
Nearly-tight VC-dimension bounds
for piecewise linear neural networks

Nick Harvey∗ Chris Liaw† Abbas Mehrabian‡

March 9, 2017

Abstract

We prove new upper and lower bounds on the VC-dimension of deep neural
networks with the ReLU activation function. These bounds are tight for almost
the entire range of parameters. Letting W be the number of weights and L be
the number of layers, we prove that the VC-dimension is O(WL log(W)) and
Ω(WL log(W/L)). This improves both the previously known upper bounds and
lower bounds. In terms of the number U of non-linear units, we prove a tight
bound Θ(WU) on the VC-dimension. All of these results generalize to arbitrary
piecewise linear activation functions.

1 Introduction
Deep neural networks underlie many of the recent breakthroughs of applied machine
learning, particularly in image and speech recognition. These successes motivate a
renewed study of these networks’ theoretical properties.

Classification is one of the learning tasks in which deep neural networks have
been particularly successful, e.g., for image recognition. A natural foundational ques-
tion that arises is: what are the theoretical limits on the classification power of these
networks? The established way to formalize this question is by considering VC-
dimension, as it is well known that this asymptotically determines the sample com-
plexity of PAC learning with such classifiers [3].

In this paper, we prove nearly-tight bounds on the VC-dimension of deep neural
networks in which the non-linear activation function is a piecewise linear function with
a constant number of pieces. For simplicity we will henceforth refer to such networks
as “piecewise linear networks”. The most common activation function used in practice
is, by far, the rectified linear unit, also known as ReLU [7, 8]. The ReLU function is
defined as σ(x) = max{0, x}, so it is clearly piecewise linear.

∗University of British Columbia. Email: nickhar@cs.ubc.ca
†University of British Columbia. Email: cvliaw@cs.ubc.ca
‡University of British Columbia. Email: abbasmehrabian@gmail.com

1

ar
X

iv
:1

70
3.

02
93

0v
1

 [
cs

.L
G

]
 8

 M
ar

 2
01

7

It is particularly interesting to consider how the VC-dimension is affected by the
various attributes of the network: the number W of parameters (i.e., weights and bi-
ases), the number U of non-linear units (i.e., nodes), and the number L of layers.
Among all networks with the same size (number of weights), is it true that those with
more layers have more classification power (i.e., larger VC-dimension)?

Such a statement is indeed true, and previously known, thereby providing some jus-
tification for the advantages of deep neural networks. However, a tight characterization
of how depth affects VC-dimension was unknown prior to this work.

Our results. Our first main result is a new VC-dimension lower bound that holds
even for the restricted family of ReLU networks.

Theorem 1.1 (Main lower bound). There exists a universal constant C such that the
following holds. Given any W,L with W > CL > C2, there exists a ReLU network
with ≤ L layers and ≤W parameters with VC-dimension ≥WL log(W/L)/C.

The proof appears in Section 3. Prior to our work, the best known lower bounds
were Ω(WL) [2, Theorem 2] and Ω(W logW) [10, Theorem 1]; we strictly improve
both bounds to Ω(WL log(W/L)).

Our proof of Theorem 1.1 uses the “bit extraction” technique, which was also used
in [2] to give an Ω(WL) lower bound. We refine this technique to gain the additional
logarithmic factor that appears in Theorem 1.1.

Unfortunately there is a barrier to refining this technique any further. Our next theo-
rem shows the hardness of computing the mod function, implying that the bit extraction
technique cannot yield a stronger lower bound than Theorem 1.1. Further discussion
of this connection may be found in Remark 3.

Theorem 1.2. Assume there exists a piecewise linear network with W parameters
and L layers that computes a function f : R → R, with the property that |f(x) −
(xmod 2)| < 1/2 for all x ∈ {0, 1, . . . , 2m−1}. Then we havem = O(L log(W/L)).

The proof of this theorem appears in Section 4. One interesting aspect of the proof
is that it does not use Warren’s lemma [13], which is a mainstay of VC-dimension
upper bounds [6, 2, 1].

Our next main result is an upper bound on the VC-dimension of neural networks
with any piecewise linear activation function with a constant number of pieces. Recall
that ReLU is an example of a piecewise linear activation function.

