−1LDL

+
G)

=P − LDL
+
G + ((LDL

+
G − I + 1 · 1T /n)(LDL

+
G − I)−1LDL

+
G)

=P − LDL
+
G + LDL

+
G + 1 · 1T /n(LDL

+
G − I)−1LDL

+
G

We claim 1T (LDL
+
G − I)−1 = −1T . To see that,

−1T (LDL
+
G − I) = 1T (I − LDL

+
G)

= 1T (I − LGL
+
G + LG\DL

+
G)

= 1T (1 · 1T /n+ LG\DL
+
G)

= 1T + 1T (LG\DL
+
G) = 1T

It follows from the claim that 1 ·1T /n(LDL
+
G−I)−1LDL

+
G = 0 because 1TLD =

0. Hence (LG − LD)(L+
G − L

+
G(LDL

+
G − I)−1LDL

+
G) = P .

8 Nicholas J. A. Harvey and Keyulu Xu

The formula in Theorem 1 updates the entire L+
G, which is unnecessary be-

cause we will not be using most entries of L+
G immediately. Corollary 1 gives a

formula that updates a submatrix of L+
G, using only the values of that submatrix.

The updated submatrix has the same value as the submatrix of the Laplacian
pseudoinverse of the graph obtained by deleting edges in D from G. The runtime
of each update is improved to O(|S|ω).

Corollary 1. Let G = (VG, EG) be a connected graph and D ⊆ G. Let S ⊆ VG.
Define E[S] as the set of edges whose vertices are in S. Suppose D ⊆ E[S] and
G \D contains at least one spanning tree, then

(LG − LD)+
S,S = L+

GS,S
− L+

GS,S
(LDS,S

L+
GS,S

− I)−1LDS,S
L+
GS,S

.

Proof. LD is only non-zero on the rows and columns indexed by S, since D ⊆
E[S]. Fact 3.5 implies that

(LDL
+
G − I)−1 =

[
(LDS,S

L+
GS,S
−I)−1 (LDS,S

L+
GS,S
−I)−1LDS,S

LGS,Sc

0 −I

]
(1)

and in particular that

(LDL
+
G − I)−1

S,S = (LDS,S
L+
GS,S

− I)−1. (2)

Combining Theorem 1, Fact 3.1 and 3.3 gives

(LG − LD)+
S,S = L+

GS,S
− L+

GS,S
(LDL

+
G − I)−1

S,SLDS,S
L+
GS,S

.

The result now follows from (2).

We present similar update formulas for contraction. As mentioned in Sec-
tion 1.2, algorithms for generating random spanning trees must contract edges
but somehow avoid the cumbersome updates to the Laplacian that result from
decreasing the number of vertices. Our approach is to increase the edge’s weight
to a large value k. By Fact 7 below, this is equivalent to contracting the edge in
the limit as k → ∞. One must be careful to specify formally what this means,
because we have only defined the Laplacian of a weighted graph when the weights
are finite. However, this does not matter. The main object of interest to us is
L+
G, and this does have a finite limit as k →∞.

To emphasize the graph under consideration, we use the following notation:
Reff

e [H] denotes the effective resistance of edge e in the graph H.

Fact 7. Let G be a weighted graph. Let e, f be distinct edges in G. Let G/e
be the graph obtained by contracting edge e. Let G + ke be the weighted graph
obtained by increasing e’s weight by k. Then

Reff
f [G/e] = lim

k→∞
Reff

f [G+ ke].

Let us make explicit the dependence on k in the graphs and matrices used by
the algorithm. For any finite k, define G(k) := G \D + kF, the graph obtained

Generating Random Spanning Trees via Fast Matrix Multiplication 9

by deleting the edges D then increasing the weight of edges in F by k. For any
edge e = {u, v}, we have

Reff
e [G \D/F] = lim

k→∞
Reff

e [G(k)] (by Fact 7)

= lim
k→∞

(Xu −Xv)TL+
G(k)(Xu −Xv) (by Fact 6)

= (Xu −Xv)T lim
k→∞

L+
G(k)(Xu −Xv)

Thus, if the Laplacian pseudoinverse is updated to limk→∞ L+
G(k), then the al-

gorithm will sample edges with the correct probability. The next few theorems
give the update formulas. Let us first give a definition of incidence matrices.

