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We introduce a novel technique for distribution learning based on a notion of sample compression. Any class

of distributions that allows such a compression scheme can be learned with few samples. Moreover, if a class

of distributions has such a compression scheme, then so do the classes of products and mixtures of those

distributions.

As an application of this technique, we prove that Θ̃(kd2/ε2) samples are necessary and sufficient for

learning a mixture of k Gaussians in Rd , up to error ε in total variation distance. This improves both the

known upper bounds and lower bounds for this problem. For mixtures of axis-aligned Gaussians, we show

that Õ (kd/ε2) samples suffice, matching a known lower bound. Moreover, these results hold in an agnostic

learning (or robust estimation) setting, in which the target distribution is only approximately a mixture of

Gaussians. Our main upper bound is proven by showing that the class of Gaussians in Rd admits a small

compression scheme.
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1 INTRODUCTION

Estimating distributions from observed data is a fundamental task in statistics, which has been
studied for over a century. This task frequently arises in applied machine learning, commonly as-
suming that the distribution can be modeled approximately by a mixture of Gaussians. Popular
software packages have implemented heuristics, such as the expectation maximization (EM) al-
gorithm, for learning a mixture of Gaussians. The theoretical machine learning community has a
rich literature on distribution learning as well; for example, the recent survey of Reference [20]
considers learning structured distributions, and the survey of Reference [27] focuses on mixtures
of Gaussians.

This article develops a general technique for distribution learning, then employs this technique
in the canonical setting of Gaussian mixtures. The learning model we adopt is density estimation:
Given i.i.d. samples from an unknown target distribution, find a distribution that is close to the
target in total variation (TV) distance. Our analysis focuses on sample complexity rather than com-
putational complexity. That is, we seek a learning algorithm that obtains a good estimate of the
target distribution using as few samples as possible, but we do not worry about its running time.
For background on this model, see, e.g., References [17, 20].

Our new technique for proving upper bounds on the sample complexity involves a novel form
of sample compression: If it is possible to “encode” each member of a class of distributions using
a carefully chosen subset of its samples, then we obtain an upper bound on the sample complex-
ity of distribution learning for that class. In particular, by constructing compression schemes for
mixtures of axis-aligned Gaussians and general Gaussians, we obtain new upper bounds on sam-
ple complexities of learning with respect to these classes. Furthermore, we prove that these new
bounds are optimal up to polylogarithmic factors.

1.1 The Distribution Learning Framework

A distribution learning method or density estimation method is an algorithm that takes as input a
sequence of i.i.d. samples generated from a distribution д and outputs (a description of) a distri-
bution д̂ as an estimate for д. We work with absolutely continuous distributions in this article (i.e.,
distributions that have a density with respect to the Lebesgue measure), so we identify a proba-
bility distribution with its probability density function. The total variation (TV) distance between
two probability distributions f1 and f2 over Rd is defined as

TV ( f1, f2) � sup
B⊆Rd

∫
B

(
f1 (x ) − f2 (x )

)
dx =

1

2
‖ f1 − f2‖1, (1)

where ‖ f ‖1 �
∫
Rd | f (x ) | dx is the L1 norm of f , and ‖ f1 − f2‖1 is the L1 distance between f1 and

f2. (Strictly speaking, the supremum in Equation (1) should be over the Borel sigma algebra on
Rd ; however, we do not worry about such measure-theoretic issues in this article.) Sometimes we
write TV (X ,Y ), where X and Y are random variables rather than distributions. In the following
definitions, F is a class of probability distributions, and д is a distribution not necessarily in F .

Definition 1.1 (ε-approximation, ε-close, (ε,C )-approximation). We say a distribution д̂ is an ε-

approximation for д, or д̂ is ε-close to д, if ‖д̂ − д‖1 ≤ ε . A distribution д̂ is an (ε,C )-approximation
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for д with respect to F if
‖д̂ − д‖1 ≤ C · inf

f ∈F
‖ f − д‖1 + ε .

Definition 1.2 (PAC-learning Distributions, Realizable Setting). A distribution learning method
is called a (realizable) PAC-learner for F with sample complexity mF (ε,δ ) if, for all distribu-
tions д ∈ F and all ε,δ ∈ (0, 1), given ε , δ , and an i.i.d. sample of size mF (ε,δ ) from д, outputs
an ε-approximation of д, with probability at least 1 − δ (over the samples and the algorithm’s
randomness).

Definition 1.3 (PAC-learning Distributions, Agnostic Setting). A distribution learning method is
called a C-agnostic PAC-learner for F with sample complexity mC

F (ε,δ ) if, for all distributions д

and all ε,δ ∈ (0, 1), given ε , δ , and a sample of size mC
F (ε,δ ) generated i.i.d. from д, outputs an

(ε,C )-approximation of д with respect to F , with probability at least 1 − δ .

The statement that a class can be “C-learned in the agnostic setting” means there exists a C-
agnostic PAC-learner for the class. The case C > 1 is sometimes called semi-agnostic learning in
the learning theory literature. Note that minimizing the L1 distance is equivalent to minimizing the
TV distance, as the former is twice the latter. Let Δn � { (w1, . . . ,wn ) ∈ Rn : wi ≥ 0,

∑
wi = 1 }

denote the n-dimensional simplex.

Definition 1.4 (k-mix(F )). Let F be a class of probability distributions. Then the class of k-
mixtures of F , written k-mix(F ), is defined as

k-mix(F ) � { ∑k
i=1wi fi : (w1, . . . ,wk ) ∈ Δk , f1, . . . , fk ∈ F }.

1.2 Sample Compression Schemes

In this article, we introduce a method for learning distributions via a novel form of compression.
Given a class F of distributions, suppose there is a method for “compressing” information about
any distribution f ∈ F using a subset of samples from f and some additional bits. Further, suppose
there exists a fixed, deterministic decoder for F , which, given the subset of samples and the addi-
tional bits, approximately recovers f . If the size of the subset and the number of bits is guaranteed
to be small, we show that the sample complexity of learning F is small as well.

More precisely, we say class F admits (τ , t ,m) compression if there exists a decoder function such
that, upon generatingm i.i.d. samples from any f ∈ F , we are guaranteed, with probability at least
2/3, to have τ data points from the sample and a sequence of at most t bits on which the decoder
outputs a distribution that is within total variation distance of ε from f . Note that τ , t , andm may
be functions of ε , the accuracy parameter. The decoder function is specific to the class F but does
not depend on the particular f .

This definition is further generalized to a stronger notion of robust compression, formally defined
in Definition 4.2, where the target distribution is to be encoded using samples that are not nec-
essarily generated from the target itself but are generated from a distribution close to the target.
More precisely, class F admits (τ , t ,m) robust compression if there exists a decoder function, such
that for any f ∈ F , upon generatingm i.i.d. samples from any distribution that is “close” to f , we
are guaranteed, with probability at least 2/3, to have τ data points from the sample and a sequence
of at most t bits on which the decoder outputs a distribution that is within total variation distance
of ε from f . We prove that robust compression implies agnostic learning. In particular, if F admits
(τ , t ,m) robust compression, then the sample complexity of agnostic learning with respect to F
is bounded by Õ (m + (τ + t )/ε2) (Theorem 4.5). (Õ allows for polylogarithmic factors.)

To illustrate the compression technique, it is instructive to compare it with another density es-
timation technique, called the cover method in Reference [20, Section 1.5]. Let (D,d ) be a metric

Journal of the ACM, Vol. 67, No. 6, Article 32. Publication date: October 2020.



32:4 H. Ashtiani et al.

space and let F ⊆ D. Given ε > 0, a subset C ⊆ D is called an ε-net for F if for any f ∈ F there
exists some c ∈ C such that d ( f , c ) ≤ ε . The size of the smallest ε-net is called the covering num-

ber of F and its logarithm is called the metric entropy of F . (In this informal discussion, we are
ignoring the dependence on ε for brevity.) The metric entropy is a measure of “dimension” for the
set F .

The cover method for learning a class F of distributions over domain Z works as follows: View
F as a subset of the class of all distributions over Z equipped with the L1 metric. Consider a small
ε-net of F and then choose the distribution in the net that is closest to the target distribution in the
L1 distance. If the net is finite, then this last step is equivalent to learning the closest distribution
among finitely many candidates to a target distribution, which has an algorithm whose sample
complexity scales logarithmically with the net size (see Theorem 4.4).

The issue with using the cover method for learning the class of Gaussians is that the covering
number and the metric entropy of the class are infinite with respect to theL1 metric. In fact, even for
the class of mean-zero Gaussians with entry-wise bounded covariance matrices, the metric entropy
is infinite unless we assume a bound on the condition number of the covariance matrices (consider
two-dimensional singular Gaussians each supported on a different one-dimensional subspace with
unit variance on that subspace).

The power of compression schemes is that they take a data-dependent approach: A first round
of sampling is used to shrink the space of feasible distributions significantly, making the metric
entropy of the resulting feasible set finite. This allows us to achieve bounds for Gaussians that do
not depend on the condition number or the size of the parameters (Lemma 5.3).

An additional attractive property of compression is that it enjoys two closure properties. Specif-
ically, if a base class admits compression, then the class of products of the base class, as well as the
class of mixtures of that base class, are compressible (Lemmata 4.6 and 4.8).

As an application of this technique, we prove tight (up to logarithmic factors) sample complex-

ity upper bounds of Õ (kd2/ε2) for learning mixtures of k Gaussians over Rd (Theorem 1.5) and

Õ (kd/ε2) for learning mixtures of k axis-aligned Gaussians (Theorem 1.7).
In light of the closure properties of compression schemes, we need only provide a compres-

sion scheme for the class of Gaussian distributions to obtain a compression scheme (and a sample
complexity bound) for mixtures of Gaussians. We prove that the class of d-dimensional Gaussian

distributions admits (Õ (d ), Õ (d2), Õ (d )) robust compression (Lemma 5.3). The high-level idea is

that by generating Õ (d ) samples from a Gaussian, one can get a rough sketch of the geometry of
the Gaussian. In particular, the points drawn from a Gaussian concentrate around an ellipsoid cen-
tered at the mean and whose principal axes are the eigenvectors of the covariance matrix. Using
ideas from convex geometry and random matrix theory, we show one can encode the center of the
ellipsoid and the principal axes using linear combinations of these samples. Then, we discretize
the coefficients and obtain an approximate encoding.

