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Abstract

We consider the problem of nonnegative submodular maximization in the online1

setting. At time step t, an algorithm selects a set St 2 C ✓ 2V where C is a feasible2

family of sets. An adversary then reveals a submodular function ft. The goal is to3

design an efficient algorithm for minimizing the expected approximate regret.4

In this work, we give a general approach for improving regret bounds in online5

submodular maximization by exploiting “first-order” regret bounds for online6

linear optimization.7

• For monotone submodular maximization subject to a matroid, we give an efficient8

algorithm which achieves a (1� c/e� ")-regret of O(
p
kT ln(n/k)) where n9

is the size of the ground set, k is the rank of the matroid, " > 0 is a constant,10

and c is the average curvature. Even without assuming any curvature (i.e., taking11

c = 1), this regret bound improves on previous results of Streeter et al. (2009)12

and Golovin et al. (2014).13

• For nonmonotone, unconstrained submodular functions, we give an algorithm14

with 1/2-regret O(
p
nT ), improving on the results of Roughgarden and Wang15

(2018). Our approach is based on Blackwell approachability; in particular, we16

give a novel first-order regret bound for the Blackwell instances that arise in this17

setting.18

1 Introduction19

Submodular maximization is a ubiquitous optimization problem in machine learning, economics, and20

social networks [26]. A set function f : 2V ! R on a ground set V is submodular if it satisfies the21

diminishing return property: f(X [ {i})� f(X) � f(Y [ {i})� f(Y ) for X ✓ Y and i 2 V \ Y .22

Given a nonnegative submodular function f and a set family C ✓ 2V , submodular maximization is the23

optimization problem maxS2C f(S). Although submodular maximization is NP-hard in general [11],24

approximation algorithms for various settings have been developed and they often perform very well25

in real-world applications [5, 6, 8, 12, 26, 31].26

In this paper, we consider online submodular maximization in the full-information setting, which is27

formulated as the following repeated game between a player and an adversary. The player is given a28

set family C in a ground set V in advance. For each round t = 1, 2 . . ., the player plays a set St 2 C29

possibly in a randomized manner and the adversary (perhaps knowing the player’s strategy but not the30

randomized outcome) selects a submodular function ft : 2V ! [0, 1]. The player gains the reward31
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Table 1: A summary of our regret bounds and known bounds, where n = |V |, k is the rank of the
matroid, c is the average curvature, " > 0 is an arbitrary constant, and T is the time horizon.

setting known results our results

monotone+matroid
(↵ = 1� 1/e� ")

O(k
p
nT )

Golovin et al. [16]
O(

p
kT ln(n/k))

Theorem 3.1
monotone+matroid
+ bounded curvature
(↵ = 1� c/e� ")

— O(
p
kT ln(n/k))

Theorem 3.1

nonmonotone
(↵ = 1/2)

O(n
p
T )

Roughgarden and Wang [27]
O(
p
nT )

Theorem 4.1
monotone+cardinality
(↵ = 1� 1/e)

O(
p
kT lnn)

Streeter et al. [30]
O(

p
kT ln(n/k))

Theorem 3.1

ft(St) and observes the submodular function ft.1 The performance is measured via the ↵-regret:32

Reg↵(T ) := ↵max
S⇤

TX

t=1

ft(S
⇤)�

TX

t=1

ft(St),

where ↵ 2 (0, 1] corresponds to the offline approximation ratio. The goal of online submodular33

maximization is to design an efficient algorithm for the player with a small ↵-regret in expectation.34

1.1 Our contribution35

We provide efficient algorithms with improved regret bounds for various online submodular maxi-36

mization. Our results are summarized in Table 1.37

• For the case of monotone functions and a matroid constraint, (i.e., ft is nonnegative, monotone, and38

submodular, and C is a matroid), we provide an algorithm whose expected (1� c/e� ")-regret is39

at most O(
p
kT ln(n/k)), where n = |V |, k is the rank of the matroid C, and " > 0 is an arbitrary40

small constant. Here c is the curvature2 of
PT

t=1 ft. This result is the first O(
p
T ) bound for41

the bounded curvature setting, generalizing the corresponding offline result [12, 31] to the online42

setting. In the case where c = 1, this result improves the best-known bound of O(k
p
nT ) [16, 30]43

by a factor of ⌦̃(
p
kn). Note that the approximation ratio 1� c/e is best possible for any algorithm44

making polynomially many queries to the objective function [31].45

• For the nonmonotone and unconstrained setting (i.e., ft is nonnegative submodular and C = 2V ),46

we devise an algorithm with O(
p
nT ) expected 1/2-regret, where n = |V |. This improves the47

best-known bound O(n
p
T ) [27] by a factor of

p
n.48

Finally, we remark that none of our algorithms require knowing the time horizon T in advance.49