Definition 5. Let G = (VG, EG) be a graph with n vertices. Given an edge
e = {u, v} ∈ EG, we define the incidence vector of e as ve = (Xu − Xv). Given
a set of edges E = {e1, e2, · · · , em} ⊆ EG, we define the incidence matrix of E
as VE = [ve1 |ve2 | · · · |vem] .

By the definition of the weighted Laplacian, LG+kF = LG + kVFV
T
F . The next

two lemmas state that our contraction update formulas are well-defined.

Lemma 2. Let G = (VG, EG) be a connected graph. Given F ⊆ EG with |F | =
r, let V be the incidence matrix of F . V TL+

GV is non-singular iff F is a forest.

Proof. Suppose F is a forest. For any x ∈ Rr, x 6= 0, let y = V x. Since F is a
forest, V has full column rank. Therefore y 6= 0. Clearly yT1 = xT (V T1) = 0.
By Fact 5, L+

G is PSD and ker(L+
G) = 1. Thus y ⊥ ker(L+

G). We have

xTV TL+
GV x = yTL+

Gy > 0

Hence V TL+
GV is positive definite and thus non-singular. The converse is trivial.

Lemma 3. Let G be a connected graph. Given F ⊆ EG, let V be the incidence
matrix of F . If F is a forest, then I/k+ V TL+

GV is non-singular for any k > 0.

Proof. By Lemma 2, V TL+
GV is positive definite. Since k > 0, I/k is also positive

definite. The lemma follows from the sum of two positive definite matrices is
positive definite.

Theorem 2 and Corollary 2 give contraction update formulas for a finite k.
Corollary 2 improves on Theorem 2 by only updating a submatrix. The runtime
of each update in Corollary 2 is O(|S|ω).

Theorem 2. Let G = (VG, EG) be a connected graph. Given a forest F ⊆ EG,
let V be the incidence matrix of F . For any k > 0,

(LG + k · LF)+ = L+
G − L

+
GV (I/k + V TL+

GV)−1V TL+
G

10 Nicholas J. A. Harvey and Keyulu Xu

Proof. Let Mk = LG + k · LF = LG + k · V V T and Nk = L+
G − L

+
GV (I/k +

V TL+
GV)−1V TL+

G. By Lemma 3, Nk is well-defined. By Fact 5, ker(L+
G) =

span(1). By Fact 2, LGL
+
G = P = I − 1 · 1T /|VE |. We have

MkNk = (LG + kV V T)(L+
G − L

+
GV (I/k + V TL+

GV)−1V TL+
G)

= P + kV V TL+
G − (LGL

+
GV + kV V TL+

GV)(I/k + V TL+
GV)−1V TL+

G

= P + kV V TL+
G − kV (I/k + V TL+

GV)(I/k + V TL+
GV)−1V TL+

G (3)

= P + kV V TL+
G − kV V

TL+
G = P

where (3) follows from the sum of any column of an incidence matrix is 0. Since
G+ kF is connected, we have M+

k = Nk.

Corollary 2. Let G = (VG, EG) be a connected graph. Given a forest F ⊆ EG,
let V be the incidence matrix of F . Suppose F ⊆ E[S], where S ⊆ VG. Then for
any k > 0,

(LG + k · LF)+
S,S = L+

GS,S
− L+

GS,S
VS,∗(I/k + V T

S,∗L
+
GS,S

VS,∗)
−1V T

S,∗L
+
GS,S

Proof. V is only non-zero in rows in S. By Fact 3.4 V T
S,∗L

+
GS,S

VS,∗ = V TL+
GV .

The corollary then follows from Fact 3.1, 3.2 and 3.3.

Remark 2. Because the set of sampled edges, i.e. contracted edges F is a forest,
V has at most |S| columns.