Our compression framework is quite flexible and can be used to prove sample complexity upper
bounds for other distribution classes as well. This is left for future work.

1.3 Main Results

Our first main result is an upper bound for learning mixtures of multivariate Gaussians. This bound
is tight up to logarithmic factors. Let k denote the number of mixture components and d denote

the dimension. Henceforth, the notations Õ (·) and Ω̃(·) suppress polylog(kd/εδ ) factors; there are
no hidden dependencies on any other parameters (such as the condition number) when we use the

O , Ω, Õ , and Ω̃ notation.

Journal of the ACM, Vol. 67, No. 6, Article 32. Publication date: October 2020.



Sample Complexity of Learning Mixtures of Gaussians 32:5

Theorem 1.5. The class of k-mixtures of d-dimensional Gaussians can be learned in the realizable

setting, and can be 12-learned in the agnostic setting, using Õ (kd2/ε2) samples.

We emphasize that the Õ (·) notation has no dependence whatsoever on the scaling, condition

number, separation, or any other structural property of the distribution. Previously, the best known

upper bounds on the sample complexity of this problem were Õ (kd2/ε4), due to Reference [6], and
O (k4d4/ε2), based on a VC dimension bound that we discuss below. For the case of a single Gaussian
(i.e., k = 1), a bound of O (d2/ε2) is known, again using a VC dimension bound discussed below.

Our second main result is a lower bound matching Theorem 1.5 up to logarithmic factors.

Theorem 1.6. Any method for learning the class of k-mixtures of d-dimensional Gaussians in the

realizable setting has sample complexity Ω̃(kd2/ε2).

Note that this is a worst-case (i.e., minimax) lower bound: For any estimation method, there

exists at least one distribution that requires that many samples. Previously, the best known lower

bound on the sample complexity was Ω̃(kd/ε2) [44]. Even for a single Gaussian (i.e., k = 1), an

Ω̃(d2/ε2) lower bound was not known prior to this work.
Our third main result is an upper bound for learning mixtures of axis-aligned Gaussians, i.e.,

Gaussians with diagonal covariance matrices. This bound is also tight up to logarithmic factors.

Theorem 1.7. The class of k-mixtures of axis-aligned d-dimensional Gaussians can be learned in

the realizable setting, and can be 12-learned in the agnostic setting, using Õ (kd/ε2) samples.

A matching lower bound of Ω̃(kd/ε2) was proved in Reference [44]. Previously, the best known

upper bounds were Õ (kd/ε4), due to Reference [6], and O ((k4d2 + k3d3)/ε2), based on a VC di-
mension bound that we discuss below.

In the agnostic results of Theorem 1.5 and Theorem 1.7, the constant 12 can be decreased to any
constant larger than 9. One may verify this statement through a detailed inspection of our proofs.
We omit a full derivation of this improved constant to avoid tedious details in the proofs.

Our techniques. The upper bounds are proved using the compression technique discussed in
Section 1.2. Next, we discuss the main ideas used in the proof of our lower bound, Theorem 1.6.

To prove our lower bound for mixtures of Gaussians, we first prove a lower bound of Ω̃(d2/ε2) for

learning a single Gaussian. The main step is to construct a large family, of size 2Ω(d2 ) , of covariance
matrices such that the associated Gaussian distributions are well-separated in terms of their total
variation distance, while simultaneously ensuring that their mutual Kullback-Leibler divergences
are small. Once this is established, we can then apply a generalized form of Fano’s inequality to
complete the proof.

To construct this family of covariance matrices, we sample 2Ω(d2 ) matrices from the following
probabilistic process: Start with an identity covariance matrix; then choose a uniformly random
subspace of dimension d/9 and slightly increase the eigenvalues corresponding to this eigenspace.
It is easy to bound the KL divergences between the constructed Gaussians. Quantifying this gap
will then give the desired lower bound on the total variation distance.

Minimax estimation rates. Our results are stated in terms of sample complexity, which is the
terminology mostly used in the machine learning literature. It is also possible to state our results
in terms of minimax estimation rates, which are often used in the statistics literature. There is a
direct connection between sample complexity bounds and estimation rates, although translating
between them sometimes incurs logarithmic factors.

We recall some definitions from the minimax estimation framework (see, e.g., Reference [45,
Chapter 2]). Let F be a class of probability distributions defined on domainX. The risk of a density
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estimation method f̂ : Xn → F for this class is defined as

Rn ( f̂ ,F ) � sup
f ∈F

E TV( f̂ (X1, . . . ,Xn ), f ),

where the expectation is over the i.i.d. samples X1, . . . ,Xn from f , and possible randomization of
the estimator. The minimax estimation rate for F is the smallest risk over all possible estimators

f̂ : Xn → F , i.e.,

Rn (F ) � inf
f̂

Rn ( f̂ ,F ) = inf
f̂

sup
f ∈F

E TV( f̂ (X1, . . . ,Xn ), f ).

Let Gd,k denote the class of k-mixtures of d-dimensional Gaussian distributions, and let Ad,k

denote the class of k-mixtures of d-dimensional axis-aligned Gaussian distributions. Then Theo-

rem 1.5 implies the minimax estimation rate of Gd,k is Õ (
√
kd2/n); indeed, the theorem states that

to get error ≤ ε , we need some n ≤ polylog(kd/ε )kd2/ε2 many samples, hence, solving for ε , we

find that given n samples, we obtain an estimator with error ε ≤ polylog(kdn)
√
kd2/n. Similarly,

Theorem 1.7 implies the minimax estimation rate of Ad,k is Õ (
√
kd/n). Note that these theorems

indeed imply stronger statements than these risk bounds, since they give guarantees for the case
where the target distribution does not necessarily belong to the known class F , a setting not
captured by the minimax framework.

Finally, the proof of Theorem 1.6 (see Theorem 6.8 below) implies that the minimax rate of Gd,k

is Ω(
√
kd2/n), improving the Ω(

√
kd2/
√
n logn) lower bound proved in the preliminary version of

this article [4].

Computational efficiency. Although our approach for proving sample complexity upper bounds
is algorithmic, our focus is not on computational efficiency. The resulting algorithms have nearly
optimal sample complexities, but their running times are exponential in the dimension d and the

number of mixture components k . More precisely, the running time is 2kd2 polylog(d,k,1/ε,1/δ ) for

mixtures of general Gaussians, and 2kd polylog(d,k,1/ε,1/δ ) for mixtures of axis-aligned Gaussians.
The existence of an algorithm for density estimation that runs in time poly(k,d ) is unknown even
for the class of mixtures of axis-aligned Gaussians (see Reference [23, Question 1.1]).

Even for the case of a single Gaussian, the published proofs of theO (d2/ε2) bound, of which we
are aware, are not algorithmically efficient, e.g., Reference [6, Theorem 13]. Adopting ideas from
our proof of Theorem 1.5, an algorithmically efficient learner for a single Gaussian can be obtained
simply by computing the empirical mean and (an appropriate estimate of the) covariance matrix
using O (d2/ε2) samples. The details appear in our technical report [5].

Article outline. Next, we review some related work. Then, we introduce our notation and recall
some standard facts in Section 2. In Section 3, we provide justification for our learning model. In
Section 4, we formally define compression schemes for distributions, prove their closure properties,
and show their connection with density estimation. Theorems 1.5 and 1.7 are proved in Section 5.
Theorem 1.6 is proven in Section 6. All omitted proofs appear in the appendices.

1.4 Related Work

Distribution learning is a vast topic, and many approaches have been considered in the literature.
This section reviews the approaches that are particularly relevant to our work.

For parametric families of distributions, a common approach is to estimate the parameters of
the distribution, in a maximum likelihood sense, or aiming to approximate the true parameters.
For mixtures of Gaussians, there is a rich theoretical literature on algorithms that approximate
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the mixing weights, means and covariances (e.g., References [3, 8, 13, 38]); see Reference [27] for
a survey. The strictness of this objective cuts both ways. On the one hand, a successful learner
uncovers substantial structure of the target distribution. On the other hand, this objective is im-
possible when the means and covariances are extremely close. Thus, algorithms for parameter
estimation of Gaussian mixtures necessarily require some separation assumptions on the target
parameters.

Density estimation has a long history in statistics, where the focus is on the sample complexity
question; see References [16, 17, 42] for general background. Density estimation was first studied
in the computational learning theory community under the name PAC learning of distributions in
Reference [28], whose focus is on the computational complexity of the learning problem.

Various measures of dissimilarity between distributions have been considered in existing density
estimation schemes. One natural measure is the TV distance, which has been adopted by several
papers on learning mixtures of Gaussians [6, 11, 14]. Another natural measure, which has also
been considered for mixtures of Gaussians, is the Kullback-Leibler (KL) divergence [24]. Some
prior work has also used the L2 distance for density estimation [1, 21]. This article focuses on the
TV distance (i.e., the L1 distance), and we provide justification for this choice in Section 3.

A popular method for distribution learning in practice is kernel density estimation (see, e.g., Ref-
erence [17, Chapter 9]). The rigorously proven sample complexity/estimation rate upper bounds
for this method require either smoothness assumptions (e.g., Reference [17, Theorem 9.5]) or
boundedness assumptions (e.g., Reference [26, Theorem 2.2]) on the class of densities. The class of
Gaussians is not universally Lipschitz or universally bounded, so those results do not apply to the
problems we consider. Moreover, numerical calculations demonstrate that the number of samples
required to estimate a standard Gaussian (within L2 distance 0.1 using Gaussian kernels) grow
exponentially with the dimension (see Reference [42, Table 4.2 on page 94]), which hints that this
method suffers from the curse of dimensionality.