Theorem 1.3 (Main upper bound). Consider a piecewise linear neural network withW
parameters arranged in L layers. Let F be the set of (real-valued) functions computed
by this network. Then VCDim(sgn(F)) = O(WL logW).

The proof of this result appears in Section 5. Prior to our work, the best published
upper bounds wereO(W 2) [6, Section 3.1] andO(WL logW+WL2) [2, Theorem 1],
both of which hold for piecewise polynomial activation functions; we strictly improve
both bounds to O(WL logW) for the special case of piecewise linear functions.

2

To compare our upper and lower bounds, let d(W,L) denote the largest VC-dimension
of a piecewise linear network with W parameters and L layers. Theorems 1.1 and 1.3
imply there exist constants c, C such that

c ·WL log(W/L) ≤ d(W,L) ≤ C ·WL logW . (1)

For neural networks arising in practice it would certainly be the case that L is signif-
icantly smaller than W 0.99, in which case our results determine the asymptotic bound
d(W,L) = Θ(WL logW). On the other hand, in the regime L = Θ(W), which is
merely of theoretical interest, we also now have a tight bound d(W,L) = Θ(WL), ob-
tained by combining Theorem 1.1 with results of [6]. There is now only a very narrow
regime, sayW 0.99 � L�W , in which the bounds of (1) are not asymptotically tight,
and they differ only in the logarithmic factor.

Our final result is a upper bound for VC-dimension in terms of W and U (the num-
ber of non-linear units, or nodes). This bound is tight in the case d = 1, as discussed
in Remark 3.

Theorem 1.4. Consider a neural network with W parameters and U units with ac-
tivation functions that are piecewise polynomials of degree at most d. Let F be the
set of (real-valued) functions computed by this network. Then VCDim(sgn(F)) =
O(WU log(d+ 1)).

The proof of this result appears in Section 6. The best known upper bound be-
fore our work was O(W 2) (implicitly proven in [6, Section 3.1], for constant d). Our
theorem improves this to the tight result O(WU).

Related Work. Recently there have been several theoretical papers that establish the
power of depth in neural networks. Last year, two striking papers considered the prob-
lem of approximating a deep neural network with a shallower network. [12] shows
that there is a ReLU network with L layers and U = Θ(L) units such that any net-
work approximating it with only O(L1/3) layers must have Ω(2L

1/3

) units; this phe-
nomenon holds even for real-valued functions. [5] show an analogous result for a
high-dimensional 3-layer network that cannot be approximated by a 2-layer network
except with an exponential blow-up in the number of nodes.

Very recently, several authors have shown that deep neural networks are capable
of approximating broad classes of functions. [11] show that a sufficiently non-linear
C2 function on [0, 1]d can be approximated with ε error in L2 by a ReLU network
with O(polylog(1/ε)) layers and weights, but any such approximation with O(1)
layers requires Ω(1/ε) weights. [14] shows that any Cn-function on [0, 1]d can be
approximated with ε error in L∞ by a ReLU network with O(log(1/ε)) layers and
O((1

ε)d/n log(1/ε)) weights. [9] show that a sufficiently smooth univariate function
can be approximated with ε error in L∞ by a network with ReLU and threshold gates
with Θ(log(1/ε)) layers and O(polylog(1/ε)) weights, but that Ω(poly(1/ε)) weights
would be required if there were only o(log(1/ε)) layers; they also prove analogous
results for multivariate functions. Lastly, [4] draw a connection to tensor factorizations
to show that, for non-ReLU networks, the set of functions computable by a shallow
network have measure zero among those computable by a deep networks.

3

2 Preliminaries
A neural network is defined by an activation function ψ : R → R, a directed acyclic
graph, a weight for each edge of the graph, and a bias for each node of the graph. Let
W denote the number of parameters (weights and biases) of the network, U denote the
number of computation units (nodes), and L denote the number of layers.

The nodes at layer 0 are called input nodes, and simply output the real value given
by the corresponding input to the network. For the purposes of this paper, we will
assume that the graph has a single sink node, which is the unique node at layer L, (the
output layer). In the jargon of neural networks, layers 1 through L−1 are called hidden
layers.