1.2 Technical overview50

The common ingredient of our algorithms is the use of “first-order” regret bounds for online linear51

optimization (OLO), which bound the regret of OLO algorithms in terms of the total gain or loss52

of the best single action rather than the time horizon T . We show that this data-dependent nature53

of first-order bounds enables us to exploit the structures of OLO subproblems appearing in online54

submodular maximization and it yields better bounds for approximate-regret. Below, we provide55

detailed description of this idea for each submodular maximization problem we study.56

Monotone Our algorithm is based on online continuous greedy [16, 30]. Roughly speaking, online57

continuous greedy reduces the problem to a series of OLO problems on a matroid polytope. For OLO58

on a matroid polytope, Golovin et al. [16] used follow the perturbed leader (FPL) [24], which gives59

1Formally, each submodular function ft is given as a value oracle to the player after St is chosen.
2The curvature c of a nonnegative monotone submodular function f is defined as c = 1�mini2V

f({i})
f(V \{i}) .
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the O(k
p
nT ) bound. The key observation to improving this bound is that the OLO subproblems that60

arise in this setting are structured in the sense that the sum of the rewards (across the subproblems)61

cannot be too large. Our technical contribution is a novel analysis of online continuous greedy62

showing that if one uses OLO algorithms with a first-order regret bound [25], then online continuous63

greedy yields the improved O(
p
kT ln (n/k)) bound.64

Furthermore, we show that combining the above techniques with the continuous greedy of Feldman65

[12] gives an algorithm for maximization of monotone submodular functions with bounded curvature66

under a matroid constraint. In particular, we show that the expected (1� c/e� ")-regret is bounded67

by O(
p
kT ln(n/k)) where c is the curvature of the sum of the submodular functions. We note that68

our algorithm does not require knowledge of c beforehand.69

Nonmonotone At a high level, our algorithm for the nonmonotone case is similar to online double70

greedy of Roughgarden and Wang [27], which we will review briefly. They reduced the problem to a71

sequence of auxiliary online learning problems, called USM balance subproblems, for which they72

designed an algorithm with O(
p
T ) regret. They also showed that if one has algorithms for the USM73

balance subproblems with regret ri for i = 1, . . . , n, then online double greedy achieves O(
P

i ri)74

regret bound, which gives the O(n
p
T ) bound. Our contribution is a new algorithm for USM balance75

subproblems with a “first-order” regret bound. Combining this algorithm with a novel analysis of76

online double greedy, we obtain the improved O(
p
nT ) bound. To design the first-order regret bound77

for USM balance subproblems, we exploit the Blackwell approachability theorem [1] and online dual78

averaging. Note that Roughgarden and Wang [27] did not use the Blackwell theorem and it is not79

obvious how to obtain a similar “first-order” bound from their analysis. We are not aware of other80

examples where similar regret bounds are known for Blackwell problems.81

1.3 Related work82

Online submodular maximization is a subfield of online learning [7]. A large body of work in online83

learning is devoted to online convex optimization (OCO); see the monograph of Hazan [18]. Hazan84

and Kale [20] studied online submodular minimization through an OCO approach. The concept of85

first-order regret bounds originally appeared in Freund and Schapire [13] for the expert problem. We86

note that second-order regret bounds, where the range of the losses are not known and the regret87

depends on the square of the losses, have also been studied in the literature; see e.g. [19].88

Studies of online submodular maximization were initiated by Streeter and Golovin [29]. They89

gave the first polynomial-time algorithm for the setting of monotone submodular functions and a90

cardinality constraint with O(
p
kT lnn) expected (1 � 1/e)-regret, where n = |V | is the size of91

the ground set and k is the cardinality constraint constant. Subsequently, this result was generalized92

(with a slightly worse regret bound) to a partition matroid and a general matroid constraint in [16, 30].93

For nonmonotone submodular maximization, Roughgarden and Wang [27] gave the first algorithm94

with O(n
p
T ) expected 1/2-regret. This was later generalized to nonmonotone k-submodular95

maximization by Soma [28] who gave an algorithm with O(kn
p
T ) expected 1/2-regret. Chen96

et al. [9, 10] and Zhang et al. [32] studied online continuous submodular maximization and obtained97