Another approach for deriving sample complexity upper bounds for distribution learning, called
the minimum distance estimate in Reference [17, Chapter 6], is based on the uniform convergence
theory and the notion of Vapnik-Chervonenkis dimension (Definition 2.5). It is proved in Reference
[17] that an upper bound for a class of distributions can be obtained by bounding the VC dimension
of an associated set system, called the Yatracos family (Definition 2.6). For example, Reference [22]
used this method to bound the sample complexity of learning high-dimensional log-concave dis-
tributions. For learning d-dimensional Gaussians, this approach leads to the optimal sample com-
plexity upper bound of O (d2/ε2). However, for mixtures of Gaussians and axis-aligned Gaussians,
the best known VC dimension bounds (see Reference [2, Theorem 8.14] and Reference [17, Sec-
tion 8.5]) result in loose upper bounds of O (k4d4/ε2) and O ((k4d2 + k3d3)/ε2), respectively.

Another approach is to first approximate the Gaussian mixture class using a more manage-
able class such as piecewise polynomials and then study the associated Yatracos family; see, e.g.,
Reference [11]. However, piecewise polynomials do a poor job in approximating d-dimensional
Gaussians, resulting in an exponential dependence on d .

For density estimation of mixtures of Gaussians using the TV distance, the best known sample

complexity upper bounds (in terms of k and d) are Õ (kd2/ε4) for general Gaussians and Õ (kd/ε4)
for axis-aligned Gaussians, both due to Reference [6]. For the general Gaussian case, their method

takes an i.i.d. sample of size Õ (kd2/ε2) and partitions this sample in every possible way into k

subsets. Based on those partitions, kÕ (kd2/ε2 ) “candidate distributions” are generated. The problem
is then reduced to learning with respect to this finite class of candidates. Their sample complex-
ity has a suboptimal factor of 1/ε4, of which 1/ε2 arises in their approach for choosing the best
candidate, and another factor 1/ε2 is due to the exponent in the number of candidates.
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Table 1. Bounds on the Sample Complexities of Learning Gaussian Mixtures and Their Subclasses

U
p

p
er

B
o

u
n

d
s Number of Gaussians Dimension Axis-aligned Sample complexity Reference

1 d no O (d2/ε2) standard
1 d yes O (d/ε2) standard

k 1 n/a Õ (k/ε2) [11]

k d no Õ (kd2/ε2) this article

k d yes Õ (kd/ε2) this article

L
o
w

er
B

o
u

n
d

s 1 d no Ω̃(d2 /ε2) this article

1 d yes Ω̃(d/ε2) [44]

k 1 n/a Ω̃(k/ε2) [44]

k d no Ω̃(kd2/ε2) this article

k d yes Ω̃(kd/ε2) [44]

The lower bounds are minimax (i.e., worst-case). The bounds in the first two rows are well known; proofs can be

found in Reference [6].

Our approach via compression schemes also ultimately reduces the problem to learning with
respect to finite classes, although yielding a more refined bound than Reference [6]. In our sample
complexity upper bounds, one factor of 1/ε2 is again incurred due to learning with respect to finite
classes. The key is that the number of compressed samples does not depend on ε , so the overall

sample complexity bound has only an Õ (1/ε2) dependence on ε .
As for lower bounds on the sample complexity for learning mixtures of Gaussians under the

TV distance, much fewer results are known. The only lower bound prior to this work is due to

Reference [44], which shows a bound of Ω̃(kd/ε2) for learning mixtures of axis-aligned Gaussians
(and hence for general Gaussians as well). This bound is tight for the axis-aligned case, as we show
in Theorem 1.7, but loose in the general case, as we show in Theorem 1.6. After the preliminary
version of this article was completed [4], an alternative construction was provided in Reference
[19] giving the same lower bound as ours using a deterministic construction.

A summary of known bounds on sample complexities for learning Gaussian mixtures and their
subclasses is presented in Table 1.

2 PRELIMINARIES

Basic notation. The notation log(·) denotes logarithm in the natural base, [M] denotes
{1, 2, . . . ,M }, and Ac denotes the complement of a set A. Throughout the article, a/bc always
means a/(bc ). For any p ≥ 1, the Lp distance between functions f and д over Rd is defined as

‖ f − д‖p � (
∫
Rd | f (x ) − д(x ) |p dx )1/p , and the �p distance between two vectors (x1, . . . ,xn ) and

(y1, . . . ,yn ) is defined as (
∑n

i=1 |xi − yi |p )1/p , and their �∞ distance is defined as maxi |xi − yi |.

Probability terminology. For random variables X and Y , the notation X
d
= Y means that X and Y

have the same distribution. For a distribution д, we write X ∼ д to mean X is a random variable
with distribution д, and S ∼ дm means that S is an i.i.d. sample of sizem generated from д.

Proposition 2.1. LetX andY be random variables taking values in the same set. For any function

f , we have TV( f (X ), f (Y )) ≤ TV(X ,Y ).

Proof. For any set A, we have

Pr [f (X ) ∈ A] − Pr [f (Y ) ∈ A] = Pr[X ∈ f −1 (A)] − Pr[Y ∈ f −1 (A)] ≤ TV(X ,Y ).

Taking the supremum of the left-hand side proves the proposition. �
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Matrix terminology. We use ‖v ‖2 to denote the Euclidean norm of a vectorv , ‖A‖s to denote the
spectral norm, or the operator norm, of a matrix A, that is, ‖A‖s � sup‖v ‖2=1 ‖Av ‖2, and ‖A‖F �√

Tr(ATA) to denote the Frobenius norm of a matrix A.

Gaussian and χd distributions. Let d denote the dimension. A Gaussian distribution with mean
μ ∈ Rd and covariance matrix Σ ∈ Rd×d is denoted by N (μ, Σ). If Σ is a diagonal matrix, then
N (μ, Σ) is called an axis-aligned Gaussian. If Σ is full-rank, thenN (μ, Σ) is called a full-rank Gauss-
ian. The N (0, I ) distribution is called the standard Gaussian distribution, and an N (0, 1) random
variable is called standard normal. It is easy to check that if д ∼ N (0, I ) then μ + Σ1/2д ∼ N (μ, Σ).
Let д1, . . . ,дn be i.i.d. standard normal; then

∑n
i=1 д

2
i is said to have the chi-squared distribution

with parameter n and is denoted by χn . Observe that Eχn = n.

Lemma 2.2 ([30, Lemma 1]). For any positive integer d , Pr[χd − d ≥ 2
√
dt + 2t] ≤ exp(−t ).

Corollary 2.3. For any positive integer d , Pr[χd ≥ 16d] ≤ exp(−3).

Theorem 2.4 (Chernoff bound, see Theorem 4.5 in Reference [37]). Let X =
∑n

i=1 Xi ,

where X1, . . . ,Xn are independent {0, 1} random variables. For any 0 < δ < 1, we have

Pr [X ≤ (1 − δ )EX ] ≤ exp(−δ 2
EX/2).

Definition 2.5 (Vapnik-Chervonenkis (VC) dimension [46]). Let A ⊆ 2X be a family of subsets of
a set X. The VC dimension of A, denoted by VC-dim(A), is the size of the largest set X ⊆ X such
that for each Y ⊆ X there exists B ∈ A with X ∩ B = Y .

For examples and applications of the VC dimension, see, e.g., Reference [17, Chapter 4].

Definition 2.6 (Yatracos family [48]). For a class of densities F over Rd , the associated Yatracos

family is the following family of subsets of Rd :

{{x ∈ Rd : f (x ) > д(x )} : f ,д ∈ F }.

2.1 KL Divergence, Log-det Divergence, and Total Variation Distance

Definition 2.7 (Kullback-Leibler (KL) divergence [29]). The Kullback-Leibler (KL) divergence between
densities f1 and f2 is defined by

KL ( f1 ‖ f2) �
∫
Rd

f1 (x ) log
f1 (x )

f2 (x )
dx ,

where we define KL ( f1 ‖ f2) = +∞ if the set { x : f2 (x ) = 0 < f1 (x ) } has positive Lebesgue
measure.

The KL divergence is a measure of distance between distributions, which is asymmetric and
does not satisfy the triangle inequality. However, it is always nonnegative (see, e.g., Reference [12,
Theorem 2.6.3]) and can take value +∞.

Definition 2.8 (Log-det Divergence). Let A and B be symmetric positive definite matrices of the
same size. The log-det divergence ofA andB is defined as LD (A,B) � Tr(B−1A − I ) − log det(B−1A).

From the definition, it is apparent that LD (A,B) only depends on the spectrum of B−1A. The
log-det divergence is an asymmetric measure of distance between matrices and is closely related
to the KL divergence between their corresponding Gaussian distributions, as can be seen from
Lemma 2.10 below, which illustrates that the log-det divergence is always nonnegative.

Lemma 2.9. Let A and B be positive definite d × d matrices satisfying ‖B−1/2AB−1/2 − I ‖s ≤ α for

some α ∈ [0, 1/2]. Then LD (A,B) ≤ dα2.
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Proof. Since B−1/2AB−1/2 is symmetric, its eigenvalues λ1, . . . , λd are real, and, since we have
‖B−1/2AB−1/2 − I ‖s ≤ α , each λi ∈ [1 − α , 1 + α]. So,

LD (A,B) = Tr(B−1A − I ) − log det(B−1A) =
d∑

i=1

(λi − 1) − log

d∏
i=1

λi

=

d∑
i=1

(λi − 1 − log(λi )) ≤
d∑

i=1

(λi − 1)2 ≤ dα2.

The first inequality follows from x − 1 − logx ≤ (x − 1)2, valid for any x ≥ 1/2. �

Lemma 2.10. For any two full-rank Gaussians N (μ0, Σ0) and N (μ1, Σ1), we have

2 TV (N (μ0, Σ0),N (μ1, Σ1))2 ≤ KL (N (μ0, Σ0 ‖ N (μ1, Σ1))

=
1

2

(
LD (Σ0, Σ1) + (μ0 − μ1)TΣ−1

1 (μ0 − μ1)
)
.

Proof. The inequality is Pinsker’s inequality (see, e.g., Reference [45, Lemma 2.5]) applied to the
distributionsN (μ0, Σ0) andN (μ1, Σ1), and the equality is a known formula for the KL divergence
between Gaussians (see, e.g., Reference [40, Equation A.23]). �

Lemma 2.11. For any μ,σ , μ̂, σ̂ ∈ R with |μ̂ − μ | ≤ εσ and |σ̂ − σ | ≤ εσ and ε ∈ [0, 2/3], we have

‖N (μ,σ 2) − N (μ̂, σ̂ 2)‖1 ≤ 2ε .