The following theorem extends the result in Theorem 2 to k =∞ and gives
a contraction update formula that we use in Algorithm 2.

Theorem 3. Let G be a graph with finite weights. Let G(k) = G + kF1 for a
forest F1 ⊆ EG. Let F2 ⊆ EG be disjoint from F1 such that F1 ∪ F2 is a forest.
Let V be the incidence matrix of F2. For k > 0, define N = limk→∞ L+

G(k). Then

lim
k→∞

L+
G(k)+kF2

= N −NV (V TNV)−1V TN.

Furthermore ker(limk→∞ L+
G(k)+kF2

) = span(VF1∪F2
∪ 1).

Proof. We first show that limk→∞ L+
G+kF = L+

G − L+
GV (V TL+

GV)−1V TL+
G,

where V is the incidence matrix of F . By Lemma 2, V TL+
GV is invertible so

the RHS of the formula above is well-defined. Let Nk = (LG + k · LF)+ =
L+
G − L+

GV (I/k + V TL+
GV)−1V TL+

G and N = L+
G − L+

GV (V TL+
GV)−1V TL+

G.
We show as k → ∞, Nk converges to N with respect to any matrix norm. Let
A = V TL+

GV . We have

‖Nk −N‖ = ‖L+
GV ((I/k +A)−1 −A−1)V TL+

G‖
≤ ‖L+

G‖
2 · ‖V ‖ · ‖V T ‖ · ‖(I/k +A)−1 −A−1‖ (4)

Generating Random Spanning Trees via Fast Matrix Multiplication 11

By the Sherman-Morrison-Woodbury formula (Fact 1),

‖(I/k +A)−1 −A−1‖ = ‖A−1 −A−1(I +A−1/k)−1A−1/k −A−1‖
= ‖A−1(I +A−1/k)−1A−1/k‖
≤ ‖A−1‖2 · ‖(I +A−1/k)−1‖/k
→ ‖A−1‖2‖I‖/k (5)

→ 0 (6)

where (5) follows from the fact that I + A−1/k → I uniformly as k → ∞, and
the facts that matrix norm and matrix inverse are continuous functions for non-
singular matrices. Hence, combining (4) and (6), ‖Nk − N‖ → 0 as k → ∞.
The theorem then follows from the fact that the order of applying the update
formulas does not matter and that applying the formula for F1 and F2 is the
same as for F1 ∪ F2.

A similar argument as Corollary 1 can show that the submatrix version of
Theorem 3 holds as well. The only remaining detail is to establish that V TNV
is non-singular. This follows by the same argument as Lemma 2 because the
columns of VF2

are not spanned by the columns of VF1
, since F1 ∪F2 is a forest.

4.2 The Recursive Algorithm

We say an edge {u, v} is in a submatrix if entries (u, v) and (v, u) are inside the
submatrix. Corollary 1 and Corollary 2 say that if we have only made sampling
decisions for edges in a submatrix, then we can update the submatrix of the
Laplacian pseudoinverse with a small cost, using only the values of that sub-
matrix. Algorithm 2 samples the edges in a matrix by diving the matrix into
submatrices and recursively samples the edges in each submatrix. Whenever the
algorithm returns from a recursive call to a submatrix, it updates the current
matrix with the formulas given by Corollary 1 and Theorem 3 to ensure that the
next submatrix it enters has been updated, which is enough for the algorithm
to correctly sample the edges in that submatrix. Let us formally define the way
we recurse on the edges.

Definition 6. Let G = (VG, EG) be an graph and S,R be disjoint sets of VG.
We define the following subsets of edges.

E[S] = {{u, v} ∈ EG : u, v ∈ S}
E[R,S] = {{u, v} ∈ EG : u ∈ R, v ∈ S}

Remark 3. Suppose that R = R1 ∪R2 and S = S1 ∪ S2. Then

E[S] = E[S1] ∪ E[S2] ∪ E[S1, S2]

E[R,S] = E[R1, S1] ∪ E[R1, S2] ∪ E[R2, S1] ∪ E[R2, S2]

The formulas in Remark 3 give a recursive way to traverse the graph, vis-
iting each edge exactly once. This is the approach adopted by Algorithm 2.