The computation of a neural network proceeds as follows. For i = 1, . . . , L, the
input into a computation unit u at layer i is w>x where x is the (real) vector corre-
sponding to the output of the computational units with a directed edge to u and w is the
corresponding edge weights. For layers 1, . . . , L − 1, the output of u is ψ(w>x + b)
where b is the bias parameter associated with u. For the output layer, we replace ψ
with the identity. Since we consider VC-dimension, we will always take the sign of the
output of the network, to make the output lie in {0, 1} for binary classification. (Here,
we define the sign function as sgn(x) = 1[x > 0].)

A piecewise polynomial function with p pieces is a function f for which there exists
disjoint intervals (pieces) I1, . . . , Ip and polynomials f1, . . . , fp such that if x ∈ Ii then
f(x) = fi(x). We assume that p is a constant independent ofW , U andL. A piecewise
linear function is a piecewise polynomial function in which each fi is linear. The most
common activation function used in practice is the rectified linear unit (ReLU) where
I1 = (−∞, 0], I2 = (0,∞) and f1(x) = 0, f2(x) = x. We denote this function by
σ(x) := max{0, x}. The set {1, 2, . . . , n} is denoted [n].

3 Proof of Theorem 1.1
The proof of our main lower bound uses the “bit extraction” technique that was devel-
oped by [2] to prove a Ω(WL) lower bound. We refine their technique in a key way
— we partition the input bits into blocks and extract multiple bits at a time instead of
a single bit at a time. This yields a more efficient bit extraction network, and hence a
stronger VC-dimension lower bound.

We show the following result, which immediately implies Theorem 1.1.

Theorem 3.1. Let r,m, n be positive integers, and let k = dm/re. There exists a
ReLU network with 3 + 5k layers, 2 + n+ 4m+ k((11 + r)2r + 2r+ 2) parameters,
and m+ 2 + k(5× 2r + r + 1) computation units with VC-dimension ≥ mn.

Remark. Choosing r = 1 gives a network with W = O(m + n), U = O(m) and
VC-dimension Ω(mn) = Ω(WU). This implies that the upper bound O(WU) given
in Theorem 1.4 is tight.

To prove Theorem 1.1, apply Theorem 3.1 with m = rL/8, r = log2(W/L)/2,
and n = W − 5m2r. In the rest of this section we prove Theorem 3.1.

4

Let Sn ⊆ Rn denote the standard basis. We shatter the set Sn × Sm. Given
an arbitrary function f : Sn × Sm → {0, 1}, we build a ReLU neural network that
inputs (x1, x2) ∈ Sn × Sm and outputs f(x1, x2). Define n numbers a1, a2, . . . , an ∈
{ 0
2m ,

1
2m , . . . ,

2m−1
2m } so that the ith digit of the binary representation of aj equals

f(ej , ei). These numbers will be used as the parameters of the network, as described
below.

Given input (x1, x2) ∈ Sn × Sm, assume that x1 = ei and x2 = ej . The network
must output the ith bit of aj . This “bit extraction approach” was used in [2, Theorem 2]
to give an Ω(WL) lower bound for the VC-dimension. We use a similar approach but
we introduce a novel idea: we split the bit extraction into blocks and extract r bits
at a time instead of a single bit at a time. This allows us to prove a lower bound
of Ω(WL log(W/L)). One can ask, naturally, whether this approach can be pushed
further. Our Theorem 1.2 implies that the bit extraction approach cannot give a lower
bound better than Ω(WL log(W/L)) (see Remark 3).

The first layer of the network “selects” aj , and the remaining layers “extract” the
ith bit of aj . In the first layer we have a single computational unit that calculates

aj = (a1, . . . , an)>x1 = σ
(
(a1, . . . , an)>x1

)
.

This part uses 1 layer, 1 computation unit, and 1 + n parameters.
The rest of the network extracts all bits of aj and outputs the ith bit. The extraction

is done in k steps, where in each step we extract the r most significant bits and zero
them out. We will use the following building block for extracting r bits.

Lemma 3.2. Suppose positive integers r andm are given. There exists a ReLU network
with 5 layers, 5×2r+r+1 units and 11×2r+r2r+2r+2 parameters that given the
real number b = 0.b1b2 . . . bm (in binary representation) as input, outputs the (r+ 1)-
dimensional vector (b1, b2, . . . , br, 0.br+1br+2 . . . bm).