Proof. By Lemma 2.10,

4 TV(N (μ̂, σ̂ 2),N (μ,σ 2))2 ≤ σ̂ 2

σ 2
− 1 − log

( σ̂ 2

σ 2

)
+
|μ − μ̂ |2

σ 2
≤

( σ̂
σ

)2

− 1 − log

(( σ̂
σ

)2
)
+ ε2.

Since z � σ̂/σ ∈ [1 − ε, 1 + ε] and ε ≤ 2/3, using the inequality x2 − 1 − log(x2) ≤ 3(x − 1)2 valid
for all x ∈ [1/3, 5/3], we find

TV(N (μ̂, σ̂ 2),N (μ,σ 2))2 ≤ 1

4
(3(z − 1)2 + ε2) ≤ 1

4
(4ε2) = ε2.

The lemma follows, since the L1 distance is symmetric and is equal to twice the TV distance. �

2.2 Bounds on Net Sizes

Definition 2.12 (ε-net). Let ε ≥ 0. We say N ⊆ X is an ε-net forX in metric d if for each x ∈ X there
exists some y ∈ N such that d (x ,y) ≤ ε .

The following lemma is Corollary 4.2.13 in Reference [47]; we include a proof for completeness.
The notation Bd

2 denotes the d-dimensional Euclidean ball, Bd
2 � { x ∈ Rd : ‖x ‖2 ≤ 1}.

Lemma 2.13. For any ε ∈ (0, 1], there exists an ε-net for Bd
2 in �2 metric of size (3/ε )d .

Proof. Take a maximal set of points in the unit ball Bd
2 that are ε-separated, i.e., the distance

between every pair of points is greater than ε . Such a set must be an ε-net by maximality. Moreover,
by the triangle inequality, the balls of radius ε/2 centered at the points in the ε-net are disjoint and
hence the sum of their volumes is not more than the volume of a ball of radius 1 + ε/2. The volume
of a d-dimensional ball of radius r is cdr

d for some constant cd , thus the size of this ε-net is at most
cd (1+ε/2)d

cd (ε/2)d ≤ (3/ε )d , as required. �

Lemma 2.14. For any ε ∈ (0, 1] there exists an ε-net for Δd in �∞ metric of size ε−d .
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Proof. We give an algorithm to construct the net: Partition [0, 1]d into ε−d cubes of side-length
ε ; for each cube that intersects Δd , put one arbitrary point of the intersection in the net. �

3 JUSTIFICATION FOR OUR MODEL

Some of the existing models for learning mixtures of Gaussians need structural assumptions on the
target distribution. For example, learning under the parameter estimation model requires that the
means are sufficiently separated and that the mixing weights are not too small; see the discussion
after Reference [27, Definition 1].

A key motivation for our work is to study a model for learning mixtures of Gaussians that
requires no structural assumptions at all. Specifically, we would like to identify a model in which
Gaussian mixtures can be learned up to error ε with sample complexity depending only on k , d ,
and ε , and then derive optimal sample complexity bounds in that model. Density estimation under
the TV distance is one such model: Reference [6, Theorem 14] and Theorem 1.5 in this article
show that mixtures of Gaussians can be learned up to error ε with sample complexity depending
on k,d, and ε only. In this section, we provide further justification for using this particular model.
In Section 3.1, we argue that the TV distance is not an arbitrary choice. If, instead, we had used
the KL divergence or any Lp distance, with p > 1, then the sample complexity must necessarily
depend on the structural properties of the distribution. Thus, TV distance is a natural choice.

It is also natural to wonder whether some of our results could be derived from existing results
on parameter estimation. In Section 3.2, we show that this is not the case: Entry-wise estimation
of the covariance matrices is quite unrelated to density estimation under the TV distance. Thus,
our model is natural and our results are not subsumed by previous work.

3.1 Comparison to KL Divergence and Lp Distances

In this section, we consider the problem of density estimation, for mixtures of Gaussians, using
a distance measure that is either the KL divergence or an Lp distance with p > 1. Under these
distance measures, we show that the sample complexity of this problem must necessarily depend
on the structural properties of the distribution—that is, it cannot be bounded purely as a function
of k , d and ε .

First, we consider using the KL divergence. Recall that KL divergence is not symmetric. We
consider using KL divergence only in one direction and show that no algorithm can guarantee,
after receiving a uniformly bounded number of samples from the true distribution, that the KL
divergence between the true distribution and the output distribution is smaller than any finite
number. In fact, this holds even for mixtures of two one-dimensional Gaussians with unit variances.

Theorem 3.1. Let F be the class of mixtures of two Gaussians in R, both of which have unit

variance. LetA be any algorithm whose input is a finite sequence of real numbers and whose output

is a (Lebesgue) measurable density function. Then, for every m ∈ N and every τ > 0, there exists a

density f ∈ F such that if X ′1, . . . ,X
′
m ∼ f then KL( f ‖ A (X ′1, . . . ,X

′
m )) ≥ τ with probability at

least 0.98.

We present the proof idea here, leaving the formal argument to Appendix A. Let a ∈ N and
consider the set of distributions (1 − δ ) · N (0, 1) + δ · N (a, 1), where δ  1/m. Any algorithm that
draws m samples from such a distribution will likely have all of its samples come from N (0, 1).
However, the only way for the KL divergence to be small is if the distribution returned by A has
non-negligible mass near the N (a, 1) distribution, which is impossible, since the samples provide
no information about a.
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Next, we consider Lp distances and prove a result analogous to Theorem 3.1. The main difference
is that the argument uses Gaussians with different variances, which can strongly influence the Lp

distance.

Theorem 3.2. Let F be the class of mixtures of two Gaussians in R. Let A be any algorithm

whose input is a finite sequence of real numbers and whose output is a (Lebesgue) measurable density

function. Then, for every p > 1, everym ∈ N , and every τ > 0, there exists a density f ∈ F such that

if X ′1, . . . ,X
′
m ∼ f , then ‖ f − A (X ′1, . . . ,X

′
m )‖p ≥ τ with probability at least 0.98.

The proofs of Theorems 3.1 and 3.2 appear in Appendix A. Note that the theorems hold even
for randomized algorithms.

3.2 Comparison to Parameter Estimation

In this section, we observe that neither our upper bound (Theorem 1.5) nor our lower bound (The-
orem 1.6) can directly follow from results about parameter estimation for Gaussian mixtures. First,
recall that our sample complexity upper bound in Theorem 1.5 has no dependence on the struc-
tural properties of the Gaussians in the mixture. Next, consider an algorithm that learns a single
d-dimensional Gaussian and provides a proximity guarantee on the entries of the covariance ma-
trix. If we use this entrywise guarantee to infer closeness in either KL divergence or TV distance,
then we argue that the error must depend on the condition number of the covariance matrix.

The condition number of a matrix Σ, i.e., the ratio of its maximum and minimum eigenvalues, is
denoted by κ (Σ).

Proposition 3.3. Set ε = 2
κ (Σ)+1 . There exist two covariance matrices Σ and Σ̂ that are good en-

trywise approximations (both additively and multiplicatively):

|Σi, j − Σ̂i, j | ≤ ε and Σ̂i, j ∈ [1, 1 + 2ε] · Σi, j ∀i, j,

but the corresponding Gaussian distributions are as far as they can get, i.e.,

KL
(
N (0, Σ) ‖ N (0, Σ̂)

)
= ∞ and TV

(
N (0, Σ),N (0, Σ̂)

)
= 1.

Proof. Define

Σ =

[
1 −(1 − ε )

−(1 − ε ) 1

]
and Σ̂ =

[
1 −1
−1 1

]
,

where ε ∈ (0, 1/2). The eigenvalues of Σ are 2 − ε and ε , so κ (Σ) = 2
ε
− 1, satisfying the stated

condition for ε . Observe that Σ and Σ̂ satisfy the entrywise approximation guarantees in the state-

ment of the theorem. However, Σ is non-singular and Σ̂ is singular. Thus, TV(N (0, Σ),N (0, Σ̂)) = 1

(consider the event that a random variable lies in the range of Σ̂), and KL(N (0, Σ) ‖ N (0, Σ̂)) = ∞
(recall the definition of KL divergence). �

Thus, given a black-box algorithm that provides an entrywise ε-approximation to the true co-

variance matrix Σ, ifκ (Σ) ≥ 2/ε , it might output Σ̂, which does not approximate Σ in KL divergence
or total variation distance. Thus, Theorem 1.5 is not a direct consequence of any parameter esti-
mation algorithm with entrywise covariance guarantees.

Remark 3.4. The matrix Σ̂ in the above construction is singular, soN (0, Σ̂) is a singular Gaussian.
The point of this proposition is that an algorithm that provides a good entrywise approximation
for the covariance matrix does not necessarily provide a good statistical approximation, as it may
output a singular Gaussian for example. Note that our algorithm handles singular Gaussians as is.
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One might wonder instead if our lower bound is a direct consequence of existing lower bounds
on parameter estimation. We show that this is also not the case: The next proposition shows that
there exist Gaussians that are close in TV distance but whose covariance matrices do not satisfy
any (multiplicative) entrywise guarantee. Thus, even if a lower bound concludes that a class of
algorithms cannot provide entrywise covariance guarantees, it is still possible that an algorithm
in that class can provide guarantees on the TV distance.

Proposition 3.5. For any ε ∈ (0, 1/2), there exist two covariance matrices Σ and Σ̂ such that

TV(N (0, Σ̂),N (0, Σ)) ≤ ε, but there exist i, j such that, for any c ≥ 1, Σ̂i, j � [1/c, c] · Σi, j .

Proof. Define

Σ =

[
1 0
0 1

]
and Σ̂ =

[
1 ε
ε 1

]
,

where ε ∈ [0, 1/2]. By Lemma 2.10,

2 TV (N (0, Σ0),N (0, Σ1))2 ≤ LD (Σ0, Σ1)

2
=
− log(1 − ε2)

2
≤ ε2,

so TV(N (0, Σ̂),N (0, Σ)) ≤ ε . However, Σ̂ is not an entrywise multiplicative approximation
of Σ. �

4 COMPRESSION SCHEMES

The main technique introduced in this article is using compression for density estimation. An
overview of this technique was given in Section 1.2. In this section, we provide formal definitions
of compression schemes and their usage.