12 Nicholas J. A. Harvey and Keyulu Xu

The algorithm samples the edges in E[S] with SampleEdgesWithin(S), where
we partition the current vertex set S into S = S1 ∪ S2 and then recurse to
visit edges in E[S1], E[S2] and E[S1, S2], calling SampleEdgesWithin(S1)
and SampleEdgesWithin(S2) respectively on E[S1], E[S2] and calling Sam-
pleEdgesCrossing(S1, S2) on E[S1, S2]. In SampleEdgesCrossing(S1, S2)
We do a similar splitting and recursion. So, Algorithm 2 satisfies the property
P1 mentioned in Section 3.

Because Algorithm 2 does lazy updates, in order not to confuse with the
true L+

G, we denote the matrix that Algorithm 2 maintains by N . The way N is
updated ensures that the following invariants are satisfied.

Invariant 1: SampleEdgesWithin(S) initially has NS,S = L+
GS,S

. The algo-
rithm restores this property after each recursive call to the functions Sam-
pleEdgesWithin(Si) and SampleEdgesCrossing(Si, Sj).

Invariant 2: SampleEdgesCrossing(R,S) initially hasNR∪S,R∪S = L+
GR∪S,R∪S

.
The algorithm restores this property after each recursive call to the function
SampleEdgesCrossing(Ri, Sj).

Since the two invariants guarantee that for any edge {r, s}, N{r,s},{r,s} is

equal to L+
G{r,s},{r,s}

when we are deciding whether to keep the edge, the values

of the effective resistances are correct for all edges. So, Algorithm 2 satisfies the
properties P2 and P3.

4.3 Analysis of Runtime

Let f(n) and g(n) respectively denote the runtime of SampleEdgesWithin(S)
and SampleEdgesCrossing(R,S), where n = |R| = |S|. Updating N requires
O(|S|ω) time. Therefore, we have

f(n) = 2f(n/2) + g(n) +O(nω)

g(n) = 4g(n/2) +O(nω)

By standard theorems on recurrence relations, the solutions of these recurrences
are g(n) = O(nω) and f(n) = O(nω). Thus, the runtime of Algorithm 2 is O(nω).

5 Conclusions

In this paper, we have shown a new algorithm for sampling random spanning
trees, which is arguably simpler and cleaner than the algorithm of Colbourn,
Myrvold and Neufeld (CMN)[9]. Our algorithm uses a similar framework as the
algorithm for non-bipartite matching of Harvey [13]. Some open questions are
whether the same type of framework can be applied to other graph-theoretic
problems, and whether it is possible to bring this line of work and the recent
results on the sparse graph case of random spanning trees generation closer
together.

Generating Random Spanning Trees via Fast Matrix Multiplication 13

Algorithm 2 A Recursive Algorithm

1: function SampleSpanningTree(G = (VG, EG))
2: N ← L+

G

3: SampleEdgesWithin(VG)
4: return the uniform spanning tree T

5: function SampleEdgesWithin(S)
6: if |S| = 1 then return

7: Divide S in half: S = S1 ∪ S2

8: for i ∈ {1, 2} do
9: SampleEdgesWithin(Si)

10: Restore NSi,Si to its value before entering the recursion
11: F ← the set of edges contracted in SampleEdgesWithin(Si)
12: D ← the set of edges deleted in SampleEdgesWithin(Si)
13: Update(S, F,D)

14: SampleEdgesCrossing(S1, S2)

15: function SampleEdgesCrossing(R,S)
16: if |R| = 1 then
17: Let r ∈ R and s ∈ S, Reff ← (Xr −Xs)TN(Xr −Xs)
18: Flip a biased coin that turns head with probability Reff

19: if head then
20: Add er,s to the uniform spanning tree T and the set of contracted edges
21: else
22: Add er,s to the set of deleted edges

