
Lecture notes for
“PIMS Summer School on

Randomized Techniques for Combinatorial Algorithms”

Nicholas J. A. Harvey∗

August 19, 2014

Abstract

In this lecture we will discuss two distinct topics: graph sparsification, and concentration bounds
for sums of random matrices.

1 Graph Sparsification

The first result we discuss is graph sparsification: approximating a graph by weighted subgraphs of
itself. These techniques have been used to design fast algorithms for combinatorial or linear algebraic
problems, as a rounding technique in approximation algorithms, and to derive strong results in pure
mathematics.

1.1 Notation

Let [k] = {1, ..., k}. The value L will denote a universal constant whose value is not the same at each
occurrence.

Let G = (V,E) be a graph and u : E → R. We will typically assume that V = [n]. Then supp(u)
denotes { e ∈ E : ue 6= 0 } and for any F ⊆ E, u(F) denotes

∑
e∈F ue. Also, for any U ⊆ V ,

δ(U) = { edge st : exactly one of s and t is in U } .

The minimum cut in the graph is

min { u(δ(U)) : ∅ 6= U (V } . (1.1)

∗Portions of these notes are based on scribe notes written by Zachary Drudi.

1

2 The Random Sparsification Algorithm

Let G = (V,E) be a graph with edge weights u : E → R>0. We will let n = |V |. The goal of
sparsification is to find a new vector of edge weights w : E → R≥0 such that supp(w) is small but
yet G with edge weights u is “structurally similar” to G with edge weights w. For our purposes, the
“structural similarity” that we wish to guarantee is the following “cut preservation” condition:

(1− ε) · u(δ(U)) ≤ w(δ(U)) ≤ (1 + ε) · u(δ(U)) ∀U ⊆ V. (2.1)

The random sparsification algorithm is shown in Algorithm 2.1. By using different sampling
probabilities, one can prove different guarantees about the quality of the resulting sparsifier.

Algorithm 2.1 The random graph sparsification algorithm.

procedure Sparsify(G, p)

input: A graph G = (V,E) with edge weights u : E → R>0, sampling probabilities p : E → (0, 1]
and a parameter ρ that specifies the number of rounds of sampling.

output: Edge weights w : E → R≥0.
Initially w = 0.

Let (Zi,e)i∈[ρ], e∈E be mutually independent, random variables in {0, 1} with E [Zi,e] = pe.

For i = 1, ..., ρ

For each e ∈ E
Increase we by Zi,e · (ue/ρpe).

Return w

Note that E [we] = ue for all e ∈ E because, by linearity of expectation,

E [we] =

ρ∑
i=1

E [Zi,e] · (ue/ρpe) =

ρ∑
i=1

ue/ρ = ue.

Furthermore, E [w(δ(U))] = u(δ(U)) for all U ⊆ V , again by linearity of expectation. So this algorithm
preserves the weight of every edge and of every cut in expectation, regardless of the pe values.

2

3 Graph Skeletons

For simplicity let assume that G is connected; if not, one can apply this argument to every connected
component of G.

We will show that, as long as ρ is logarithmic in n and the sampling probabilities are at least
the reciprocal of the minimum cut, then the cut preservation condition (2.1) is satisfied. The formal
theorem is as follows.

Theorem 3.1 (Karger [2, 3]). Let K be the minimum cut value, as defined in (1.1). Suppose that

pe ≥ ue/K ∀e ∈ E (3.1)

ρ = L log(n)/ε2

Then the weight vector w output by Algorithm 2.1 satisfies (2.1) with high probability.

Proof. Consider a set of vertices U ⊆ V . Let EU be the “bad event” that

w(δ(U)) 6∈ [1− ε, 1 + ε] · u(δ(U)).

Our aim is to show that, with high probability, EU does not occur.

Without loss of generality we may assume K = 1. The reason is that multiplying each ue by a
factor α also multiplies both K and w by α, but does not affect our hypotheses on pe and ρ. So we
may choose α = 1/K without affecting the hypotheses or conclusion of the theorem.

From the pseudocode in Algorithm 2.1, we have

w(δ(U)) =
∑
i∈[ρ]

∑
e∈δ(U)

Zi,e · (ue/ρpe).