O(
p
T ) approximate regret for various settings. Zhang et al. [32] also study monotone submodular98

maximization subject to a matroid constraint in the “responsive bandit setting”, where the algorithm99

can play and receive feedback for any set but receives a reward only for feasible sets. For this problem,100

they achieve expected (1� 1/e)-regret at most O(T 8/9).101

A series of studies developed black-box reductions of offline approximation algorithms to online102

no-approximate-regret algorithms [14, 21, 23]. These reductions apply only to linear functions.103

1.4 Organization104

The rest of the paper is organized as follows. Section 2 introduces some backgrounds of submodular105

maximization and online dual averaging. Section 3 presents our improved algorithm for monotone106

functions of bounded curvature subject to a matroid constraint. Section 4 describes our algorithm for107

nonmonotone functions in the unconstrained setting.108
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2 Preliminaries109

We denote the sets of real numbers, nonnegative real numbers, positive real numbers by R, R�0, and110

R>0, respectively. We also denote the set of nonpositive real numbers by R0. For a vector c, |c|111

denotes the vector obtained by taking the element-wise absolute values.112

Let V be a finite ground set. For a set function f : 2V ! R, S ✓ V , and i 2 V \ S, we denote113

the marginal gain f(S [ {i})� f(S) by f(i | S). We sometimes abuse the notation for singletons,114

e.g., we denote f({i}) by f(i), S [ {i} by S [ i, etc. For a vector ` 2 RV and a subset S ✓ V , we115

define `(S) =
P

i2S `i. For a set function f : 2V ! R, its multilinear extension F : [0, 1]V ! R116

is a smooth function defined as F (x) = E[f(R(x))] =
P

S✓V f(S)
Q

i2S xi
Q

i/2S(1� xi), where117

R(x) is a random set that independently contains each element i 2 V with probability xi. It is118

well-known that rF � 0 if f is monotone and that @F
@xi@xj

 0 (i 6= j) if f is submodular [6].119

A matroid is a set family I ✓ 2V such that (I1) ; 2 I, (I2) X ✓ Y and Y 2 I implies X 2 I,120

and (I3) X,Y 2 I and |X| < |Y | implies that there exists i 2 Y \ X such that X [ i 2 I.121

The rank function of a matroid M is denoted by rkM. The base polytope of a matroid M is a122

polytope defined as BM = {x 2 RV
�0 : x(S)  rkM(S) (S ✓ V ), x(V ) = rkM(V )}. Rounding123

algorithms take a vector x in a base polytope BM and output a random independent set X 2 I such124

that E[f(X)] � F (x) for any monotone submodular function f and its multilinear extension F .125

Examples of rounding algorithms include pipage rounding and swap rounding [6, 8].126

Online Linear Optimization and Online Dual Averaging. Both of our algorithms make use of127

algorithms for online linear optimization (OLO) as a subroutine, which we will now briefly describe.128

Let X ✓ Rn be a convex set. In OLO, at each time step t = 1, 2, . . . an algorithm chooses an element129

xt 2 X after which an adversary chooses a cost function ct 2 [�1, 1]n. The goal is to minimize130 PT
t=1(c

>
t xt � c>t z) for all z 2 X . One algorithm to achieve this is online dual averaging which is131

described in Appendix B. Here, we will just state the guarantee. For x, y 2 Rn, define KL-divergence132

DKL (x, y) :=
Pn

i=1 xi ln
xi
yi
� xi + yi. The following corollary is a restatement of Corollary B.3.133

Corollary 2.1. Let x1 be an initial point and let D � max{1, supu2X DKL (u, x1)}. Assuming that134

the cost vectors ct 2 [�1, 1]n then there is an algorithm for OLO that produces a sequence of iterates135

x1, x2, . . . such that
PT

t=1

�
c>t xt � c>t z

�
 3
p
D
qPT

t=1 |ct|>xt +D for all z 2 X and T > 0.136

Finally, ⇧KL
X (x) := argminy2R DKL (x, y) denotes the KL projection of y onto the convex set X .137

