Improved Algorithms for Online Submodular Maximization via First-order Regret Bounds

Anonymous Author(s)

Affiliation
Address
Email

Abstract

We consider the problem of nonnegative submodular maximization in the online setting. At time step t, an algorithm selects a set $S_t \in \mathcal{C} \subseteq 2^V$ where \mathcal{C} is a feasible family of sets. An adversary then reveals a submodular function f_t. The goal is to design an efficient algorithm for minimizing the expected approximate regret.

In this work, we give a general approach for improving regret bounds in online submodular maximization by exploiting “first-order” regret bounds for online linear optimization.

• For monotone submodular maximization subject to a matroid, we give an efficient algorithm which achieves a $(1 - c/e - \varepsilon)$-regret of $O(\sqrt{KT \ln(n/k)})$ where n is the size of the ground set, k is the rank of the matroid, $\varepsilon > 0$ is a constant, and c is the average curvature. Even without assuming any curvature (i.e., taking $c = 1$), this regret bound improves on previous results of Streeter et al. (2009) and Golovin et al. (2014).

• For nonmonotone, unconstrained submodular functions, we give an algorithm with $1/2$-regret $O(\sqrt{nT})$, improving on the results of Roughgarden and Wang (2018). Our approach is based on Blackwell approachability; in particular, we give a novel first-order regret bound for the Blackwell instances that arise in this setting.

1 Introduction

Submodular maximization is a ubiquitous optimization problem in machine learning, economics, and social networks [26]. A set function $f : 2^V \rightarrow \mathbb{R}$ on a ground set V is submodular if it satisfies the diminishing return property: $f(X \cup \{i\}) - f(X) \geq f(Y \cup \{i\}) - f(Y)$ for $X \subseteq Y$ and $i \in V \setminus Y$. Given a nonnegative submodular function f and a set family $\mathcal{C} \subseteq 2^V$, submodular maximization is the optimization problem $\max_{S \in \mathcal{C}} f(S)$. Although submodular maximization is NP-hard in general [11], approximation algorithms for various settings have been developed and they often perform very well in real-world applications [5, 6, 8, 12, 26, 31].

In this paper, we consider online submodular maximization in the full-information setting, which is formulated as the following repeated game between a player and an adversary. The player is given a set family \mathcal{C} in a ground set V in advance. For each round $t = 1, 2, \ldots$, the player plays a set $S_t \in \mathcal{C}$ possibly in a randomized manner and the adversary (perhaps knowing the player’s strategy but not the randomized outcome) selects a submodular function $f_t : 2^V \rightarrow [0, 1]$. The player gains the reward
We provide efficient algorithms with improved regret bounds for various online submodular maximization problems. Our results are summarized in Table 1.

<table>
<thead>
<tr>
<th>setting</th>
<th>known results</th>
<th>our results</th>
</tr>
</thead>
<tbody>
<tr>
<td>monotone+matroid</td>
<td>$O(k\sqrt{nT})$</td>
<td>$O(\sqrt{kT \ln(n/k)})$</td>
</tr>
<tr>
<td>($\alpha = 1 - 1/e - \varepsilon$)</td>
<td>Golovin et al. [16]</td>
<td>Theorem 3.1</td>
</tr>
<tr>
<td>monotone+matroid + bounded curvature</td>
<td>—</td>
<td>$O(\sqrt{kT \ln(n/k)})$</td>
</tr>
<tr>
<td>($\alpha = 1 - c/e - \varepsilon$)</td>
<td></td>
<td>Theorem 3.1</td>
</tr>
<tr>
<td>nonmonotone</td>
<td>$O(n\sqrt{T})$</td>
<td>$O(\sqrt{nT})$</td>
</tr>
<tr>
<td>($\alpha = 1/2$)</td>
<td>Roughgarden and Wang [27]</td>
<td>Theorem 4.1</td>
</tr>
<tr>
<td>monotone+cardinality</td>
<td>$O(\sqrt{kT \ln n})$</td>
<td>$O(\sqrt{kT \ln(n/k)})$</td>
</tr>
<tr>
<td>($\alpha = 1 - 1/e$)</td>
<td>Streeter et al. [30]</td>
<td>Theorem 3.1</td>
</tr>
</tbody>
</table>

Regret is defined as $\text{Reg}_\alpha(T) := \alpha \max_{S^*} \sum_{t=1}^{T} f_t(S^*) - \sum_{t=1}^{T} f_t(S_t)$, where $\alpha \in (0,1]$ corresponds to the offline approximation ratio. The goal of online submodular maximization is to design an efficient algorithm for the player with a small α-regret in expectation.