This is a sum of independent random variables, each of which takes values in the bounded interval
[0, R], where R = maxe

ue
ρpe
≤ 1/ρ, due to (3.1) and the assumption that K = 1. We observed above

that µ = E [w(δ(U))] = u(δ(U)). By a Chernoff bound (Theorem 5.13), the failure probability is

Pr [EU] ≤ 2 exp
(
− ε2µ/3R

)
≤ 2 exp

(
− (ε2ρ/3) · u(δ(U))

)
≤ exp

(
− L log(n) · u(δ(U))

)
= n−L·u(δ(U)). (3.2)

This probability is at most n−L because the minimum cut value is K = 1, so u(δ(U)) ≥ 1.
However, that analysis is too weak: ultimately we wish to bound

Pr

 ⋃
U⊆V
EU

 ≤ ∑
U⊆V

Pr [EU] , (3.3)

and bounding each term by n−L would not give a useful result as there are exponentially many terms,
so the sum would exceed 1.

Fortunately most cuts admit a tighter bound on their failure probability. The following theorem
shows that, in a quantitative sense, most cut values are much larger than K = 1.

Theorem 3.2 (Karger). For any undirected graph with positive edge weights and min cut value 1,

|{ U ⊆ V : u(δ(U)) ≤ x }| ≤ n2x for all real x ≥ 1.

3

Thus, we may expand the right-hand side of (3.3) as∑
U⊆V

Pr [EU] =
∑
∅6=U(V

n−L·u(δ(U)) (3.4)

=
∑
s≥1

∑
U⊆V

s≤u(δ(U))<s+1

n−L·u(δ(U))

≤
∑
s≥1

n2·(s+1) · n−Ls (by Theorem 3.2 and (3.2))

≤
∑
s≥1

n−Ls ≤ n−L.

In summary, we have shown that Pr
[⋃

U⊆V EU
]
≤ n−L, completing the proof. �

Remarks

• If the graph is unweighted (i.e., ue = 1) and if pe = 1/K, then random sparsification decreases
the number of edges by a factor ρ/K in expectation. This is because

E [|supp(w)|] =
∑
e∈E

Pr [we > 0] ≤
∑
e∈E

∑
i∈[ρ]

Pr [Zi,e 6= 0] = |E| · (ρ/K).

• Suppose we set each pe to be exactly ue/K. Then the sparsifier is an “integral graph”, in the
sense that every edge weight we is an integer multiple of K/ρ.

• Algorithms are known to compute K in nearly-linear time.

Applications

• Minimum s-t cuts. Given any algorithm to compute a minimum s-t cut, instead of running
it on the original unweighted graph G, we can run it on the graph with weights w. Return
the resulting cut as an approximate min s-t cut in G. This approach is faster by a factor of
roughly ρ/K.

• Sparsest cut, Max cut. Similar ideas lead to a speedup of known approximation algorithms
for these problems.

4

4 Graph sparsification by non-uniform sampling

Theorem 3.1 will produce a sparsified graph with few edges if K is large, but it is less effective if
K is small. An example that highlights this issue is the “dumbbell graph”, which consists of two
disjoint cliques, each on n/2 vertices, and a single edge in the middle connecting the cliques. Here the
minimum cut is K = 1, so Theorem 3.1 cannot achieve any sparsification of this graph.

Nevertheless, a natural idea is that we could run the sparsification algorithm separately on the
two cliques (each of which has a large minimum cut value), and keep the edge in the middle as-is.
Another way of saying this is that we should sample the middle edge with probability 1, but sample
the clique edges with very low probability.

Generalizing this idea to arbitrary graphs, we would like to find some notion of how “important”
each edge is. Should we sample the edge with low probability or high probability? Benczúr and Karger
defined a notion of “edge strength” that gives a useful notion of “importance” for our purposes.

Definition 4.1. Let G = (V,E) be a graph with edge weights u : E → R>0. Let K(H) denote the
minimum cut value of the graph H, and let G[T] denoted the subgraph of G induced by the vertices
in T . The strength of edge e is

max { K(G[U]) : e ⊆ U ⊆ V } .

Note that se is always at least K(G), the min cut value in the original graph.

In the dumbbell example, the middle edge has strength 1 (any subgraph containing that edge
cannot have min cut bigger than 1) and each clique edge has strength n/2 − 1 (take U to be the
vertices of that clique).

Strength can also be defined in the following equivalent way.

Definition 4.2. Define (se : e ∈ E) to be the maximal values such that

min { u(δ(U) ∩ Ese) : e ∈ δ(U) } ≥ se where Ex = { f ∈ E : sf ≥ x } . (4.1)

The strength of edge e is defined to be se.