23: else
24: Divide R and S each in half: R = R1 ∪R2 and S = S1 ∪ S2

25: for i ∈ {1, 2} and j ∈ {1, 2} do
26: SampleEdgesCrossing(Ri, Sj)
27: Restore NRi∪Sj ,Ri∪Sj to its value before entering the recursion
28: F ← the set of edges contracted in SampleEdgesCrossing(Ri, Sj)
29: D ← the set of edges deleted in SampleEdgesCrossing(Ri, Sj)
30: Update(R ∪ S, F,D)

31: procedure Update(S, F,D)
32: Let V be the incidence matrix for F
33: Let LD be the Laplacian matrix for D
34: NS,S ← NS,S −NS,SVS,∗(V

T
S,∗NS,SVS,∗)

−1V T
S,∗NS,S

35: NS,S ← NS,S −NS,S(LDS,SNS,S − I)−1LDS,SNS,S

14 Nicholas J. A. Harvey and Keyulu Xu

References
1. David Aldous. The random walk construction of uniform spanning trees and uni-

form labelled trees. SIAM J. Discrete Math., 3:450–465, 1990.
2. Arash Asadpour, Michel Goemans, Aleksander Madry, Shayan Oveis Gharan, and

Amin Saberi. An O(logn/ log logn)-approximation algorithm for the asymmetric
traveling salesman problem. In Proceedings of SODA, 2010.

3. Andrei Broder. Generating random spanning trees. In Proceedings of FOCS, pages
442–447, 1989.

4. James R. Bunch and John E. Hopcroft. Triangular factorization and inversion by
fast matrix multiplication. Mathematics of Computation, 1974.

5. Stephen L. Campbell and Carl D. Meyer. Generalized Inverses of Linear Trans-
formations. SIAM, 1973.

6. Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. Dependent randomized
rounding via exchange properties of combinatorial structures. In Proceedings of
FOCS, 2010.

7. C. J. Colbourn, B. M. Debroni, and W. J. Myrvold. Estimating the coefficients of
the reliability polynomial. Congr. Numer., 62:217–223, 1988.

8. Charles J. Colbourn, Robert P. J. Day, and Louis D. Nel. Unranking and ranking
spanning trees of a graph. Journal of Algorithms, 10:271–286, 1989.

9. Charles J. Colbourn, Wendy J. Myrvold, and Eugene Neufeld. Two algorithms for
unranking arborescences. Journal of Algorithms, 20:268–281, 1996.

10. Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding
approach to the traveling salesman problem. In Proceedings of FOCS, 2011.

11. Vempala Goyal, Rademacher. Expanders via random spanning trees. In Proceedings
of SODA, 2009.

12. A. Guénoche. Random spanning tree. Journal of Algorithms, 4:214–220, 1983.
13. Nicholas J. A. Harvey. Algebraic algorithms for matching and matroid problems.

SIAM Journal on Computing, 2009.
14. Nicholas J. A. Harvey and Neil Olver. Pipage rounding, pessimistic estimators and

matrix concentration. In Proceedings of SODA, 2014.
15. Jonathan A. Kelner and Aleksander Madry. Faster generation of random spanning

trees. In Proceedings of FOCS, 2009.
16. G. Kirchhoff. Über die Auflösung der Gleichungen, auf welche man bei der Un-

tersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys.
und Chem., 72:497–508, 1847.

17. Ioannis Koutis, Gary L. Miller, and Richard Peng. A fast solver for a class of linear
systems. Communications of the ACM, 55(10), 2012.

18. V. G. Kulkarni. Generating random combinatorial objects. Journal of Algorithms,
11(2):185–207, 1990.

19. Russell Lyons and Yuval Peres. Probability on Trees and Networks. Cambridge
University Press. In preparation. Current version available at
http://pages.iu.edu/~rdlyons/.

20. Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast generation of
random spanning trees and the effective resistance metric. In Proceedings of SODA,
2015.

21. David B. Wilson. Generating random spanning trees more quickly than the cover
time. In Proceedings of STOC, 1996.