1.1 Our contribution

We provide efficient algorithms with improved regret bounds for various online submodular maximization problems. Our results are summarized in Table 1.

- For the case of monotone functions and a matroid constraint, i.e., f_t is nonnegative, monotone, and submodular, and \mathcal{C} is a matroid, we provide an algorithm whose expected regret is at most $O(\sqrt{kT \ln(n/k)})$, where $n = |V|$, k is the rank of the matroid \mathcal{C}, and $\varepsilon > 0$ is an arbitrary small constant. Here c is the curvature of $\sum_{t=1}^{T} f_t$. This result is the first $O(\sqrt{T})$ bound for the bounded curvature setting, generalizing the corresponding offline result [12, 31] to the online setting. In the case where $c = 1$, this result improves the best-known bound of $O(k\sqrt{nT})$ [16, 30] by a factor of $\Omega(\sqrt{k\ln n})$. Note that the approximation ratio $1-c/e$ is best possible for any algorithm making polynomially many queries to the objective function [31].
- For the nonmonotone and unconstrained setting (i.e., f_t is nonnegative submodular and $\mathcal{C} = 2^V$), we devise an algorithm with $O(\sqrt{nT})$ expected 1/2-regret, where $n = |V|$. This improves the best-known bound $O(n\sqrt{T})$ [27] by a factor of \sqrt{n}.

Finally, we remark that none of our algorithms require knowing the time horizon T in advance.

1.2 Technical overview

The common ingredient of our algorithms is the use of “first-order” regret bounds for online linear optimization (OLO), which bound the regret of OLO algorithms in terms of the total gain or loss of the best single action rather than the time horizon T. We show that this data-dependent nature of first-order bounds enables us to exploit the structures of OLO subproblems appearing in online submodular maximization and it yields better bounds for approximate-regret. Below, we provide detailed description of this idea for each submodular maximization problem we study.

Monotone Our algorithm is based on online continuous greedy [16, 30]. Roughly speaking, online continuous greedy reduces the problem to a series of OLO problems on a matroid polytope. For OLO on a matroid polytope, Golovin et al. [16] used follow the perturbed leader (FPL) [24], which gives

1Formally, each submodular function f_t is given as a value oracle to the player after S_t is chosen.

2The curvature c of a nonnegative monotone submodular function f is defined as $c = 1 - \min_{i \in V} \frac{f(f(i))}{f(V \setminus \{i\})}$.

2
the $O(k\sqrt{nT})$ bound. The key observation to improving this bound is that the OLO subproblems that
arise in this setting are structured in the sense that the sum of the rewards (across the subproblems)
cannot be too large. Our technical contribution is a novel analysis of online continuous greedy
showing that if one uses OLO algorithms with a first-order regret bound [25], then online continuous
greedy yields the improved $O(\sqrt{kT\ln(n/k)})$ bound.

Furthermore, we show that combining the above techniques with the continuous greedy of Feldman
[12] gives an algorithm for maximization of monotone submodular functions with bounded curvature
under a matroid constraint. In particular, we show that the expected $(1 - c/e - \varepsilon)$-regret is bounded
by $O(\sqrt{kT\ln(n/k)})$ where c is the curvature of the sum of the submodular functions. We note that
our algorithm does not require knowledge of c beforehand.

Nonmonotone At a high level, our algorithm for the nonmonotone case is similar to online double
greedy of Roughgarden and Wang [27], which we will review briefly. They reduced the problem to a
sequence of auxiliary online learning problems, called USM balance subproblems, for which they
designed an algorithm with $O(\sqrt{T})$ regret. They also showed that if one has algorithms for the USM
balance subproblems with regret r_i for $i = 1, \ldots, n$, then online double greedy achieves $O(\sum_i r_i)$
regret bound, which gives the $O(n\sqrt{T})$ bound. Our contribution is a new algorithm for USM balance
subproblems with a “first-order” regret bound. Combining this algorithm with a novel analysis of
online double greedy, we obtain the improved $O(n\sqrt{T})$ bound. To design the first-order regret bound
for USM balance subproblems, we exploit the Blackwell approachability theorem [1] and online dual
averaging. Note that Roughgarden and Wang [27] did not use the Blackwell theorem and it is not
obvious how to obtain a similar “first-order” bound from their analysis. We are not aware of other
examples where similar regret bounds are known for Blackwell problems.

1.3 Related work

Online submodular maximization is a subfield of online learning [7]. A large body of work in online
learning is devoted to online convex optimization (OCO); see the monograph of Hazan [18]. Hazan
and Kale [20] studied online submodular minimization through an OCO approach. The concept of
first-order regret bounds originally appeared in Freund and Schapire [13] for the expert problem. We
note that second-order regret bounds, where the range of the losses are not known and the regret
depends on the square of the losses, have also been studied in the literature; see e.g. [19].