Figure 1 shows a schematic of the ReLU network in the above lemma.

Figure 1: The ReLU network used to extract the most significant r bits of a number.
Unlabelled edges indicate a weight of 1 and missing edges indicate a weight of 0.

5

Proof. Partition [0, 1) into 2r even subintervals. Observe that the values of b1, . . . , br
are determined by knowing which such subinterval b lies in. We first show how to
design a two-layer ReLU network that computes the indicator function for an interval
to any arbitrary precision. Using 2r of these networks in parallel allows us to determine
which subinterval b lies in and hence, determine the bits b1, . . . , br.

For any a ≤ b and ε > 0, observe that the function f(x) := σ(1−σ(a/ε−x/ε))+
σ(1− σ(x/ε− b/ε))− 1 has the property that, f(x) = 1 for x ∈ [a, b], and f(x) = 0
for x /∈ (a − ε, b + ε), and f(x) ∈ [0, 1] for all x. Thus we can use f to approximate
the indicator function for [a, b], to any desired precision. We will choose ε = 2−m−2

because we are working with m-digit numbers.
Thus, the values b1, . . . , br can be generated by adding the corresponding indi-

cator variables. (For instance, b1 =
∑2r−1
k=2r−1 1[b ∈ [k · 2−r, (k + 1) · 2−r)].) Fi-

nally, the remainder 0.br+1br+2 . . . bm can be computed as 0.br+1br+2 . . . bm = 2rb−∑r
k=1 2r−kbk.
Now we count the number of layers and parameters: we use 2r small networks

that work in parallel for producing the indicators, each has 3 layers, 5 units and 11
parameters. To produce b1, . . . , br we need an additional layer, r× (2r + 1) additional
parameters, and r additional units. For producing the remainder we need 1 more layer,
1 more unit, and r + 2 more parameters.

We use dm/re of these blocks to extract the bits of aj , denoted by aj,1, . . . , aj,m.
Extracting aj,i is now easy, noting that if x, y ∈ {0, 1} then x∧ y = σ(x+ y− 1). So,
since x2 = ei, we have

aj,i =

m∑
t=1

x2,t ∧ aj,t =

m∑
t=1

σ(x2,t + aj,t − 1) = σ

(
m∑
t=1

σ(x2,t + aj,t − 1)

)
.

This calculation needs 2 layers, 1 +m units, and 1 + 4m parameters.
Remark. Theorem 1.2 implies an inherent barrier to proving lower bounds using the
“bit extraction” approach of [2]. Recall that this technique uses n binary numbers with
m bits to encode a function f : Sn×Sm → {0, 1} to show an Ω(mn) lower bound for
VC-dimension, where Sk denotes the set of standard basis vectors in Rk. The network
begins by selecting one of the n binary numbers, and then extracting a particular bit of
that number. [2] showed it is possible to take m = Ω(L) and n = Ω(W), thus prov-
ing a lower bound of Ω(WL) for the VC-dimension. In Theorem 1.1 we showed we
can increase m to Ω(L log(W/L)), improving the lower bound to Ω(WL log(W/L)).
Theorem 1.2 implies that to extract just the least significant bit, one is forced to have
m = O(L log(W/L)); on the other hand, we always have n ≤ W . Hence there is
no way to improve the VC-dimension lower bound by more than a constant via the bit
extraction technique. In particular, closing the gap for general piecewise polynomial
networks will require a different technique.

4 Proof of Theorem 1.2
For a piecewise polynomial function R → R, breakpoints are the boundaries between
the pieces. So if the function has p pieces, it has p− 1 breakpoints.

6

Lemma 4.1. Let f1, . . . , fk : R → R be piecewise polynomial of degree D, and
suppose the union of their breakpoints has size B. Let ψ : R → R be piecewise
polynomial of degree d with b breakpoints. Let w1, . . . , wk ∈ R be arbitrary. The
function g(x) := ψ(

∑
i wifi(x)) is piecewise polynomial of degree Dd with at most

(B + 1)(2 + bD)− 1 breakpoints.