Theorem 4.3 (Benczúr-Karger [1]). Set

pe ≥ ue/se ∀e ∈ E (4.2)

ρ = L log(n)/ε2.

Then the weight vector w output by Algorithm 2.1 satisfies the cut preservation condition (2.1) with
high probability.

As we observed above, se ≥ K for all e ∈ E, so the hypothesis (4.2) is weaker than the hypothesis
(3.1), so Theorem 4.3 is a strengthening of Theorem 3.1.

Proof. Using the definitions of we, pe and Ex, we have

we =
∑
i∈[ρ]

ueZi,e
ρpe

=
1

ρ

∑
i∈[ρ]

ue
pese

Zi,e

∫ se

0
dx =

1

ρ

∑
i∈[ρ]

ue
pese

Zi,e

∫ ∞
0

1e∈Ex dx.

5

Thus

w(δ(U)) =
1

ρ

∑
i∈[ρ], e∈δ(U)

Zi,e
ue
pese

∫ ∞
0

1e∈Ex dx =

∫ ∞
0

1

ρ

∑
i∈[ρ], e∈δ(U)∩Ex

Zi,e
ue
pese︸ ︷︷ ︸

=YU,x

dx. (4.3)

We want to show that

w(δ(U)) ∈ [1− ε, 1 + ε] · E [w(δ(U))] ∀U ⊆ V (4.4)

with high probability. We will instead show that, with high probability, we have

YU,x ∈ [1− ε, 1 + ε] · E [YU,x] ∀U ⊆ V, ∀x ≥ 0. (4.5)

This implies (4.4) via Claim 4.4. (Consider setting f(x) = YU,x and g(x) = (1 + ε) E [YU,x].)

Claim 4.4. If f(x) ≤ g(x) for all x ≥ 0 then
∫∞
0 f(x) dx ≤

∫∞
0 g(x) dx (if both integrals exist).

The condition (4.5) seems difficult to prove because infinitely many constraints must hold si-
multaneously! However, things are not as bad as they seem: notice that there are at most |E| ≤ n2

distinct strength values (one for each edge), so the number of different sets Ex is at most n2. This
means that, for each U , the number of different random variables YU,x is at most n2. So if we prove
that, for each fixed x, that

YU,x ∈ [1− ε, 1 + ε] · E [YU,x] ∀U ⊆ V (4.6)

holds with probability at most n−c, then a union bound implies that (4.5) holds with probability at
most n−c+2.

So fix any x ≥ 0. We now analyze the probability that (4.6) holds. The amazing twist in the
analysis is that we will prove it using Theorem 3.1! To do so, we create a new graph (V,Ex) with edge
weights u′e = ue/se instead of ue. Consider applying Algorithm 2.1 to this new graph with the same
sampling probabilities pe. What is the weight of the cut δ(U) in the sampled graph? It is

∑
e∈δ(U)∩Ex

ρ∑
i=1

Zi,e
u′e
ρpe

,

which is precisely YU,x since we defined u′e = ue/se. So, if the sampled graph satisfies the cut preserva-
tion condition (2.1), then (4.6) holds simultaneously for all U . Theorem 3.1 will show that this holds
with high probability, so long as we can show that the new graph satisfies the hypotheses of theorem.
The remainder of the proof shows this.

Let K refer to the minimum cut value in the new graph. We must show that pe ≥ u′e/K. By
(4.2) we have pe ≥ ue/se = u′e, so it suffices to show that K ≥ 1. Consider any U with δ(U)∩Ex 6= ∅.
By definition of se, every e ∈ δ(U) ∩ Ex has se ≤ u(δ(U) ∩ Ex). Thus

u′(δ(U) ∩ Ex) =
∑

e∈δ(U)∩Ex

ue/se ≥
∑

e∈δ(U)∩Ex

ue/u(δ(U) ∩ Ex) = 1.

As this holds for all U , we have K ≥ 1. �

6

Remarks

• If the sampling probabilities are all pe = ue/se, then random sparsification decreases the number
of edges to O(n log n/ε2) in expectation. This is because

E [|supp(w)|] =
∑
e∈E

Pr [we > 0] ≤
∑
e∈E

∑
i∈[ρ]

Pr [Zi,e 6= 0] = ρ
∑
e∈E

ue/se,

and it is shown by Benczúr and Karger that
∑

e∈E ue/se ≤ n− 1.
• The strength values se can be computed exactly in polynomial time, but they are somewhat

unwieldy. Benczúr and Karger show how to compute in O(n polylog(n)/ε2) time sampling
probabilities that satisfy (4.2) and still ensure that the number of edges is O(n log n/ε2) in
expectation.