Studies of online submodular maximization were initiated by Streeter and Golovin [29]. They
gave the first polynomial-time algorithm for the setting of monotone submodular functions and a
cardinality constraint with $O(\sqrt{kT\ln n})$ expected $(1 - 1/e)$-regret, where $n = |V|$ is the size of
the ground set and k is the cardinality constraint constant. Subsequently, this result was generalized
(with a slightly worse regret bound) to a partition matroid and a general matroid constraint in [16, 30].
For nonmonotone submodular maximization, Roughgarden and Wang [27] gave the first algorithm
with $O(n\sqrt{T})$ expected 1/2-regret. This was later generalized to nonmonotone k-submodular
maximization by Soma [28] who gave an algorithm with $O(kn\sqrt{T})$ expected 1/2-regret. Chen
et al. [9, 10] and Zhang et al. [32] studied online continuous submodular maximization and obtained
$O(\sqrt{T})$ approximate regret for various settings. Zhang et al. [32] also study monotone submodular
maximization subject to a matroid constraint in the “responsive bandit setting”, where the algorithm
can play and receive feedback for any set but receives a reward only for feasible sets. For this problem,
they achieve expected $(1 - 1/e)$-regret at most $O(T^{8/9})$.

A series of studies developed black-box reductions of offline approximation algorithms to online
no-approximate-regret algorithms [14, 21, 23]. These reductions apply only to linear functions.

1.4 Organization

The rest of the paper is organized as follows. Section 2 introduces some backgrounds of submodular
maximization and online dual averaging. Section 3 presents our improved algorithm for monotone
functions of bounded curvature subject to a matroid constraint. Section 4 describes our algorithm for
nonmonotone functions in the unconstrained setting.
2 Preliminaries

We denote the sets of real numbers, nonnegative real numbers, positive real numbers by \(\mathbb{R} \), \(\mathbb{R}_{\geq 0} \), and \(\mathbb{R}_{>0} \), respectively. We also denote the set of nonpositive real numbers by \(\mathbb{R}_{\leq 0} \). For a vector \(c \), \(|c| \) denotes the vector obtained by taking the element-wise absolute values.

Let \(V \) be a finite ground set. For a set function \(f : 2^V \to \mathbb{R} \), \(S \subseteq V \), and \(i \in V \setminus S \), we denote the marginal gain \(f(S \cup \{i\}) - f(S) \) by \(f(i | S) \). We sometimes abuse the notation for singletons, e.g., we denote \(f(\{i\}) \) by \(f(i) \), \(S \cup \{i\} \) by \(S \cup i \), etc. For a vector \(\ell \in \mathbb{R}^V \) and a subset \(S \subseteq V \), we define \(\ell(S) = \sum_{i \in S} \ell_i \). For a set function \(f : 2^V \to \mathbb{R} \), its multilinear extension \(F : [0, 1]^V \to \mathbb{R} \) is a smooth function defined as \(F(x) = \mathbb{E}[f(R(x))] = \sum_{S \subseteq V} f(S) \prod_{i \in S} x_i \prod_{i \notin S} (1 - x_i) \), where \(R(x) \) is a random set that independently contains each element \(i \in V \) with probability \(x_i \). It is well-known that \(\nabla F \geq 0 \) if \(f \) is monotone and that \(\frac{\partial F}{\partial x_i} \leq 0 \) if \(f \) is submodular [6].

A matroid is a set family \(I \subseteq 2^V \) such that (I1) \(\emptyset \in I \), (I2) \(X \subseteq Y \in I \) implies \(X \in I \), and (I3) \(X, Y \in I \) and \(|X| < |Y| \) implies that there exists \(i \in Y \setminus X \) such that \(X \cup i \in I \). The rank function of a matroid \(M \) is denoted by \(\text{rk}_M \). The base polytope of a matroid \(M \) is a polytope defined as \(B_M = \{ x \in \mathbb{R}_{\geq 0}^V : \text{rk}_M(S) \leq \text{rk}_M(V), x(V) = \text{rk}_M(V) \} \). Rounding algorithms take a vector \(x \) in a base polytope \(B_M \) and output a random independent set \(X \in I \) such that \(\mathbb{E}[f(X)] \geq F(x) \) for any monotone submodular function \(f \) and its multilinear extension \(F \).

Examples of rounding algorithms include pipage rounding and swap rounding [6, 8].