Proof. Without loss of generality, assume that w1 = · · · = wk = 1. The function∑
i fi has B+ 1 pieces. Consider one such interval I. We will prove that it will create

at most 2 + bD pieces in g. In fact, if
∑
i fi is constant on I, g will have 1 piece on I.

Otherwise, for any point y, the equation
∑
i fi(x) = y has at most D solutions on I.

Let y1, . . . , yb be the breakpoints ofψ. Suppose we move along the curve (x,
∑
i fi(x))

on I. Whenever we hit a point (t, yi) for some t, one new piece is created in g. So at
most bD new pieces are created. In addition, we may have two pieces for the beginning
and ending of I. This gives a total of 2 + bD pieces per interval, as required. Finally,
note that the number of breakpoints is one fewer than the number of pieces.

Theorem 4.2. Assume there exists a neural network with W parameters and L layers
that computes a function f : R→ R, with the property that |f(x)− (x mod 2)| < 1/2
for all x ∈ {0, 1, . . . , 2m − 1}. Also suppose the activation functions are piecewise
polynomial of degree at most d ≥ 1 in each piece, and have at most p ≥ 1 pieces. Then
we have

m ≤ L log2(13pd(L+1)/2 ·W/L).

In the special case of ReLU functions, this gives m = O(L log(W/L)).

Proof. For a node v of the network, let f(v) count the number of directed paths from
the input node to v. Applying Lemma 4.1 iteratively gives that for a node v at layer
i ≥ 1, the number of breakpoints can be bounded by (6p)idi(i−1)/2f(v) − 1. Let o
denote the output node. Hence, o has at most (6p)LdL(L−1)/2f(o) pieces. The output
of node o is piecewise polynomial of degree at most dL. On the other hand, as we
increase x from 0 to 2m − 1, the function x mod 2 flips 2m − 1 many times, which
implies the output of o becomes equal to 1/2 at least 2m − 1 times, thus we get

(6p)LdL(L−1)/2f(o)× dL ≥ 2m − 1. (2)

Let us now relate f(o) with W and L. Suppose that, for i ∈ [L], there are Wi edges
between layer i and previous layers. By the AM-GM inequality,

f(o) ≤
∏
i

(1 +Wi) ≤

(∑
i

1 +Wi

L

)L
≤ (2W/L)L. (3)

Combining Eqs. (2) and (3) gives the theorem.

[12] showed how to construct a function f which satisfies f(x) = (x mod 2) for
x ∈ {0, 1, . . . , 2m−1} using a neural network withO(m) layers andO(m) parameters.
By choosing m = k3, Telgarsky showed that any function g computable by a neural
network with Θ(k) layers and O(2k) nodes must necessarily have ‖f − g‖1 > c for
some constant c > 0.

7

Our theorem above implies a similar statement. In particular, if we choose m =
k1+ε then for any function g computable by a neural network with Θ(k) layers and
O(2k

ε

) parameters, there must exist x ∈ {0, 1, . . . , 2m− 1} such that |f(x)− g(x)| >
1/2.

5 Proof of Theorem 1.3
The proof of this theorem is very similar to the proof of the upper bound for piecewise
polynomial networks in [2, Theorem 1] but optimized for piecewise linear networks.
Our proof requires the following lemma, which is a slight improvement of a result
in [13].

Lemma 5.1 (Theorem 8.3 in [1], Lemma 1 in [2]). Let p1, . . . , pm be polynomials of
degree at most d in n ≤ m variables. Define

K := |{(sgn(p1(x)), . . . , sgn(pm(x)) : x ∈ Rn}|,

i.e. K is the number of possible sign vectors given by the polynomials. Then K ≤
2(2emd/n)n.

of Theorem 1.3. Suppose the activation function has p pieces, and suppose, for sim-
plicity, that the pieces are (−∞, t1], (t1, t2], . . . , (tp−1,+∞). (It is straightforward to
generalize to pieces of arbitrary form.) For i ∈ [L], let Wi denote the total number of
parameters up to layer i, and let ki denote the number of computational units at layer i.
Note that WL = W , and the total number of computational units is k =

∑L
i=1 ki. Let

m denote the VC-dimension of the network, let a be the number of input nodes, and
let {x1, . . . , xm} ⊂ Ra be a shattered set. (Note that each xi is a real vector in Ra.)
If m ≤ W the theorem’s conclusion already holds, so we may assume that m > W .
Define

K := |{(sgn(f(x1, w)), . . . , sgn(f(xm, w))) : w ∈ RW }|.