7

5 Matrix Concentration Bounds

5.1 Theorem Statement

Let X be a random matrix of size d× d. There are two different ways to think of a random matrix:

1. A matrix sampled according to a distribution on matrices

2. An array of scalar random variables

Our perspective also impacts how we interpret the expectation of a random matrix.

1. If we consider X as sampled according to some distribution on matrices, then E [X] =
∑

AA ·
Pr [X = A].

2. If we consider X as an array of random variables, then E [X] is the array of the expectations of
the entries of X

Given independent, random, symmetric, positive semi-definite matrices X1, X2, ..., Xk, we want
to understand the concentration of

∑
iXi. Theorem 5.16 below is a recent result of Tropp [4] that

solves this problem. In order to prove Tropp’s theorem, we need to gather some definitions and results
on symmetric matrices.

5.2 Löwner Ordering, Monotonicity, Convexity and Concavity

Definition 5.1. Let A be any d × d symmetric matrix. The matrix A is called positive semi-
definite if all of its eigenvalues are non-negative. This is denoted A � 0, where here 0 denotes the
zero matrix. The matrix A is called positive definite if all of its eigenvalues are strictly positive.
This is denoted A � 0.

The positive semi-definite condition can be used to define a partial ordering on all symmetric
matrices. This is called the Löwner ordering or the positive semi-definite ordering. For any
two symmetric matrices A and B, we write A � B if A−B � 0.

For any f : R → R, we can define a function on symmetric matrices A by applying f to the
eigenvalues of A. Formally, let A = UDUT be the spectral decomposition of A. That is, U is
orthogonal and D is the diagonal matrix whose diagonal entries are the eigenvalues of A.
Define f(A) = Uf(D)UT , where f(D) is a diagonal matrix with [f(D)]ii = f(Dii).

We will use this definition primarily with f being exp or log.

Claim 5.2. Let f : R → R and g : R → R satisfy f(x) ≤ g(x) ∀x ∈ [l, u]. Suppose A is symmetric
and the eigenvalues of A all lie in [l, u]. Then f(A) � g(A).

How do functions behave with respect to the Löwner ordering? Usually badly. One might hope
that if f is monotone on some interval [l, u], then when we extend f to matrices, we obtain a monotone
operator on matrices with eigenvalues in the interval [l, u]. Is it true that if A � B and the eigenvalues
of A,B are in [l, u], then necessarily f(A) � f(B). Unfortunately not.

Claim 5.3. If X and Y are random matrices and X � Y , then E [X] � E [Y].

While monotone funtions on R do not necessarily yield monotone functions on symmetric matrices
as we saw above, it is true that if f is monotone then tr f := A 7→ tr(f(A)) is monotone. In order to
establish this, we need a preliminary result concerning the spectrum of two matrices A,B with A � B.

8

Claim 5.4 (Weyl’s Monotonicity Theorem). Suppose A and B are symmetric, n × n matrices. Let
λi(A) be the ith largest eigenvalue of A. If A � B, then λi(A) ≤ λi(B) for all i.

Claim 5.5. If f is monotone, then tr f is monotone.

Proof. This follows easily from Claim 5.4. Say A � B. We establish tr f(A) ≤ tr f(B):

tr f(A) =

n∑
i=1

f(λi(A)) ≤
n∑
i=1

f(λi(B)) = tr f(B)

�

We will use this result for f = exp.

Definition 5.6. A function f : R→ R is operator concave if

f((1− x)A+ xB) � (1− x)f(A) + xf(B) ∀x ∈ [0, 1], ∀A,B.

Unfortunately, concavity of f on R doesn’t imply that f is operator concave. However, the
following claim is known.

Claim 5.7. log is operator concave.

Next, we define a new multiplication operation on positive definite matrices.

Definition 5.8. If A,B are positive definite, define A�B = exp(log(A) + log(B)).

This operation actually yields an Abelian group on the set of positive definite matrices. In
particular, � is commutative. Also, if A and B commute then A�B is the usual product AB.

Theorem 5.9. (Lieb) Fix any symmetric H. The map A 7→ tr exp
(

log(A) + H
)

is concave on
positive definite matrices.

Lieb’s theorem is difficult, and we will not be doing the proof.

Corollary 5.10. tr(A�B) is concave in A.