3 Online monotone submodular maximization138

Recall that the curvature of a monotone submodular function f is defined as c = 1�mini
f(i|V \i)

f(i) .139

Every monotone submodular function has curvature c 2 [0, 1] and linear functions have curvature140

c = 0. Our main result in this section is the following theorem.141

Theorem 3.1. For any constant " > 0, there exists a polynomial-time algorithm for online submodu-142

lar maximization subject to a matroid constraint whose expected (1� c/e� ")-regret is bounded by143

O(
p
kT ln(n/k)) for every T > 0, where n is the size of the ground set, k is the rank of the matroid,144

and c is the curvature of
PT

t=1 ft.145

Note that the curvature c may change over time. This section gives an informal proof of Theorem 3.1146

with a continuous-time algorithm; the discretized algorithm and analysis appears in Appendix E.147

3.1 Continuous-Time Algorithm148

The main idea is to adapt the recent continuous greedy algorithm of Feldman [12] for maximizing149

a monotone submodular function. For a monotone submodular function f , we can define the150

corresponding modular function ` by151

`(S) =
X

i2S

f(i | V � i). (3.1)
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One can easily check that the set function g := f � ` is again monotone and submodular. The152

continuous-time version of the algorithm is presented in Algorithm 1.3153

Algorithm 1 Continuous-time algorithm
Input: Matroid M and dual averaging algorithms As on the base polytope BM for s 2 [0, 1].

1: Initialize dual averaging algorithms As for each s 2 [0, 1].
2: for t = 1, 2, . . . do

3: Set xt(0) = 0.
4: for s 2 [0, 1] do

5: Move xt(s) via dynamics dxt(s)
ds = yt(s), where yt(s) 2 BM is the prediction from by As.

6: Apply rounding to xt := xt(1) and obtain St.
7: Play St and observe ft.
8: Compute the modular function `t for ft by (3.1) and let gt = ft � `t.
9: for s 2 [0, 1] do

10: Feedback cost vector ct = �es�1rGt(xt(s))� `t to As; Gt is multilinear extension of gt.

In Subsection 3.2, we will analyze Algorithm 1. In order to obtain a good regret bound on the154

problem, we require As (as defined in Algorithm 1) to have a first-order regret bound for which we155

can use Corollary 2.1. Finally, As requires performing a Bregman projection onto the matroid base156

polytope. The details of this can be found in Appendix D.3 in the supplementary materials.4157

3.2 Analysis158

Let S⇤ 2 argmaxS2M
PT

t=1 ft(S) and let rs := maxz2BM

PT
t=1(e

s�1rGt(xt(s)) + `t)>(z �159

yt(s)) be the regret of As for s 2 [0, 1]. The first lemma bounds the regret of Algorithm 1 in terms160

of rs. The proof is similar to that in [12]; it can be found in Appendix D.1.161

Lemma 3.2. Let S⇤ 2 argmaxS2M
PT

t=1 ft(S). Then Algorithm 1 outputs S1, . . . , ST such that162

E[(1� c/e)
PT

t=1 ft(S
⇤)�

PT
t=1 ft(St)]  R, where R =

R 1
0 rsds.163

It remains to bound R. Let ⇢s :=
PT

t=1(e
s�1rGt(xt(s)) + `t)>yt(s) be the reward received164

by algorithm As. Suppose each As is an instance of the algorithm promised by Corollary 2.1165

with initial point y1(s) = ⇧KL
BM

�
k
n1

�
. By standard properties (Fact A.4 and Fact A.5), we have166

supu2X DKL (u, x1)  k ln(n/k). Applying Corollary 2.1 (with ct = �es�1rGt(yt(s)) � `t 2167

Rn
0 and D = k ln(n/k)), we have rs  3

p
k ln(n/k)

p
⇢s + k ln(n/k).168

Lemma 3.3. Suppose that rs  3
p
k ln(n/k)

p
⇢s + k ln(n/k). Then R  4

p
k ln(n/k)

p
T .169

We will need a claim to bound
R 1
0 ⇢s ds; we relegate the proof to Appendix D.2.170

Claim 3.4.
R 1
0 ⇢s ds  T .171

Proof of Lemma 3.3. If T  k ln(n/k) then we trivially bound rs  T 
p

k ln(n/k)
p
T . Since172

R =
R 1
0 rs ds, we have R 

p
k ln(n/k)

p
T . Henceforth, we assume T � k ln(n/k). We have173

that R =
R 1
0 rs ds  3

p
k ln(n/k)

R 1
0

p
⇢s ds + k ln(n/k) by the hypothesis of the lemma. By174

Jensen’s Inequality, we have
R 1
0

p
⇢s ds 

qR 1
0 ⇢s ds 

p
T where the last inequality is by Claim175

3.4. Finally, as k ln(n/k) 
p
Tk ln(n/k), we conclude that R  4

p
k ln(n/k) ·

p
T .176

4 Online nonmonotone submodular maximization177

In this section, we prove the following theorem.178

3Note that in Algorithm 1, we assume the OLO algorithm As is trying to minimize losses; since we care
about rewards, we negate the reward vectors to get cost vectors.