4.1 Definition of a Compression Scheme

Let F be a class of distributions over a domainZ . Intuitively, a compression scheme for F involves
two agents: an encoder and a decoder.

• The encoder knows a distribution д ∈ F and receivesm samples from this distribution. She
uses her knowledge of д to construct and send a small message to the decoder, which will
suffice for him to construct a distribution that is close to д. From them samples, the encoder
selects a subset of size τ , which are somehow representative of д. This subset, together with
t additional bits, constitutes the message sent to the decoder.

• The decoder receives the message (the τ data points and the t bits) and constructs a distri-
bution that is close to д.

Of course, there is some probability that the samples are not representative of the distribution д,
in which case the compression scheme will fail. Thus, we only require that the decoding succeed
with constant probability.

We emphasize that including samples in the message is critical and they cannot be omitted. Us-
ing samples in addition to bits is the main conceptual novelty of our approach and allows learning
distribution classes with infinite metric entropy.

The formal definition of a decoder follows:

Definition 4.1 (Decoder). A decoder for F is a deterministic function J :
⋃∞

n=0 Z
n ×⋃∞

n=0{0, 1}n → F , which takes a finite sequence of elements of Z and a finite sequence of bits,
and outputs a member of F .
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The formal definition of a compression scheme follows:

Definition 4.2 (Robust Compression Schemes). Let τ , t ,m : (0, 1) → Z≥0 be functions, and let r ≥
0. We say F admits (τ , t ,m) r -robust compression if there exists a decoder J for F such that for
any distribution д ∈ F and any distribution q on Z with ‖д − q‖1 ≤ r , the following holds:

For any ε ∈ (0, 1), if a sample S is drawn from qm (ε ) , then, with probability at least
2/3, there exists a sequence L of at most τ (ε ) elements of S , and a sequence B of at
most t (ε ) bits, such that ‖J (L,B) − д‖1 ≤ ε .

Note that S and L are sequences rather than sets; in particular, they can contain repetitions.
Last, note that m(ε ) is a lower bound on the number of samples needed, whereas τ (ε ), t (ε ) are
upper bounds on the size of compression and the number of bits.

To summarize, the definition asserts that with probability 2/3, there is a (short) sequence L of
elements from S and a (short) sequence B of additional bits, from which д can be approximately
reconstructed. We emphasize that L and B depend on д. Intuitively, the samples in L together
with the bits B nearly represent the distribution д. This is a notion similar to that of a sufficient
statistic, but it is not equivalent, since here the representation is only approximate. We say that
the distribution д is encoded by the message (L,B). This compression scheme is called “robust,”
since it requires д to be approximately reconstructed from a sample generated from q rather than
д itself. A 0-robust compression scheme is called a (non-robust) compression scheme.

Remark 4.3. In the preceding definition, we required that L and B exist with probability only 2/3.
Naturally, one can boost this probability to 1 − δ by generating a sample of size m(ε )�log3 (1/δ )�:
We partition this sample into �log3 (1/δ )� parts of sizem(ε ). Each part has a desirable subsequence
L with probability at least 2/3, so the probability that none of the parts has a desirable subsequence

L is not more than (1/3) �log3 (1/δ )� ≤ δ .

4.2 Connection between Compression and Learning

We now show that if a class of distributions has a (robust) compression scheme, then it can be
learned in the (agnostic) density estimation model.

The main idea is as follows: An encoder cannot be implemented in the density estimation model,
because she requires knowledge of the target distribution д. However, since her interaction with
the decoder only amounts to sending a short message, we can explore all possible behaviors of the
encoder by a brute-force search over all possible messages that she could have sent. When any
such message is provided as input to the decoder, he will output some distribution f . Moreover,
for at least one such message, namely, the one that would have been produced by the encoder,
the decoder will output an f that is guaranteed to be close to д. Thus, if we collect all possible
distributions produced by the decoder on all possible input messages, then the only remaining
task is to select the distribution from that collection that is closest to д. Fortunately, this task has
a known solution: The following result states that a finite class of size M can be 3-learned in the
agnostic setting using O (log(M/δ )/ε2) samples.

Theorem 4.4. There exists a deterministic algorithm that, given candidate distributions f1, . . . , fM ,

a parameter ε > 0, and �log(3M2/δ )/2ε2� i.i.d. samples from an unknown distribution д, outputs an

index j ∈ [M] such that

‖ fj − д‖1 ≤ 3 min
i ∈[M]

‖ fi − д‖1 + 4ε,

with probability at least 1 − δ/3.

This result is essentially proven in Reference [48, Theorem 1]. It immediately follows from Ref-
erence [17, Theorem 6.3] and Hoeffding’s inequality [17, Theorem 2.1].
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Our approach for relating compression schemes and density estimation, described informally
above, is made formal by the following theorem. It uses Theorem 4.4 to select the best distribution
that the decoder could output. Note that we assume the learner knows all the problem parameters,
such as k,d, ε,δ ,τ , t ,m, and r , but is oblivious to the target distribution.

Theorem 4.5 (Compression Implies Learning). Suppose F admits (τ , t ,m) r -robust compres-

sion. Let τ ′(ε ) � τ (ε ) + t (ε ). Then F can be max{3, 2/r }-learned in the agnostic setting using

O

(
m

( ε
6

)
log

(
1

δ

)
+
τ ′(ε/6) log(m(ε/6) log3 (1/δ )) + log(1/δ )

ε2

)
= Õ

(
m

( ε
6

)
+
τ ′(ε/6) logm(ε/6)

ε2

)

samples. If F admits (τ , t ,m) non-robust compression, then F can be learned in the realizable setting

using the same number of samples.

Proof. We give the proof for the agnostic case; the proof for the realizable case is similar. Let
q be the target distribution from which the samples are being generated. Let α � inf f ∈F ‖ f − q‖1
be the approximation error of q with respect to F . The goal of the learner is to find a distribution

ĥ such that ‖ĥ − q‖1 ≤ max{3, 2/r } · α + ε .

First, consider the case α < r . In this case, we develop a learner that finds a distribution ĥ such

that ‖ĥ − q‖1 ≤ 3α + ε . Let д ∈ F be a distribution such that

‖д − q‖1 ≤ min
{
α +

ε

12
, r

}
. (2)

Such a д exists by the definition of α . By assumption, F admits (τ , t ,m) r -robust compression.
Let J denote the corresponding decoder. Given ε , the learner first asks for an i.i.d. sample S ∼
qm (ε/6) ·log3 (2/δ ) . Recall the definition of robust compression and Remark 4.3, which allows us to
amplify the success probability of the decoder. Then, with probability at least 1 − δ/2, there exist

L ∈ Sτ (ε/6) and B ∈ {0, 1}t (ε/6) satisfying the following guarantee: letting h∗ � J (L,B), we have

‖h∗ − д‖1 ≤
ε

6
. (3)

The learner is of course unaware of L and B. However, given the sample S , it can try all of the
possibilities for L and B and create a candidate set of distributions. More concretely, let

H = { J (L′,B′) : L′ ∈ Sτ (ε/6), B′ ∈ {0, 1}t (ε/6) }.

Note that

|H | ≤
(
m(ε/6) log3 (2/δ )

)τ (ε/6)
2t (ε/6) ≤

(
m(ε/6) log3 (2/δ )

)τ ′ (ε/6)
.

Since H is finite, we will use the algorithm of Theorem 4.4 to find a good candidate ĥ from H . In
particular, we set the accuracy parameter in Theorem 4.4 to be ε/16 and the confidence parameter
to be δ/2. In this case, Theorem 4.4 requires

log(6|H |2/δ )

2(ε/16)2
= O ��

τ ′(ε/6) log(m( ε
6 ) log3 ( 1

δ
)) + log( 1

δ
)

ε2
�	 = Õ

(
τ ′(ε/6) logm(ε/6)

ε2

)
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additional samples, and its output ĥ satisfies the following guarantee:

‖ĥ − q‖1 ≤ 3‖h∗ − q‖1 + 4
ε

16
(by Theorem 4.4)

≤ 3(‖h∗ − д‖1 + ‖д − q‖1) +
ε

4
(by the triangle inequality)

≤ 3�� ε6 +
(
α +

ε

12

)�	 + ε

4
(by (2) and (3))

= 3α + ε .

Note that the above procedure uses Õ (m(ε/6) + τ ′(ε/6) logm(ε/6)/ε2) samples and its failure prob-
ability is at most δ : The probability of either H not containing a good h∗ or the failure of Theo-
rem 4.4, in choosing a good candidate among H , is bounded by δ/2 + δ/2 = δ .

The other case,α ≥ r , is trivial: The learner outputs some distribution ĥ. Since ĥ andq are density

functions, we have ‖ĥ − q‖1 ≤ 2 ≤ 2
r
· α ≤ max{3, 2/r } · α + ε . �

4.3 Combining Compression Schemes

In the rest of this section, we prove a few lemmata showing that compression schemes can be
combined in useful ways. These results concern product distributions (which will be useful for
axis-aligned Gaussians) and mixture distributions (which will be useful for mixtures of Gaussians).

First, Lemma 4.6 below states that if a class F of distributions can be robustly compressed,
then the class of distributions that are formed by taking products of members of F can also be

robustly compressed. If p1, . . . ,pd are distributions over domains Z1, . . . ,Zd , then
∏d

i=1 pi denotes

the standard product distribution over
∏d

i=1 Zi . For a class F of distributions, define

F d �
⎧⎪⎨⎪⎩

d∏
i=1

pi : p1, . . . ,pd ∈ F
⎫⎪⎬⎪⎭ .

Lemma 4.6 (Compressing Product Distributions). For any τ , t ,m, r ,d ,

if F admits
(

τ (ε ), t (ε ), m(ε )
)

r -robust compression,

then F d admits
(
d · τ (ε/d ), d · t (ε/d ), log3 (3d ) ·m(ε/d )

)
r -robust compression.