Online Linear Optimization and Online Dual Averaging. Both of our algorithms make use of algorithms for online linear optimization (OLO) as a subroutine, which we will now briefly describe. Let \(X \subseteq \mathbb{R}^n \) be a convex set. In OLO, at each time step \(t = 1, 2, \ldots \) an algorithm chooses an element \(x_t \in X \) after which an adversary chooses a cost function \(c_t \in [-1, 1]^n \). The goal is to minimize \(\sum_{t=1}^T (c_t^T x_t - c_t^T z) \) for all \(z \in X \). One algorithm to achieve this is online dual averaging which is described in Appendix B. Here, we will just state the guarantee. For \(x, y \in \mathbb{R}^n \), define KL-divergence \(D_{\text{KL}}(x, y) := \sum_{i=1}^n x_i \ln \frac{x_i}{y_i} - x_i + y_i \). The following corollary is a restatement of Corollary B.3.

Corollary 2.1. Let \(x_1 \) be an initial point and let \(D \geq \max\{ 1, \sup_{u \in X} D_{\text{KL}}(u, x_1) \} \). Assuming that the cost vectors \(c_t \in [-1, 1]^n \) then there is an algorithm for OLO that produces a sequence of iterates \(x_1, x_2, \ldots \) such that \(\sum_{t=1}^T (c_t^T x_t - c_t^T z) \leq 3\sqrt{DT} \sqrt{\sum_{t=1}^T |c_t|^T x_t + D} \) for all \(z \in X \) and \(T > 0 \).

Finally, \(\Pi^T_{X}(x) := \arg\min_{y \in \mathbb{R}^n} D_{\text{KL}}(x, y) \) denotes the KL projection of \(y \) onto the convex set \(X \).

3 Online monotone submodular maximization

Recall that the curvature of a monotone submodular function \(f \) is defined as \(c = 1 - \min_{j} \frac{f(i | V \setminus i)}{f(i | i) \setminus i} \). Every monotone submodular function has curvature \(c \in [0, 1] \) and linear functions have curvature \(c = 0 \). Our main result in this section is the following theorem.

Theorem 3.1. For any constant \(\varepsilon > 0 \), there exists a polynomial-time algorithm for online submodular maximization subject to a matroid constraint whose expected \((1 - c/\varepsilon - \varepsilon)-\text{regret} \) is bounded by \(O(\sqrt{kT \ln(n/k)}) \) for every \(T > 0 \), where \(n \) is the size of the ground set, \(k \) is the rank of the matroid, and \(c \) is the curvature of \(\sum_{t=1}^T f_t \).

Note that the curvature \(c \) may change over time. This section gives an informal proof of Theorem 3.1 with a continuous-time algorithm; the discretized algorithm and analysis appears in Appendix E.

3.1 Continuous-Time Algorithm

The main idea is to adapt the recent continuous greedy algorithm of Feldman [12] for maximizing a monotone submodular function. For a monotone submodular function \(f \), we can define the corresponding modular function \(\ell \) by

\[
\ell(S) = \sum_{i \in S} f(i | V \setminus i).
\] (3.1)
We will need a claim to bound \(R \) is again monotone and submodular. The continuous-time version of the algorithm is presented in Algorithm 1.\(^3\)

Algorithm 1 Continuous-time algorithm

Input: Matroid \(\mathcal{M} \) and dual averaging algorithms \(\mathcal{A}_s \) on the base polytope \(B_M \) for \(s \in [0, 1] \).
1. Initialize dual averaging algorithms \(\mathcal{A}_s \) for each \(s \in [0, 1] \).
2. for \(t = 1, 2, \ldots \) do
3. Set \(x_t(0) = 0 \).
4. for \(s \in [0, 1] \) do
5. Move \(x_t(s) \) via dynamics \(\frac{dx_t(s)}{dt} = y_t(s) \), where \(y_t(s) \in B_M \) is the prediction from \(\mathcal{A}_s \).
6. Apply rounding to \(x_t := x_t(1) \) and obtain \(S_t \).
7. Play \(S_t \) and observe \(f_t \).
8. Compute the modular function \(\ell_t \) for \(f_t \) by (3.1) and let \(g_t = f_t - \ell_t \).
9. for \(s \in [0, 1] \) do
10. Feedback cost vector \(c_t = -e^{s-1} \nabla G_t(x_t(s)) - \ell_t \) to \(\mathcal{A}_s \); \(G_t \) is multilinear extension of \(g_t \).