4 Missing proofs and appendices can be found in the supplementary materials.
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Theorem 4.1. For online nonmonotone submodular maximization, there exists a polynomial time179

algorithm whose expected 1/2-regret is O(
p
nT ) for every T > 0, where n = |V |.180

In Subsection 4.1, we review the online double greedy algorithm by [27] and introduce USM-balance181

subproblems. Subsection 4.2 describes the necessary background of Blackwell approachability. In182

Subsection 4.3, we prove our main technical result, a first-order regret bound for Blackwell instances183

arising from USM-balance subproblems. Given the first-order regret bound, the proof of Theorem 4.1184

is fairly straightforward and deferred to Appendix F.1 (due to space constraints).185

4.1 Online double greedy and USM-balance subproblem186

First, we review the online double greedy algorithm by [27]. Their algorithm is based on the well-187

known double greedy algorithm [5]. At the beginning of each time t, the algorithm initializes sets188

Xt = ; and Yt = [n]. For each element i, the algorithm updates Xt and Yt using a probability vector189

pt,i = (p+t,i, p
�
t,i) 2 R2. The pseudo code is given in Algorithm 2.190

Algorithm 2 Online Double Greedy
1: Set up USM-balance subproblem algorithms Ai for i = 1, . . . , n.
2: for t = 1, 2, . . . do

3: Initialize Xt,0 = ; and Yt,0 = [n].
4: for i = 1, . . . , n do

5: Call the USM-balancing game algorithm Ai to obtain pt,i = (p+t,i, p
�
t,i).

6: With probability p+t,i, update Xt,i = Xt,i�1 [ i and Yt,i = Yt,i�1. Otherwise, update
Xt,i = Xt,i�1 and Yt,i = Yt,i�1 \ i.

7: return St := Xt,n

8: for i = 1, . . . , n do

9: Feedback �t,i = (ft(Xt,i�1 [ i)� ft(Xt,i�1), ft(Yt,i�1 \ i)� ft(Yt,i�1)) to Ai.

The approximation ratio of the algorithm crucially depends on the choice of pt,i. In the offline191

setting [5], the following choice is known to give a 1/2-approximation:192

(p+t,i, p
�
t,i) =

8
>><

>>:

(0, 1) if �+
t,i  0

(1, 0) if ��
t,i < 0

(
�+

t,i

�+
t,i+��

t,i

,
��

t,i

�+
t,i+��

t,i

) otherwise
,

where �+
t,i := ft(Xt,i�1 [ i) � f(Xt,i�1) and ��

t,i := f(Yt,i�1 \ i) � f(Yt,i�1). We note that193

�+
t,i+��

t,i � 0 [5, Lemma 2.1]. The key ingredient of Roughgarden and Wang [27] is predicting pt,i194

in an online fashion by considering another online learning problem, a USM-balance subproblem.195

Definition 4.2 (USM-balance subproblem [27]). An instance of USM-balance subproblems is the196

following repeated game: For t = 1, 2, . . .,197

• A player plays a two dimensional probability vector pt = (p+t , p
�
t ).198

• An adversary plays a vector �t = (�+
t ,�

�
t ) 2 [�1, 1]2 such that �+

t +��
t � 0.199

The regret of the USM-balance subproblem is defined as200

r(T ) := max

(
TX

t=1

p�t �
+
t ,

TX

t=1

p+t �
�
t

)
� 1

2

TX

t=1

�
p+t �

+
t + p�t �

�
t

�
. (4.1)

Lemma 4.3 relates the regret of USM-balance games with the 1/2-regret of Online Double Greedy.201

Lemma 4.3 (Roughgarden and Wang [27, Theorem 2.1]). Suppose that the USM-balance subproblem202

algorithms Ai have regret ri(T ) for i 2 [n]. Then, Online Double Greedy outputs St such that203

E

"
1

2
max
S⇤

TX

t=1

ft(S
⇤)�

TX

t=1

ft(St)