For the proof, we need the following standard proposition, which can be proved, e.g., using the
coupling characterization of the total variation distance.

Proposition 4.7 (Lemma 3.3.7 in Reference [41]). For i ∈ [d], let pi and qi be probability dis-

tributions over the same domain Z . Then ‖Πd
i=1pi − Πd

i=1qi ‖1 ≤
∑d

i=1 ‖pi − qi ‖1.

Proof of Lemma 4.6. Let Z be the domain of F andG = Πd
i=1дi be an arbitrary element of F d ,

with all дi ∈ F . Let Q be an arbitrary distribution over Zd subject to ‖G −Q ‖1 ≤ r . Let q1, . . . ,qd

be the marginal distributions of Q on the d components. Observe that ‖qj − дj ‖1 ≤ r for each
j ∈ [d], since Proposition 2.1 implies that projection onto a coordinate cannot increase the total
variation distance.

The lemma’s hypothesis is that F admits (τ , t ,m) r -robust compression. Let J denote the cor-
responding decoder, letm0 � m(ε/d ) log3 (3d ) and S ∼ Qm0 . To prove the lemma, we must encode
an ε-approximation of G using d · τ (ε/d ) elements of S and d · t (ε/d ) bits.

Since S contains m0 samples, each of which is a d-dimensional vector, we may think of S as a
d ×m0 matrix over Z . Let Si denote the ith row of this matrix. That is, for i ∈ [d], let Si ∈ Zm0 be
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the vector of the ith components of all elements of S . By definition of qi , we have Si ∼ qm0

i for each
i . As observed above, we have ‖qi − дi ‖1 ≤ r .

Apply Remark 4.3 with parameters ε/d and δ = 1/3d for each i ∈ [d]. Then, for each i , the fol-
lowing statement holds with probability at least 1 − 1/3d : There exists a sequence Li of at most
τ (ε/d ) elements of Si and a sequence Bi of at most t (ε/d ) bits such that ‖J (Li ,Bi ) − дi ‖1 ≤ ε/d .
By the union bound, this statement holds simultaneously for all i ∈ [d] with probability at least
2/3. We encode these L1, . . . ,Ld ,B1, . . . ,Bd using d · τ (ε/d ) samples from S and d · t (ε/d ) bits. Our
decoder for F d then extracts L1, . . . ,Ld ,B1, . . . ,Bd from these samples and bits, and then outputs∏d

i=1 J (Li ,Bi ) ∈ F d . Finally, Proposition 4.7 gives

���Πd
i=1J (Li ,Bi ) −G���1

≤
d∑

i=1

��J (Li ,Bi ) − дi
��1 ≤ d · ε/d = ε,

completing the proof. �

Our next lemma states that if a class F of distributions can be compressed, then the class of
distributions that are formed by taking mixtures of members of F can also be compressed.

Lemma 4.8 (Compressing Mixtures, Non-robustly). For any τ , t ,m, r ,d , if class F admits

(τ (ε ), t (ε ),m(ε )) non-robust compression, then the class of its k-mixtures, i.e., k-mix(F ), admits

(k · τ ( ε
3 ), k · t ( ε

3 ) + k log2 ( 3k
ε

),
48k log(6k )

ε
·m( ε

3 )) non-robust compression.

Proof. Consider any д ∈ k-mix(F ), so д =
∑

i ∈[k]wi fi for some distributions f1, . . . , fk ∈ F
and mixing weights w1, . . . ,wk . Definem0 � 48m(ε/3)k log(6k )/ε , and draw S ∼ дm0 . Then S has
the same distribution as the process that performsm0 independent trials as follows: Select a com-
ponent i proportional to the weights w1, . . . ,wk , then draw a sample from fi . In the latter pro-
cess, we define Si to be the sequence of samples that were generated using fi . Our encoder for
д will discretize the mixing weights and use the compression scheme for F to separately encode
each fi .

Encoding the mixing weights. We encode w1, . . . ,wk using bits as follows: Consider an (ε/3k )-
net in �∞ for Δk of size (3k/ε )k (see Lemma 2.14). Let (ŵ1, . . . , ŵk ) be an element in the net that
has

‖ (ŵ1, . . . , ŵk ) − (w1, . . . ,wk )‖∞ ≤ ε/3k . (4)

Encoding the element (ŵ1, . . . , ŵk ) from the net requires only k log2 (3k/ε ) bits.

Encoding f1, . . . , fk . For any i ∈ [k], we say that index i is negligible if wi ≤ ε/(6k ). For any

negligible index, we will approximate fi by an arbitrary distribution f̂i . For any non-negligible
index, we will likely have enough samples from fi to use the compression scheme for F to encode

a distribution f̂i that approximates fi .
Define m1 =m(ε/3) log(6k ). For each non-negligible index i , by the Chernoff bound (Theo-

rem 2.4), with probability at least 1 − 1/6k , we have |Si | ≥ m1. By a union bound, this statement
holds simultaneously for all non-negligible i ∈ [k] with probability at least 5/6.

Apply Remark 4.3 with parameters ε/3 and δ = 1/6k for each non-negligible index i . Then, for
each such i , the following statement holds with probability at least 1 − 1/6k : There exist τ (ε/3)

samples from Si and t (ε/3) bits from which the decoder for F constructs a distribution f̂i with

‖ fi − f̂i ‖1 ≤ ε/3. (5)

By the union bound, this statement holds simultaneously for all non-negligible indices with prob-
ability at least 5/6. The encoding consists of these samples and bits for each non-negligible i ,
whereas for negligible i , we use the same number of samples and bits, chosen arbitrarily.
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By a union bound, the failure probability of the encoding is at most 2 · (1 − 5/6) = 1/3.

Complexity of the encoding. The discretized weights require k log2 (3k/ε ) bits. For each index i ∈
[k], we use τ (ε/3) samples and t (ε/3) bits. Thus, the total number of bits isk · t (ε/3) + k log2 (3k/ε ),
and the total number of samples is k · τ (ε/3).

Decoding. The decoder for k-mix(F ) is given the discretized weights ŵ1, . . . , ŵk . It is also given,
for each index i , τ (ε/3) samples and t (ε/3) bits, which it provides to the decoder for F , yielding

the distribution f̂i . (Recall that, for a negligible index i , the distribution f̂i is arbitrary.) The decoder

outputs the distribution
∑

i ŵi f̂i .

To complete the proof of the lemma, we will show that ‖∑i wi fi −
∑

i ŵi f̂i ‖1 ≤ ε with proba-
bility at least 2/3. Let N ⊆ [k] denote the set of negligible components. Recall that the encoder

succeeds with probability at least 2/3, in which case the decoded distributions f̂i will satisfy In-
equality (5) for each i � N . So, we have�������

∑
i ∈[k]

(ŵi f̂i −wi fi )

�������1

≤
�������
∑

i ∈[k]

wi ( f̂i − fi )

�������1

+

�������
∑

i ∈[k]

(ŵi −wi ) f̂i

�������1

≤
������
∑
i ∈N

wi ( f̂i − fi )
������1

+

������
∑
i�N

wi ( f̂i − fi )
������1

+
∑

i ∈[k]

|ŵi −wi | · ‖ f̂i ‖1

≤
∑
i ∈N

wi · 2 +
∑
i�N

wi ·
ε

3
+

∑
i ∈[k]

ε

3k
· 1 (by (4) and (5))

≤ k · ε
6k
· 2 + ε

3
+

ε

3
= ε (by definition of N ).

This completes the analysis of the compression scheme for k-mix(F ). �

The preceding lemma shows that non-robust compression of F implies non-robust compression
of k-mix(F ). We do not know whether an analogous statement holds for robust compression. That
is, does robust compression of F imply robust compression of k-mix(F ), for a general class F ?
Nevertheless, in the next lemma, we show that if F can be robustly compressed, then k-mix(F )
can be learned in the agnostic setting.

Lemma 4.9 (Learning Mixtures, Robustly). Suppose F admits (τ (ε ), t (ε ),m(ε )) r -robust com-

pression, and let τ ′(ε ) � τ (ε ) + t (ε ). Then k-mix(F ) admits 3(1 + 2/r )-agnostic learning with sam-

ple complexity

Õ

(
km(ε/10)

ε
+
kτ ′(ε/10) logm(ε/10)

ε2

)
.

We first give a sketch of the proof. Let д be the target distribution and suppose there exists ρ ≥
0 and f ∈ k-mix(F ) such that ��д − f ��1 ≤ ρ. Since f ∈ k-mix(F ), we can write f =

∑
i ∈[k]wi fi ,

where fi ∈ F , wi ≥ 0, and
∑

i ∈[k]wi = 1. A first attempt would be to try to write д =
∑

i ∈[k]wiдi

such that each ��дi − fi ��1 ≤ r ; if this were true, then given a sufficient number of samples from д,
we would have sufficient samples from each дi , and then we could use an r -robust compression

scheme for F to encode, for each i , some f̂i close to fi . Alas, it is not clear whether we can ensure
that ��дi − fi ��1 ≤ r for all i . However, Lemma 4.10 below asserts that we can write д =

∑
i ∈[k]wiдi

in such a way that, for each i , either ��дi − fi ��1 ≤ r orwi is small (in fact, the sum of all such weights
is small) and, hence, their contribution to the TV distance is small. Thus, we need only deal with
the case where ��дi − fi ��1 ≤ r , a task for which r -robust compression is well-suited.
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Lemma 4.10. Let f =
∑

i ∈[k]wi fi be a density with (w1, . . . ,wk ) ∈ Δk and each fi ∈ F . Let д be

a density such that ��д − f ��1 ≤ ρ. Then, we can write д =
∑

i ∈[k]wiдi such that each дi is a density

and for any r > 0,

∑
i : ‖дi−fi ‖1>r

wi < ρ/r .

The proof of this lemma is cumbersome and appears in Appendix B. We now prove Lemma 4.9.

Proof of Lemma 4.9. Let д be the target distribution, and let f ∈ k-mix(F ) be such that��f − д��1 ≤ ρ. To prove the lemma, we need to describe a learning algorithm that outputs a distri-
bution whose L1 distance to д is bounded by 3ρ (1 + 2/r ) + ε .