In other words, K is the number of sign patterns that the neural network can output for
the sequence of inputs (x1, . . . , xm). By definition of shattering, we haveK = 2m. We
will prove geometric upper bounds for K, which will imply upper bounds for m. For
the rest of the proof, x1, . . . , xm are fixed, and we view the parameters of the network,
denoted w, as a collection of W real variables.

To bound K, we will find a partition P of RW such that, for all P ∈ P , the
functions f(x1, ·), . . . , f(xm, ·) are polynomials on P . Clearly,

K ≤
∑
P∈P
|{(sgn(f(x1, w)), . . . , sgn(f(xm, w))) : w ∈ P}|. (4)

We will define a sequence of partitions P1,P2, . . . ,PL = P inductively, such that Pi
is a refinement of Pi−1. Starting from layer 1, for ` ∈ [m] and j ∈ [k1], let h1,j(x`, w)
be the input into the jth computation unit in the first layer and let P1 be a partition of
RW such that the vector (sgn(h1,j(x`, ·)− ts))j∈[k1],`∈[m],s∈[p−1] is constant on each
P ∈ P1. Since each h1,j(x`, ·) − ts is a polynomial of degree 1, by Lemma 5.1, we

8

can take |P1| ≤ 2(2ek1mp/W1)W1 . Observe that on each P ∈ P1, the output of each
computation unit in the first hidden layer is either a polynomial of degree 1 or the zero
function.

Now, suppose the partitions P1, . . . ,Pi−1 have been defined. Let hi,j(x`, w) be
the input into the jth computation unit in the ith layer and assume that on any fixed
P ∈ Pi−1, the function hi,j(x`, ·) is a polynomial of degree at most i. By Lemma 5.1,
there exists a partition PP,i of P with |PP,i| ≤ 2(2ekimip/Wi)

Wi such that on each
P ′ ∈ PP,i, the vector (sgn(hi,j(x`, ·)− ts))j∈[ki],`∈[m],s∈[p−1] is constant. We define
Pi := ∪P∈Pi−1

PP,i; which is a partition of RW such that the vector (sgn(hi,j(x`, ·)−
ts))j∈[ki],`∈[m],s∈[p−1] is constant on each P ∈ Pi. Moreover, for any 1 < i ≤ L, we
have

|Pi| ≤ 2

(
2ekimip

Wi

)Wi

|Pi−1|.

Recall that the last (output) layer has a single unit. Let PL be the partition of RW
defined as above, such that on each P ∈ PL, the output of the network is a polynomial
of degree at most L in W variables. By Lemma 5.1, each term of the sum in (4) is
at most 2(2emL/W)W . Moreover, by our inductive construction, and since ki ≤ k,
Wi ≥ 1,

∑L
i=1Wi ≤WL, and i ≤ L, we have

|PL| ≤ 2L
L∏
i=1

(
2ekimip

Wi

)Wi

≤ 2L(2ekmLp)WL.

Hence,
2m = K ≤ 2(2emL/W)W × |PL| ≤

(
2(2ekmLp)W

)L+1
.

Taking logarithms and using the crude bounds k, L ≤W gives the condition

m ≤ (L+ 1) +W (L+ 1) log2(2eW 2mp) ≤ 4W (L+ 1) log2(2eWmp)

which implies m = O(WL log(pW)), as required.

6 Proof of Theorem 1.4
The idea of the proof is that the sign of the output of a neural network can be expressed
as a Boolean formula where each predicate is a polynomial inequality. For example,
consider the following toy network, where the activation function of the hidden units
is a ReLU.

The sign of the output of the network is sgn(y) = sgn(w3σ(w1x) + w4σ(w2x)).
Define the following Boolean predicates: p1 = (w1x > 0), p2 = (w2x > 0), q1 =

9

(w3w1x > 0), q2 = (w4w2x > 0), and q3 = (w3w1x + w4w2x > 0). Then, we can
write

sgn(y) = (¬p1 ∧ ¬p2 ∧ 0) ∨ (p1 ∧ ¬p2 ∧ q1) ∨ (¬p1 ∧ p2 ∧ q2) ∨ (p1 ∧ p2 ∧ q3).