#


nX

i=1

E[ri(T )]. (4.2)
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It suffices to show that the USM-balance subproblem can be solved with small expected regret.204

In [27], they design an efficient algorithm for the USM-balance subproblem with O(
p
T ) regret.205

However, their algorithm was cleverly hand-crafted for the USM-balance subproblem. As mentioned206

in a footnote in [27], it is possible to design an algorithm via Blackwell approachability [1, 3].207

Note that the O(
p
T ) bound on the USM-balance subproblem is a worst-case zeroth-order208

regret bound. Suppose instead that we had a first-order regret bound, say (for example),209

ri(T ) .
qP

t p
+
t,i�

+
t,i + p�t,i�

�
t,i (the index i corresponds to Ai in Line 5). The quantity210

E[
P

i

P
t p

+
t,i�

+
t,i + p�t,i�

�
t,i] is the expected reward for Online Double Greedy and is at most211

T . Hence,
P

t p
+
t,i�

+
t,i + p�t,i�

�
t,i cannot be ⇥(T ) for all i; consequently ri(T ) cannot all be large.212

Although this “first-order” bound does not hold, because the quantity in the square-root can be213

negative, one can formalize this observation as in the following lemma, which suffices to show the214

desired O(
p
nT ) bound.215

Lemma 4.4. There exists an efficient algorithm A for the USM-balance subproblem such that for216

some sets C+, C� ✓ N,217

r(T )  O

✓
max

8
<

:

vuut
TX

t=1

p�t |�+
t |,

vuut
TX

t=1

p+t |��
t |

9
=

;+
s X

t2C+\[T ]

↵t+
s X

t2C�\[T ]

�t+1

◆
. (4.3)

Here, ↵t =
3
2p

+
t �

+
t + 1

2p
�
t �

�
t and �t =

1
2p

+
t �

+
t + 3

2p
�
t �

�
t . Moreover,218

• the events t 2 C+, t 2 C� depend only on pt,�t; and219

• ↵t � 0 for all t 2 C+ and �t � 0 for all t 2 C�.220

At this point, the proof of Theorem 4.1 follows from Lemma 4.4 via some calculations which we221

defer to Appendix F.1 in the supplementary material. We stress that the important point is that the222

bound in Lemma 4.4 depends on the actual sequence of inputs the algorithm receives. Next, we223

will prove Lemma 4.4 by opening up the reduction of Blackwell approachability to OLO and show224

that, with an appropriate OLO algorithm, one can obtain a first-order regret bound for Blackwell225

approachability in the setting of USM-balance subproblems.226

4.2 Blackwell approachability227

Definition 4.5 (Blackwell instance). A Blackwell instance is a tuple (X ,Y, u,S), where X ✓ Rn,228

Y ✓ Rm, S ✓ Rd are closed convex sets and u : X ⇥ Y ! Rd is a biaffine function, i.e., u(x, ·) is229

affine for any x 2 X and vise versa. An instance is said to be230

• satisfiable if 9x 2 X 8y 2 Y such that u(x, y) 2 S .231

• response-satisfiable if 8y 2 Y 9x 2 X such that u(x, y) 2 S .232

• halfspace-satisfiable if any halfspace H containing S is satisfiable.233

• approachable if there exists an algorithm A such that for any (yt) ✓ Y , the sequence xt =234

A(y1, . . . , yt�1) satisfies dist( 1
T

PT
t=1 u(xt, yt),S)! 0 as T !1.235

Theorem 4.6 (Blackwell Approachability Theorem [3]). Let B = (X ,Y, u,S) be a Blackwell236

instance. Then B is approachable if and only if B is response-satisfiable if and only if B is halfspace-237

satisfiable.238

Abernethy et al. [1] gave an algorithmic version of the Blackwell theorem via its connection to online239

linear optimization. A key ingredient of the algorithm is the concept of a halfspace oracle.240

Definition 4.7 (Halfspace oracle). A halfspace oracle is an oracle that finds x 2 X for given a241

halfspace H ◆ S such that u(x, y) 2 H for all y 2 Y .242

They showed that given a halfspace oracle and an OLO algorithm on a certain convex set defined from243

an Blackwell instance, one can construct an efficient algorithm to produce an approaching sequence.244

The USM-balancing subproblem can be cast as a Blackwell instance as follows. Let X = {p =245