Proof. tr(A�B) = tr exp(logA+ logB). Apply Lieb’s theorem with H = logB. �

Corollary 5.11. Let B be fixed, and A a random matrix. Then E [tr(A�B)] ≤ tr(E [A]�B).

Proof. Apply Jensen’s inequality. �

Corollary 5.12. Let A1, ..., Ak be independent random positive definite matrices. Then

E [tr(A1 � ...�Ak)] ≤ tr(E [A1]� ...� E [Ak]).

Proof. Induction, applied to the preceding result. �

9

5.3 The Chernoff Bound

Theorem 5.13. Let X1, ..., Xk be independent random variables with 0 ≤ Xi ≤ R.
Let µmin ≤

∑
i E [Xi] ≤ µmax. Then, for all δ ≥ 0,

Pr
[∑k

i=1Xi ≥ (1 + δ)µmax

] (a)

≤
(

eδ

(1+δ)1+δ

)µmax/R (b)

≤

{
e−δ

2µmax/3R (if δ ≤ 1)

e−δµmax/3R (if δ > 1)

Pr
[∑k

i=1Xi ≤ (1− δ)µmin

] (c)

≤
(

e−δ

(1−δ)1−δ

)µmin/R (d)

≤ e−δ
2µmin/2R.

Inequalities (c) and (d) are only valid for δ ≤ 1, but Pr
[∑k

i=1Xi ≤ (1− δ)µmin

]
= 0 if δ > 1.

We now prove only inequality (a).

Claim 5.14.

Pr

[
k∑
i=1

Xi ≥ t

]
≤ inf

θ>0
e−θt ·

k∏
i=1

E
[
eθXi

]
.

Proof. Fix θ > 0.

Pr [
∑

iXi ≥ t] = Pr [
∑

iθXi ≥ θt]
= Pr [exp(

∑
iθXi) ≥ exp(θt)] (monotonicity of ex)

≤ e−θt · E [exp(
∑

iθXi)] (Markov’s inequality)

This expectation can be simplified:

E [exp(
∑

iθXi)] = E
[∏

i e
θXi
]

=
∏
i E
[
eθXi

]
(by independence).

Combining these proves the claim. �

Claim 5.15. Let X be a random variable with 0 ≤ X ≤ 1. Then

E
[
eθX

]
≤ 1 + (eθ − 1) · E [X] .

Proof. For x ∈ [0, 1] we have eθx ≤ 1+(eθ−1) ·x, by convexity of the left-hand side. Since X ∈ [0, 1],

eθX ≤ 1 + (eθ − 1) ·X

=⇒ E
[
eθX

]
≤ 1 + (eθ − 1) · E [X] ,

since inequalities are preserved under taking expectation. �

Proof (of Chernoff Upper Bound). Without loss of generality R = 1.∏k
i=1 E

[
eθXi

]
≤
∏k
i=1

(
1 + (eθ−1) · E [Xi]

)
(by Claim 5.15)

= exp
(∑k

i=1 log
(
1 + (eθ−1) · E [Xi]

))
≤ exp

(∑k
i=1(e

θ−1) · E [Xi]
)

(using log(1 + x) ≤ x)

≤ exp
(
(eθ − 1)µmax

)
Applying Claim 5.14 with t = (1 + δ)µmax and θ = ln(1 + δ)

Pr

[∑
i

Xi ≥ (1 + δ)µmax

]
≤ exp

(
− ln(1 + δ) · (1 + δ)µmax

)
· exp(δ · µmax)

=
(eδ

(1 + δ)1+δ

)µmax

�

10

5.4 Tropp’s Matrix Chernoff Bound

Theorem 5.16. Let X1, ..., Xk be independent random d×d symmetric matrices with 0 � Xi � R ·I.
Let µmin · I �

∑
i E [Xi] � µmax · I. Then, for all δ ∈ [0, 1],

Pr
[
λmax(

∑k
i=1Xi) ≥ (1 + δ)µmax

] (a)

≤ d ·
(

eδ

(1+δ)1+δ

)µmax/R (b)

≤ d · e−δ2µmax/3R

Pr
[
λmin(

∑k
i=1Xi) ≤ (1− δ)µmin

] (c)

≤ d ·
(

e−δ

(1−δ)1−δ

)µmin/R (d)

≤ d · e−δ2µmin/2R.

Inequality (a) is actually valid for all δ ≥ 0.

We now prove inequality (a). Inequalities (b) and (d) follow from the discussion in the appendix.

Claim 5.17.