In Subsection 3.2, we will analyze Algorithm 1. In order to obtain a good regret bound on the problem, we require \(\mathcal{A}_s \) (as defined in Algorithm 1) to have a first-order regret bound for which we can use Corollary 2.1. Finally, \(\mathcal{A}_s \) requires performing a Bregman projection onto the matroid base polytope. The details of this can be found in Appendix D.3 in the supplementary materials.\(^4\)

3.2 Analysis

Let \(S^* \in \arg\max_{S \in \mathcal{A}_s \in \mathcal{M}} \sum_{t=1}^T f_t(S) \) and let \(r_s := \max_{z \in B_M} \sum_{t=1}^T (e^{s-1} \nabla f_t(x_t(s)) + \ell_t)^\top (z - y_t(s)) \) be the regret of \(A_s \) for \(s \in [0, 1] \). The first lemma bounds the regret of Algorithm 1 in terms of \(r_s \). The proof is similar to that in [12]; it can be found in Appendix D.1.

Lemma 3.2. Let \(S^* \in \arg\max_{S \in \mathcal{A}_s \in \mathcal{M}} \sum_{t=1}^T f_t(S) \). Then Algorithm 1 outputs \(S_1, \ldots, S_T \) such that

\[
E[(1 - c/e) \sum_{t=1}^T f_t(S^*) - \sum_{t=1}^T f_t(S_t)] \leq R, \text{ where } R = \int_0^1 r_s ds.
\]

It remains to bound \(R \). Let \(\rho_s := \sum_{t=1}^T (e^{s-1} \nabla f_t(x_t(s)) + \ell_t)^\top y_t(s) \) be the reward received by algorithm \(A_s \). Suppose each \(A_s \) is an instance of the algorithm promised by Corollary 2.1 with initial point \(y_1(s) = \Pi_{B_M}^{KL} \left(\frac{k}{n} 1 \right) \). By standard properties (Fact A.4 and Fact A.5), we have \(\sup_{u \in \mathcal{X}} D_{KL}(u, x_1) \leq k \ln(n/k) \). Applying Corollary 2.1 with \(c_t = -e^{s-1} \nabla f_t(y_t(s)) - \ell_t \in \mathbb{R}^n_{+} \) and \(D = k \ln(n/k) \), we have \(r_s \leq 3\sqrt{k \ln(n/k)} \sqrt{\rho_s} + k \ln(n/k) \).

Lemma 3.3. Suppose that \(r_s \leq 3\sqrt{k \ln(n/k)} \sqrt{\rho_s} + k \ln(n/k) \). Then \(R \leq 4\sqrt{k \ln(n/k)} \sqrt{T} \).

We will need a claim to bound \(\int_0^1 \rho_s ds \); we relegate the proof to Appendix D.2.

Claim 3.4. \(\int_0^1 \rho_s ds \leq T \).

Proof of Lemma 3.3. If \(T \leq k \ln(n/k) \) then we trivially bound \(r_s \leq T \leq \sqrt{k \ln(n/k)} \sqrt{T} \). Since \(R = \int_0^1 r_s ds \), we have \(R \leq \sqrt{k \ln(n/k)} \sqrt{T} \). Henceforth, we assume \(T \geq k \ln(n/k) \). We have that \(R = \int_0^1 r_s ds \leq 3\sqrt{k \ln(n/k)} \int_0^1 \sqrt{\rho_s} ds + k \ln(n/k) \) by the hypothesis of the lemma. By Jensen’s Inequality, we have \(\int_0^1 \sqrt{\rho_s} ds \leq \sqrt{\int_0^1 \rho_s ds \leq \sqrt{T} \) where the last inequality is by Claim 3.4. Finally, as \(k \ln(n/k) \leq \sqrt{T k} \ln(n/k) \), we conclude that \(R \leq 4\sqrt{k \ln(n/k)} \cdot \sqrt{T} \). \(\square \)

4 Online nonmonotone submodular maximization

In this section, we prove the following theorem.

\(^3\)Note that in Algorithm 1, we assume the OLO algorithm \(A_s \) is trying to minimize losses; since we care about rewards, we negate the reward vectors to get cost vectors.