(p+, p�) 2 [0, 1]2 : p+ + p� = 1}, Y = {� = (�+,��) 2 [�1, 1]2 : �+ +�� � 0}, and246

u(p,�) =


p� ·�+ � 1/2p>�
p+ ·�� � 1/2p>�

�
, S = R2

0. (4.4)
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Note that this instance is response-satisfiable, since if we know �, one can set p as in offline double247

greedy. By Theorem 4.6, there exists an algorithm A for producing an approaching sequence pt.248

This yields a regret guarantee in the USM-balance subproblem because (recall Eq. (4.1)) 1
T · r(T ) 249

dist
⇣

1
T

PT
t=1 u(pt,�t),S

⌘
. In addition, one can construct an efficient halfspace oracle for this250

Blackwell instance via a standard LP duality argument; the details can be found in Appendix F.251

4.3 First-order regret bound for Blackwell and proof of Lemma 4.4252

In this section, we prove Lemma 4.4 via a reduction to the Blackwell approachability. Algorithm 3253

shows the reduction from Blackwell approachability to online linear optimization.5 Lemma 4.8254

formalizes the relationship between no-regret learning and Blackwell approachability. In this section,255

let RegA(T ) denote the regret of the dual averaging algorithm A.

Algorithm 3 An improved algorithm for USM-balance subproblems
Input: Halfspace oracle for Blackwell instance and K = S� \B2(1) = {z 2 R2

�0 : kzk2  1}.
1: Initialize dual averaging algorithm A with feasible set K, initial point x1 = (1/

p
2, 1/
p
2),

negative entropy mirror map �(z) :=
P

i zi ln(zi).
2: for t = 1, 2, . . . do

3: xt  A(c1, . . . , ct�1)
4: Call the halfspace oracle for a halfspace H = {z : x>

t z  0} to obtain pt.
5: Play pt and observe �t.
6: Set cost ct  �u(pt,�t).

256

Lemma 4.8 (Abernethy et al. [1, Theorem 17]). The output of Algorithm 3 satisfies 1
T r(T ) 257

dist
⇣

1
T

PT
t=1 u(pt,�t),S

⌘
 1

T RegA(T ).258

Corollary 2.1 asserts that online dual averaging algorithm with appropriate step sizes guarantees6259

RegA(T )  6
p
D

vuut
TX

t=1

|ct|>xt + 2D, (4.5)

where D := max{1,maxz2K DKL (z, x1)}. Next, we claim D = O(1) (proof in Appendix F).260

Claim 4.9. DKL (x, x1)  2 for all x 2 B2(1) \ R�0.261

It now suffices to bound
P

tT |ct|>xt. Recall that ct = �u(pt,�t) (defined in Eq. (4.4)), i.e.262

c+t =
1

2
(p+t ·�+

t + p�t ·��
t )� p+t ·��

t and c�t =
1

2
(p+t ·�+

t + p�t ·��
t )� p�t ·�+

t .

We define ↵t =
3
2p

+
t �

+
t +

1
2p

�
t �

�
t and �t =

1
2p

+
t �

+
t +

3
2p

�
t �

�
t . Finally, define C+ = {t : c+t � 0}263

and C� = {t : c�t � 0}. The proof of the following lemma can be found in Appendix F.264

Lemma 4.10. In the setting of the USM-balance subproblem, we have265 X

tT

|ct|>xt 
X

t2C+\[T ]

↵t +
X

t2C�\[T ]

�t +
X

tT

2(p+t |��
t |+ p�t |�+

t |).

Proof of Lemma 4.4. From Eq. (4.5), using Claim 4.9, Lemma 4.10, and
p
a+ b 

p
a+
p
b gives266

RegA(T )  O

0

@
s X

t2C+\[T ]

↵t +
s X

t2C�\[T ]

�t +

sX

tT

p+t |��
t |+ p�t |�+

t |+ 1

1

A ,

Finally, we bound
P

tT p+t |��
t |+ p�t |�+

t |  2max
nP

tT p+t |��
t |,

P
tT p�t |�+

t |
o

to obtain267

the bound as written in the lemma.268

5 Note that the OLO algorithm requires a KL projection onto K := B2(1)\R2
�0. This is a two-dimensional

convex minimization problem which can be easily solved up to any desired accuracy; the details are omitted
from this version of the paper.

6 The factor of 2 difference between this bound and Corollary 2.1 is because ct 2 [�2, 2]2 in this setting.
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Broader Impact269

This is a theoretical work and does not present any foreseeable societal consequences.270
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