A theorem of Goldberg and Jerrum states that any class of functions that can be
expressed using a relatively small number of distinct polynomial inequalities has small
VC-dimension.

Theorem 6.1 (Theorem 2.2 of [6]). Let k, n ∈ N and f : Rn × Rk → {0, 1} be
a function that can be expressed as a Boolean formula containing s distinct atomic
predicates where each atomic predicate is a polynomial inequality or equality in k+n
variables of degree at most d. Let F = {f(·, w) : w ∈ Rk}. Then VCDim(F) ≤
2k log2(8eds).

of Theorem 1.4. Consider a neural network with W weights and U computation units,
and assume that the activation function ψ is piecewise polynomial of degree at most
d with p pieces. To apply Theorem 6.1, we will express the sign of the output of the
network as a boolean function consisting of less than 2(1+p)U atomic predicates, each
being a polynomial inequality of degree at most max{U + 1, 2dU}.

Since the neural network graph is acyclic, it can be topologically sorted. For i ∈
[U], let ui denote the ith computation unit in the topological ordering. The input to
each computation unit u lies in one of the p pieces of ψ. For i ∈ [U] and j ∈ [p], we
say “ui is in state j” if the input to ui lies in the jth piece.

For u1 and any j, the predicate “u1 is in state j” is a single atomic predicate which is
the quadratic inequality indicating whether its input lies in the corresponding interval.
So, the state of u1 can be expressed as a function of p atomic predicates. Conditioned
on u1 being in a certain state, the state of u2 can be determined using p atomic predi-
cates, which are polynomial inequalities of degree at most 2d + 1. Consequently, the
state of u2 can be determined using p+ p2 atomic predicates, each of which is a poly-
nomial of degree at most 2d + 1. Continuing similarly, we obtain that for each i, the
state of ui can be determined using p(1 + p)i−1 atomic predicates, each of which is
a polynomial of degree at most di−1 +

∑i−1
j=0 d

j . Consequently, the state of all nodes
can be determined using less than (1 + p)U atomic predicates, each of which is a poly-
nomial of degree at most dU−1 +

∑U−1
j=0 d

j ≤ max{U + 1, 2dU} (the output unit is
linear). Conditioned on all nodes being in certain states, the sign of the output can
be determined using one more atomic predicate, which is a polynomial inequality of
degree at most max{U + 1, 2dU}.

In total, we have less than 2(1 + p)U atomic polynomial-inequality predicates and
each polynomial has degree at most max{U + 1, 2dU}. Thus, by Theorem 6.1, we get
an upper bound of 2W log(16e ·max{U+1, 2dU}·(1+p)U) = O(WU log((1+d)p))
for the VC-dimension.

References
[1] Martin Anthony and Peter Bartlett. Neural network learning: theoretical founda-

tions. Cambridge University Press, 1999.

10

[2] Peter Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear VC-dimension
bounds for piecewise polynomial networks. Neural Computation, 10(8):2159–
2173, Nov 1998.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the
Vapnik-Chervonenkis dimension. JACM, 36(4), 1989.

[4] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning:
A tensor analysis. In COLT, 2016.

[5] Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural net-
works. In COLT, 2016.

[6] Paul W. Goldberg and Mark R. Jerrum. Bounding the Vapnik-Chervonenkis di-
mension of concept classes parameterized by real numbers. Machine Learning,
18(2):131–148, 1995.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[8] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[9] Shyu Liang and R. Srikant. Why deep neural networks?, October 2016.

[10] Wolfgang Maass. Neural nets with superlinear VC-dimension. Neural Computa-
tion, 6(5):877–884, Sept 1994.

[11] I. Safran and O. Shamir. Depth separation in relu networks for approximating
smooth non-linear functions, October 2016. arXiv:1610.09887.

[12] Matus Telgarsky. Benefits of depth in neural networks. In COLT, 2016.

[13] Hugh E. Warren. Lower bounds for approximation by nonlinear manifolds. Trans-
actions of the American Mathematical Society, 133(1):167–178, 1968.

[14] Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks,
October 2016. arXiv:1610.01145.

11