\(^4\) Missing proofs and appendices can be found in the supplementary materials.
The regret of the USM-balance subproblem is defined as
\[
\text{regret} = \sum_{t=1}^{T} \left(f_t(X_{t-1} \cup i) - f_t(X_{t-1}) \right).
\]

Algorithm 2

1: Set up USM-balance subproblem algorithms \(A_i \) for \(i = 1, \ldots, n \).
2: for \(t = 1, 2, \ldots \) do
3: Initialize \(X_{t,0} = \emptyset \) and \(Y_{t,0} = [n] \).
4: for \(i = 1, \ldots, n \) do
5: Call the USM-balancing game algorithm \(A_i \) to obtain \(p_{t,i} = (p_{t,i}^+, p_{t,i}^-) \).
6: With probability \(p_{t,i}^+ \), update \(X_{t,i} = X_{t,i-1} \cup i \) and \(Y_{t,i} = Y_{t,i-1} \). Otherwise, update \(X_{t,i} = X_{t,i-1} \) and \(Y_{t,i} = Y_{t,i-1} \setminus i \).
7: return \(S_t := X_{t,n} \)
8: for \(i = 1, \ldots, n \) do
9: Feedback \(\Delta_{t,i} = (f_t(X_{t,i-1} \cup i) - f_t(X_{t,i-1})), f_t(Y_{t,i-1} \setminus i) - f_t(Y_{t,i-1}) \) to \(A_i \).

The approximation ratio of the algorithm crucially depends on the choice of \(p_{t,i} \). In the offline setting [5], the following choice is known to give a 1/2-approximation:

\[
(p_{t,i}^+, p_{t,i}^-) = \begin{cases}
(0, 1) & \text{if } \Delta_{t,i}^+ \leq 0 \\
(1, 0) & \text{if } \Delta_{t,i}^- < 0 \\
\left(\frac{\Delta_{t,i}^+}{\Delta_{t,i}^+ + \Delta_{t,i}^-}, \frac{\Delta_{t,i}^-}{\Delta_{t,i}^+ + \Delta_{t,i}^-} \right) & \text{otherwise}
\end{cases}
\]

where \(\Delta_{t,i}^+ := f_t(X_{t,i-1} \cup i) - f(X_{t,i-1}) \) and \(\Delta_{t,i}^- := f(Y_{t,i-1} \setminus i) - f(Y_{t,i-1}) \). We note that \(\Delta_{t,i}^+ + \Delta_{t,i}^- \geq 0 \). The regret of the USM-balance subproblem is defined as

\[
r(T) := \max \left\{ \sum_{i=1}^{T} p_{t,i}^- \Delta_{t,i}^+, \sum_{i=1}^{T} p_{t,i}^+ \Delta_{t,i}^- \right\} - \frac{1}{2} \sum_{i=1}^{T} (p_{t,i}^+ \Delta_{t,i}^+ + p_{t,i}^- \Delta_{t,i}^-) \tag{4.1}
\]

Lemma 4.3 relates the regret of USM-balance games with the 1/2-regret of Online Double Greedy.
It suffices to show that the USM-balance subproblem can be solved with small expected regret.

In [27], they design an efficient algorithm for the USM-balance subproblem with $O(\sqrt{T})$ regret. However, their algorithm was cleverly hand-crafted for the USM-balance subproblem. As mentioned in a footnote in [27], it is possible to design an algorithm via Blackwell approachability [1, 3].

Note that the $O(\sqrt{T})$ bound on the USM-balance subproblem is a worst-case zeroth-order regret bound. Suppose instead that we had a first-order regret bound, say (for example),

$$r_i(T) \leq \sum_{i=1}^{T} p_i^+ \Delta^+_i + p_i^- \Delta^-_i,$$

(index i corresponds to A_i in Line 5). The quantity

$$\mathbf{E}\left[\sum_{i=1}^{T} p_i^+ \Delta^+_i + p_i^- \Delta^-_i\right]$$

is the expected reward for Online Double Greedy and is at most T. Hence, $\sum_{i=1}^{T} p_i^+ \Delta^+_i + p_i^- \Delta^-_i$ cannot be $\Theta(T)$ for all i; consequently $r_i(T)$ cannot all be large. Although this “first-order” bound does not hold, because the quantity in the square-root can be negative, one can formalize this observation as in the following lemma, which suffices to show the desired $O(\sqrt{nT})$ bound.

Lemma 4.4. There exists an efficient algorithm A for the USM-balance subproblem such that for some sets $C^+, C^- \subseteq \mathbb{N}$,

$$r(T) \leq O\left(\max\left\{\sum_{t=1}^{T} p_t^+ |\Delta^+_t|, \sum_{t=1}^{T} p_t^- |\Delta^-_t|\right\} + \sqrt{\sum_{t \in C^+ \cap [T]} \alpha_t + \sum_{t \in C^- \cap [T]} \beta_t + 1}\right). \quad (4.3)$$

Here, $\alpha_t = \frac{3}{2} p_t^+ \Delta^+_t + \frac{1}{2} p_t^- \Delta^-_t$ and $\beta_t = \frac{1}{2} p_t^+ \Delta^+_t + \frac{3}{2} p_t^- \Delta^-_t$. Moreover,

- the events $t \in C^+, t \in C^-$ depend only on p_t, Δ_t: and
- $\alpha_t \geq 0$ for all $t \in C^+$ and $\beta_t \geq 0$ for all $t \in C^-$.