Let д =
∑

i ∈[k]wiдi be the representation given by Lemma 4.10. The learner first takes M =
160m(ε/10) log3 (3k/δ )k/ε samples fromд. Let S be the set of these samples. We viewд as a mixture
of theдi , so S can be partitioned into k subsets such that the ith subset has distributionдi . We learn
each of the components individually. The learner does not know which sample point comes from
which component, but it can try all possible ways of partitioning S into k subsets, hence generating
several candidate distributions, such that at least one of them is close to д. Moreover, the learner
“guesses” the weights wi : LetW be an (ε/10k )-net in �∞ for Δk of size (10k/ε )k (see Lemma 2.14).
So, there exists some point (ŵ1, . . . , ŵk ) ∈W such that

max
i
|wi − ŵi | ≤ ε/10k . (6)

For each i ∈ [k], component i is called tiny ifwi < ε/20k , far if ‖дi − fi ‖1 > r , and nice otherwise.
The sum of weights of tiny components is at most ε/20, and the sum of weights of far components
is at most ρ/r by Lemma 4.10.

The number of samples from component i is binomial with mean Mwi . By the Chernoff bound
(Theorem 2.4) and a union bound over nice components, with probability at least 1 − δ/3, there are
at leastm(ε/10) log3 (3k/δ ) points from each nice component. If this is the case, then the definition
of robust compression implies that, for each nice component дi , with probability at least 1 − δ/3k ,

there exists a sequence Li ∈ Sτ (ε/10) and a sequence Bi ∈ {0, 1}t (ε/10) such that ‖J (Li ,Bi ) − fi ‖1 ≤
ε/10, whereJ is the decoder forF . By a union bound over nice components, this is simultaneously
true for all nice components, with probability at least 1 − δ/3.

Thus far, we have proved that, with probability at least 1 − 2δ/3, there exist sequences

L1, . . . ,Lk ∈ Sτ (ε/10) and B1, . . . ,Bk ∈ {0, 1}t (ε/10) such that

‖J (Li ,Bi ) − fi ‖1 ≤ ε/10 for each nice component i . (7)

The learner builds the following set of candidate distributions:

C �
⎧⎪⎨⎪⎩

k∑
i=1

w ′iJ (L′i ,B
′
i ) : L′1, . . . ,L

′
k ∈ S

τ (ε/10), B′1, . . . ,B
′
k ∈ {0, 1}

t (ε/10), (w ′1, . . . ,w
′
k ) ∈W

⎫⎪⎬⎪⎭ .
We claim that, with probability at least 1 − 2δ/3, at least one of the distributions in C is (3ε/10 +
2ρ/r + ρ)-close to д. This corresponds to the “correct” sequences L,B, and ŵ ; that is, when L′i =
Li ,B

′
i = Bi , and w ′i = ŵi for all i ∈ [k]. To prove the claim, let T , F , and N denote the set of tiny,
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far, and nice components, respectively. Then, we have�������
∑

i ∈[k]

ŵiJ (Li ,Bi ) −wiдi

�������1

≤
�������
∑

i ∈[k]

wi (J (Li ,Bi ) − fi )

�������1

+

�������
∑

i ∈[k]

(ŵi −wi )J (Li ,Bi )

�������1

+ ��f − д��1

≤
∑

i ∈T∪F

wi
��J (Li ,Bi ) − fi ��1 +

∑
i ∈N

wi
��J (Li ,Bi ) − fi ��1

+
∑

i ∈[k]

|ŵi −wi | · ‖J (Li ,Bi )‖1 + ρ

≤
∑

i ∈T∪F

wi · 2 +
∑
i ∈N

wi · (ε/10) +
∑

i ∈[k]

(ε/10k ) + ρ

≤ (ε/10 + 2ρ/r ) + ε/10 + ε/10 + ρ

= 3ε/10 + 2ρ/r + ρ,

where the first two inequalities follow from the triangle inequality and, since ‖ f − д‖1 ≤ ρ, the
third inequality follows from inequalities (7) and (6), and the fourth inequality follows from the
definition of tiny and Lemma 4.10. This proves the claim.

Next, the learner applies the algorithm of Theorem 4.4, with error parameter ε/40, to obtain a
member of C whose distance from д is bounded by 3 · (3ε/10 + 2ρ/r + ρ) + 4(ε/40) ≤ ε + 3ρ (1 +
2/r ), as required. The overall failure probability is bounded by 2δ/3 (failure probability of the
claim) plus δ/3 (failure probability of the algorithm of Theorem 4.4).

The sample complexity of the algorithm is bounded as follows: The number of candidate distri-
butions can be bounded by

|C| ≤
(
Mτ (ε/10)2t (ε/10)

)k
· (10k/ε )k ≤ Mkτ ′ (ε/10) · (10k/ε )k ,

whence the total sample complexity can be bounded by

M +
log(3|C|2/δ )

2ε2

= O ���m
( ε

10

)
log

(k
δ

) k
ε
+

log(1/δ ) + k log(k/ε ) + kτ ′(ε/10) log
(
m(ε/10) log(k/δ )k/ε

)
ε2

��	
= Õ

(
km(ε/10)

ε
+
kτ ′(ε/10) logm(ε/10)

ε2

)
. �

5 UPPER BOUNDS: LEARNING GAUSSIAN MIXTURES VIA COMPRESSION

SCHEMES

The main positive results of this article are sample complexity bounds for learning mixtures of
Gaussians (Theorems 1.5 and 1.7). In this section, we prove these results by describing a compres-
sion scheme for a single Gaussian and then applying the tools developed in the previous section.
To begin, we illustrate the technique by analyzing the simpler problem of learning mixtures of
axis-aligned Gaussians in the realizable setting. To avoid the technical issue of log(1/ε ) getting
extremely small, henceforth, we will assume that ε is bounded away from 1, say, ε ≤ 0.99.

5.1 Warm-up: Mixtures of Axis-aligned Gaussians, Non-robustly

In this short section, we give an illustrative use of our compression framework to prove an upper

bound of Õ (kd/ε2) for the sample complexity of learning mixtures of k axis-aligned Gaussians in
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the realizable setting. The next section gives a general argument for arbitrary Gaussians in the
agnostic setting.

Lemma 5.1. The class of one-dimensional Gaussians admits a (3,O (log(1/ε )), 3) non-robust com-

pression scheme.

Proof. Let 0 < c < 1 < C be such that PrX∼N (0,1)[c < |X | < C] ≥ 0.99. LetN (μ,σ 2) be the tar-

get distribution. We first show how to encode σ . Let д1,д2 ∼ N (μ,σ 2). Then д � 1√
2

(д1 − д2) ∼
N (0,σ 2). So, with probability at least 0.99, we have σc < |д | < σC . Conditioned on this event, we

have λ � σ/д ∈ [−1/c, 1/c]. We now choose λ̂ ∈ {0,±ε/2C2,±2ε/2C2,±3ε/2C2 . . . ,±1/c} satisfy-

ing |λ̂ − λ | ≤ ε/4C2, and we encode the standard deviation by (д1,д2, λ̂). The decoder then esti-

mates σ̂ � λ̂(д1 − д2)/
√

2. Note that |σ̂ − σ | ≤ |λ̂ − λ | |д | ≤ σε/4C and that the encoding requires

two sample points and O (log(C2/cε )) = O (log(1/ε )) bits for encoding λ̂.
Now, we turn to encoding μ. Let д3 ∼ N (μ,σ 2). Then |д3 − μ | ≤ Cσ with probability at least

0.99. We will condition on this event, which implies the existence of some η ∈ [−C,C] satisfy-
ing д3 + ση = μ. We choose η̂ ∈ {0,±ε/2,±2ε/2,±3ε/2 . . . ,±C} such that |η̂ − η | ≤ ε/4, and encode
the mean by (д3, η̂). The decoder estimates μ̂ � д3 + σ̂ η̂. Again, note that |μ̂ − μ | = |ση − σ̂ η̂ | ≤
|ση − ση̂ | + |ση̂ − σ̂ η̂ | ≤ σε/2. Moreover, encoding the mean requires one sample point and
O (log(1/ε )) bits.

To summarize, the decoder has |μ̂ − μ | ≤ σε/2 and |σ̂ − σ | ≤ σε/2. Plugging these bounds into
Lemma 2.11 gives ‖N (μ,σ 2) − N (μ̂, σ̂ 2)‖1 ≤ ε , as required. �

Remark 5.2. In the above argument, the samples are not “compressed” in the usual sense of this
verb. Nevertheless, our formal definition of compression, Definition 4.2, allowsm = τ .

To complete the proof of Theorem 1.7 in the realizable setting, we note that Lemma 5.1 combined
with Lemma 4.6 implies that the class of axis-aligned Gaussians in Rd admits an(

O (d ), O (d log(d/ε )), O (log(3d ))
)

non-robust compression scheme. (By noting that any axis-aligned Gaussian is a product of one-
dimensional Gaussians.) Then, by Lemma 4.8, the class of mixtures of k axis-aligned Gaussians
admits an (

O (kd ), O (kd log(d/ε ) + k log(k/ε )), O (k log(k ) log(d )/ε )
)

non-robust compression scheme. Theorem 4.5 now implies that the class of k-mixtures of axis-

aligned Gaussians in Rd can be learned using Õ (kd/ε2) samples in the realizable setting.

5.2 Learning Axis-aligned and General Gaussian Mixtures in the Agnostic Setting

We now turn to the general case and prove an upper bound of Õ (kd2/ε2) for the sample complexity

of learning mixtures of k Gaussians in d dimensions, and an upper bound of Õ (kd/ε2) for the
sample complexity of learning mixtures ofk axis-aligned Gaussians, both in the agnostic sense. The
heart of the proof is to show that Gaussians have robust compression schemes in any dimension.

Lemma 5.3. For any positive integer d , the class Gd,1 of d-dimensional Gaussians admits an(
O (d ), O (d2 log(d/ε )), O (d )

)
2/3-robust compression scheme.

Remark 5.4. In the special case d = 1, there also exists a (4, 1,O (1/ε )) 0.773-robust compression
scheme using completely different ideas. The proof appears in our technical report [5]. Surpris-
ingly, this compression scheme has constant size, as the value of τ + t is independent of ε (unlike
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Lemma 5.3). This scheme could be used instead of Lemma 5.3 for proving Theorem 1.7, although
it would not improve the sample complexity bound asymptotically.