Pr

[
λmax

(k∑
i=1

Xi

)
≥ t

]
≤ inf

θ>0
e−θt · tr

(
k⊙
i=1

E
[
eθXi

])
.

Proof. Fix θ > 0.

Pr [λmax(
∑

iXi) ≥ t] = Pr [λmax(
∑

iθXi) ≥ θt] (homogeneity of max eigenvalue)
= Pr

[
exp

(
λmax(

∑
iθXi)

)
≥ exp(θt)

]
(monotonocity of ex)

≤ e−θt · E
[

exp
(
λmax(

∑
iθXi)

)]
(Markov’s inequality)

We can bound the maximum eigenvalue by a trace:

exp
(
λmax(

∑
iθXi)

)
= λmax

(
exp(

∑
iθXi)

)
(definition of matrix exponentiation)

≤ tr
(

exp(
∑

iθXi)
)

(max eigenvalue ≤ sum of eigenvalues)

Taking the expectation gives the bound:

Pr [λmax(
∑

iXi) ≥ t] ≤ e−θt · E
[

tr
(

exp(
∑

iθXi)
)]
.

This expectation can be bounded:

E
[

tr
(

exp(
∑

iθXi)
)]

= E
[

tr
(

exp(
∑

i logAi)
)]

(let Ai = eθXi)
= E [tr(A1 � · · · �Ak)] (definition of �)
≤ tr

(
E [A1]� · · · � E [Ak]

)
(by Corollary 5.12)

Combining these inequalities proves the claim. �

Claim 5.18. Let X be a random symmetric d× d matrix with 0 � X � I. Then

E
[
eθX

]
� I + (eθ − 1) · E [X] .

Proof. For x ∈ [0, 1] we have eθx ≤ 1 + (eθ − 1) · x, by convexity of the left-hand side. Since X has
all eigenvalues in [0, 1], Claim 5.2 gives

eθX � I + (eθ−1) ·X

=⇒ E
[
eθX

]
� I + (eθ−1) · E [X] ,

since the Löwner ordering is preserved under taking expectation by Claim 5.3. �

11

Proof (of Matrix Chernoff Upper Bound). Without loss of generality R = 1. Our first observation
is a bound for a sum of logs:∑k

i=1 log E
[
eθXi

]
= k ·

∑k
i=1

1
k log E

[
eθXi

]
� k · log

(∑k
i=1

1
k E
[
eθXi

])
(by Claim 5.7) (5.1)

Next:

tr
(

E
[
eθX1

]
� · · · � E

[
eθXk

])
= tr exp

(∑k
i=1 log E

[
eθXi

])
(definition of �)

≤ tr exp
(
k · log

(∑k
i=1

1
k E
[
eθXi

]))
(by (5.1) and Claim 5.5)

≤ d · λmax

(
exp

(
k · log

(∑k
i=1

1
k E
[
eθXi

])))
(sum of eigenvalues ≤ d times maximum)

≤ d · exp
(
k · log λmax

(∑k
i=1

1
k E
[
eθXi

]))
(definition of matrix exp and log)

≤ d · exp
(
k · log λmax

(
I +

∑k
i=1

1
k (eθ−1) E [Xi]

))
(by Claim 5.18)

= d · exp
(
k · log

(
1 + eθ−1

k λmax(
∑k

i=1 E [Xi])
))

≤ d · exp
(

(eθ−1) · λmax(
∑k

i=1 E [Xi])
)

(using log(1 + x) ≤ x)

≤ d · exp
(

(eθ−1) · µmax

)
Apply Claim 5.17 with t = (1 + δ)µmax and θ = ln(1 + δ):

Pr [λmax(
∑

iXi) ≥ (1 + δ)µmax] ≤ exp
(
− ln(1 + δ) · (1 + δ)µmax

)
·
(
d · exp(δ · µmax)

)
= d ·

(eδ

(1 + δ)1+δ

)µmax

�

12

References

[1] A. A. Benczúr and D. R. Karger. Randomized approximation schemes for cuts and flows in
capacitated graphs, 2002. http://arxiv.org/abs/cs/0207078.

[2] D. R. Karger. Random sampling in cut, flow, and network design problems. In Proceedings of the
26th Annual ACM Symposium on Theory of Computing (STOC), 1994.

[3] D. R. Karger. Random sampling in cut, flow, and network design problems. Mathematics of
Operations Research, 24(2):383–413, May 1999.

[4] J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational
Mathematics, 2011.

13