At this point, the proof of Theorem 4.1 follows from Lemma 4.4 via some calculations which we defer to Appendix F.1 in the supplementary material. We stress that the important point is that the bound in Lemma 4.4 depends on the actual sequence of inputs the algorithm receives. Next, we will prove Lemma 4.4 by opening up the reduction of Blackwell approachability to OLO and show that, with an appropriate OLO algorithm, one can obtain a first-order regret bound for Blackwell approachability in the setting of USM-balance subproblems.

4.2 Blackwell approachability

Definition 4.5 (Blackwell instance). A Blackwell instance is a tuple $(\mathcal{X}, \mathcal{Y}, u, S)$, where $\mathcal{X} \subset \mathbb{R}^n$, $\mathcal{Y} \subset \mathbb{R}^m$, $S \subset \mathbb{R}^d$ are closed convex sets and $u : \mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}^d$ is a biaffine function, i.e., $u(x, \cdot)$ is affine for any $x \in \mathcal{X}$ and vice versa. An instance is said to be

- satisfiable if $\exists x \in \mathcal{X} \forall y \in \mathcal{Y}$ such that $u(x, y) \in S$.
- response-satisfiable if $\forall y \in \mathcal{Y} \exists x \in \mathcal{X}$ such that $u(x, y) \in S$.
- halfspace-satisfiable if any halfspace H containing S is satisfiable.

- approachable if there exists an algorithm A such that for any $(y_1, \ldots, y_{t-1}) \subseteq \mathcal{Y}$, the sequence $x_t = A(y_1, \ldots, y_{t-1})$ satisfies $\text{dist}(\frac{1}{T} \sum_{t=1}^{T} u(x_t, y_t), S) \rightarrow 0$ as $T \rightarrow \infty$.

Theorem 4.6 (Blackwell Approachability Theorem [3]). Let $\mathcal{B} = (\mathcal{X}, \mathcal{Y}, u, S)$ be a Blackwell instance. Then \mathcal{B} is approachable if and only if \mathcal{B} is response-satisfiable if and only if \mathcal{B} is halfspace-satisfiable.

Abernethy et al. [1] gave an algorithmic version of the Blackwell theorem via its connection to online linear optimization. A key ingredient of the algorithm is the concept of a halfspace oracle.

Definition 4.7 (Halfspace oracle). A halfspace oracle is an oracle that finds $x \in \mathcal{X}$ for given a halfspace $H \supseteq S$ such that $u(x, y) \in H$ for all $y \in \mathcal{Y}$.

They showed that given a halfspace oracle and an OLO algorithm on a certain convex set defined from an Blackwell instance, one can construct an efficient algorithm to produce an approaching sequence.

The USM-balancing subproblem can be cast as a Blackwell instance as follows. Let $\mathcal{X} = \{p = (p^+, p^-) \in [0, 1]^2 : p^+ + p^- = 1\}$, $\mathcal{Y} = (\Delta = (\Delta^+, \Delta^-) \in [-1, 1]^2 : \Delta^+ + \Delta^- \geq 0\}$, and

$$u(p, \Delta) = \begin{bmatrix} p^- \cdot \Delta^+ - 1/2p^+ \Delta^- \\ p^+ \cdot \Delta^- - 1/2p^+ \Delta^+ \end{bmatrix}, \quad \mathcal{S} = \mathbb{R}^d_{\leq 0}. \quad (4.4)$$
We define \(\Delta \), one can set \(p \) as in offline double greedy. By Theorem 4.6, there exists an algorithm \(A \) for producing an approaching sequence \(p_t \). This yields a regret guarantee in the USM-balance subproblem because (recall Eq. (4.1)) \(\frac{1}{T} r(T) \leq \text{dist} \left(\frac{1}{T} \sum_{t=1}^{T} u(p_t, \Delta_t), \mathcal{S} \right) \). In addition, one can construct an efficient halfspace oracle for this Blackwell instance via a standard LP duality argument; the details can be found in Appendix F.

4.3 First-order regret bound for Blackwell and proof of Lemma 4.4

In this section, we prove Lemma 4.4 via a reduction to the Blackwell approachability. Algorithm 3 shows the reduction from Blackwell approachability to online linear optimization.5 Lemma 4.8 formalizes the relationship between no-regret learning and Blackwell approachability. In this section, let \(\text{Reg}_A(T) \) denote the regret of the dual averaging algorithm \(A \).

Algorithm 3 An improved algorithm for USM-balance subproblems

Input: Halfspace oracle for Blackwell instance and \(K = S^r \cap B_2(1) = \{ z \in \mathbb{R}^r : \|z\|_2 \leq 1 \} \).

1. Initialize dual averaging algorithm \(A \) with feasible set \(K \), initial point \(x_1 = (1/\sqrt{2}, 1/\sqrt{2}) \), negative entropy mirror map \(\Phi(z) := \sum_i z_i \ln(z_i) \).
2. for \(t = 1, 2, \ldots \) do
3. \(x_t := A(c_1, \ldots, c_{t-1}) \)
4. Call the halfspace oracle for a halfspace \(H = \{ z : x_i^T z \leq 0 \} \) to obtain \(p_t \).
5. Play \(p_t \) and observe \(\Delta_t \).
6. Set cost \(c_t := -u(p_t, \Delta_t) \).

Lemma 4.8 (Abernethy et al. [1, Theorem 17]). The output of Algorithm 3 satisfies \(\frac{1}{T} r(T) \leq \text{dist} \left(\frac{1}{T} \sum_{t=1}^{T} u(p_t, \Delta_t), \mathcal{S} \right) \leq \frac{1}{T} \text{Reg}_A(T) \).

Corollary 2.1 asserts that online dual averaging algorithm with appropriate step sizes guarantees\(^6\)

\[
\text{Reg}_A(T) \leq 6D \sqrt{\sum_{t=1}^{T} |c_t^T x_t + 2D|}, \quad (4.5)
\]

where \(D := \max \{1, \max_{z \in K} D_{KL}(z, x_1) \} \). Next, we claim \(D = O(1) \) (proof in Appendix F).

Claim 4.9. \(D_{KL}(z, x_1) \leq 2 \) for all \(x \in B_2(1) \cap \mathbb{R}^r_{\geq 0} \).

It now suffices to bound \(\sum_{t \leq T} |c_t^T x_t| \). Recall that \(c_t = -u(p_t, \Delta_t) \) (defined in Eq. (4.4)), i.e.

\[
c_t = \frac{1}{2} (p_t^+ \cdot \Delta_t^+ + p_t^- \cdot \Delta_t^- - p_t^+ \cdot \Delta_t^- - p_t^- \cdot \Delta_t^+).
\]

We define \(c_t = \frac{1}{2} p_t^+ \Delta_t^+ + \frac{1}{2} p_t^- \Delta_t^- \) and \(\beta_t = \frac{1}{2} p_t^+ \Delta_t^+ + \frac{1}{2} p_t^- \Delta_t^- \). Finally, define \(C^+ = \{ t : c_t^+ \geq 0 \} \) and \(C^- = \{ t : c_t^- \geq 0 \} \). The proof of the following lemma can be found in Appendix F.

Lemma 4.10. In the setting of the USM-balance subproblem, we have

\[
\sum_{t \leq T} |c_t^T x_t| \leq \sum_{t \in C^+ \cap [T]} \alpha_t + \sum_{t \in C^- \cap [T]} \beta_t + \sum_{t \leq T} 2(p_t^+ \Delta_t^+ + p_t^- \Delta_t^-).
\]

Proof of Lemma 4.4. From Eq. (4.5), using Claim 4.9, Lemma 4.10, and \(\sqrt{a + b} \leq \sqrt{a} + \sqrt{b} \) gives

\[
\text{Reg}_A(T) \leq O \left(\sqrt{\sum_{t \in C^+ \cap [T]} \alpha_t} + \sqrt{\sum_{t \in C^- \cap [T]} \beta_t} + \sqrt{\sum_{t \leq T} p_t^+ \Delta_t^+ + p_t^- \Delta_t^-} + 1 \right),
\]

Finally, we bound \(\sum_{t \leq T} p_t^+ \Delta_t^+ + p_t^- \Delta_t^- \leq \max \left\{ \sum_{t \leq T} p_t^+ \Delta_t^+, \sum_{t \leq T} p_t^- \Delta_t^- \right\} \) to obtain

the bound as written in the lemma.

5 Note that the OLO algorithm requires a KL projection onto \(K := B_2(1) \cap \mathbb{R}^r_{\geq 0} \). This is a two-dimensional convex minimization problem which can be easily solved up to any desired accuracy; the details are omitted from this version of the paper.

6 The factor of 2 difference between this bound and Corollary 2.1 is because \(c_t \in [-2, 2]^2 \) in this setting.
Broader Impact

This is a theoretical work and does not present any foreseeable societal consequences.

References