Remark 5.5. The proof of Lemma 5.3 can be amended to give an r -robust compression scheme
for any r < 1, which will change the constant 12 in the agnostic results of Theorem 1.5 and The-
orem 1.7 to any constant larger than 9, at the expense of worse constants for τ , t and m. This is
straightforward but entails additional cumbersome notation, hence, we omit the details.

Before proving Lemma 5.3, we show how to combine it with previous lemmata to prove our
main upper bounds.

Proof of Theorem 1.5. Combining Lemma 5.3 and Lemma 4.9 gives that the class ofk-mixtures

of d-dimensional Gaussians is 12-agnostically learnable with sample complexity Õ (kd2/ε2). �

Proof of Theorem 1.7. Recall that Ad,k denotes the class of k-mixtures of d-dimensional
axis-aligned Gaussian distributions. Observe that any distribution in Ad,1 is a product of d one-
dimensional Gaussians, hence applying Lemma 5.3 for the case d = 1 and then Lemma 4.6 shows

that Ad,1 admits
(
O (d ),O (d log(d/ε )),O (log(3d ))

)
2/3-robust compression. Lemma 4.9 then im-

plies that Ad,k is 12-agnostically learnable with sample complexity Õ (kd/ε2), completing the
proof. �

5.3 Proof of Lemma 5.3

We first provide an overview of the proof. For simplicity, first assume that we are in the non-robust,
zero-mean, full-rank scenario, i.e., we want to encode the distribution N (0, Σ), where Σ ∈ Rd×d

has rank d . Let v1, . . . ,vd be an orthogonal set of vectors that satisfy Σ =
∑d

i=1viv
T
i . (Such a rep-

resentation can be obtained from the eigendecomposition of Σ and noting that all its eigenvalues
are positive. Note that the vectors vi are not normalized.) Let д1, . . . ,дd be i.i.d. samples from
N (0, Σ). As span{д1, . . . ,дd } = Rd with probability 1, a natural idea is to find, for each i , coeffi-

cients λi,1, . . . , λi,d such that vi =
∑d

j=1 λi, jдj . The encoder sends д1, . . . ,дd and a discretization

of the values {λi, j }i, j ∈[d] as her message and the decoder will recover Σ approximately. If the dis-
cretization of each λi, j is accomplished with b bits, then we would obtain a (d,d2b,d ) compression
scheme.

The main difficulty is to control the bit complexity of a suitable discretization of λi, j —to achieve
the optimal sample complexity bound, the bit complexity must be polylog(d/ε ) per coefficient. The
key to achieve a suitable discretization is the following fact from geometric functional analysis
(Lemma 5.6, cf. Reference [34, Corollary 4.1]): Denote the convex hull of a set T is by conv(T ).
Given a sequence д1, . . . ,дm of m = O (d ) i.i.d. samples from N (0, Σ), with high probability, we
have 1

20 · E ⊆ conv{±д1, . . . ,±дm }, where E is the ellipsoid centered at zero with principal axes
v1, . . . ,vd . This enables us to express each vi as

∑m
j=1 λi, jдj , where each λi, j ∈ [−20, 20]; we then

discretize by building an poly(ε/d )-net of size poly(d/ε ) on this interval, achieving the desired
polylog(d/ε ) per coefficient bit complexity.

Next, suppose the mean is not zero, say we want to encode the distribution N (μ, Σ). Note that

if д1,д2 ∼ N (μ, Σ), then
д1−д2√

2
∼ N (0, Σ), and thus, we can use the same compression scheme as

above to encode v1, . . . ,vd . To encode μ, the idea is that a single sample д ∼ N (0, Σ) is unlikely to
be too far from μ. Specifically, if E is the ellipsoid defined by Σ, centered at zero, then, with high

probability, μ ∈ д +O (
√
d ) · E. Thus, we build a net of the set д +O (

√
d ) · E and the encoder sends

д as well as the identity of the point in the net closest to μ.
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We now proceed to the formal proof. We first prove a lemma that is similar to known results
in random matrix theory (cf. Reference [34, Corollary 4.1]) but is tailored for our purposes. Let us
denote a · Bd

2 � { y ∈ Rd : ‖y‖2 ≤ a }.

Lemma 5.6. Suppose that q1, . . . ,qm ∈ Rd are i.i.d. samples from some distributionQ that satisfies

TV (Q,N (0, Id )) ≤ 2/3. Let

T � { ±qi : ‖qi ‖2 ≤ 4
√
d }.

For a large enough absolute constant C , ifm ≥ Cd then

Pr

[
1

20
Bd

2 ⊆ conv(T )
]
≥ 5/6.

Proof. Let Sd−1 � { y ∈ Rd : ��y��2 = 1}. Consider the following statement:

max
q∈T
| 〈 y, q 〉 | ≥ 1

20
∀y ∈ Sd−1. (8)

We first show that Inequality (8) implies that 1
20B

d
2 ⊆ conv(T ), which is the event that we wish to

analyze. To see this, suppose, for the sake of contradiction, that 1
20B

d
2 � conv(T ), so there exists

some point z ∈ 1
20B

d
2 \ conv(T ). By the strict hyperplane separation theorem (e.g., Reference [10,

Example 2.20]), there exists some direction y ∈ Sd−1 such that
〈
y, z

〉
>

〈
y, q

〉
for all q ∈ T . Since

‖z‖2 ≤ 1/20, we have 1/20 ≥ 〈
y, z

〉
. This means 1/20 > maxq∈T

〈
y, q

〉
= maxq∈T |

〈
y, q

〉 |, con-
tradicting Inequality (8).

Next, for each y ∈ Sd−1, let

Hy �
{
x ∈ Rd : ‖x ‖2 ≤ 4

√
d, | 〈 x , y 〉 | ≥ 1

20

}
,

and let H � {Hy : y ∈ Sd−1}. Let U �
{
q1, . . . ,qm

}
and observe that Inequality (8) is equivalent

to the event

U ∩ H � ∅ ∀H ∈ H .
So, to complete the proof, we need only show that this event happens with probability at least 5/6.
Recalling that U is an i.i.d. sample of size m from Q , by the Vapnik-Chervonenkis inequality (see,
e.g., Reference [47, Theorem 8.3.23]), for some absolute constant c ,

E sup
H ∈H

�����Q (H ) − |U ∩ H ||U |
����� ≤ c

√
VC-dim(H )/m. (9)

Define p � infH ∈H Q (H ). We claim that, to complete the proof of the lemma, it suffices to show
that VC-dim(H ) = O (d ) andp = Ω(1). Indeed, if these statements are true, then we can choosem =
144c2 · VC-dim(H )/p2 = O (d ) and the right-hand-side of Inequality (9) becomes p/12. Markov’s
inequality would then imply that with probability at least 5/6, for all H ∈ H , we have Q (H ) −
|U∩H |
|U | ≤ p/2, which implies

|U ∩ H |
|U | ≥ Q (H ) − p/2 ≥ p/2 > 0,

that is, U ∩ H is nonempty for all H ∈ H . Next, we show that VC-dim(H ) = O (d ) and p = Ω(1).
Since restricting the domain cannot increase the VC dimension, the VC dimension of H is not

more than that of {{x ∈ Rd : |〈 x , y 〉| ≥ 1
20 } : y ∈ Sd−1}. Every set in this family is a union of two

half-spaces (corresponding to
〈
x , y

〉 ≥ 1
20 and

〈
x , y

〉 ≤ − 1
20 ). The VC dimension of the family

of half-spaces is d + 1 (see, e.g., Reference [17, Corollary 4.2]), so, by Reference [9, Lemma 3.2.3],
the VC dimension of the family of pairwise unions of half-spaces is bounded by 4(d + 1) log2 (6) =
O (d ).
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Finally, to show that p = Ω(1), let д ∼ N (0, Id ) and note that for any y ∈ Sd−1, by the union
bound,

Pr[д ∈ Hy] ≥ Pr[‖д‖2 ≤ 4
√
d] − Pr [| 〈 д, y 〉 | < 1/20] ≥ (1 − e−3) − 1/10 > 0.85, (10)

where we have used that Pr[‖д‖2 > 4
√
d] ≤ exp(−3) (by Corollary 2.3) and that

〈
д, y

〉
is a

standard normal random variable so its probability density function is bounded by 1. Since
TV (Q,N (0, Id )) ≤ 2/3, from Inequality (10), we obtainQ (Hy ) ≥ 0.85 − 2/3 > 0.18, completing the
proof of the lemma. �

To prove Lemma 5.3, we need to describe a 2/3-robust compression scheme for d-dimensional
Gaussians. Accordingly, we consider a target distribution Q such that there exists a Gauss-
ian N (μ, Σ) satisfying ‖Q − N (μ, Σ)‖1 ≤ 2/3. Recall, from Equation (1), that this implies
TV (Q,N (μ, Σ)) ≤ 1/3.

We may assume that Σ has full rank, since there is a reduction from the case of rank-deficient
Σ: If the rank of Σ is ρ < d , then any X ∼ N (μ, Σ) lies in some affine subspace S of dimension
ρ. Thus, since TV (Q,N (μ, Σ)) ≤ 1/3, any X ∼ Q lies in S with probability at least 2/3. By the
Chernoff bound (Theorem 2.4), with high probability, after seeing 10d samples from Q , at least
ρ + 1 points from S will appear in the sample. We encode S using these samples, and for the rest
of the process we work in this affine subspace and discard outside points.

Definition of v1, . . . ,vd , and Ψ. Since Σ has full rank, there exist an orthogonal set of vectors

v1, . . . ,vd satisfying Σ =
∑d

i=1viv
T
i . For convenience, let Ψ = Σ1/2 be the unique positive definite

square root of Σ. Observe that

Ψ =
d∑

i=1

viv
T
i

‖vi ‖2
, Σ−1 =

d∑
i=1

viv
T
i

‖vi ‖42
, and Ψ−1 =

d∑
i=1

viv
T
i

‖vi ‖32
. (11)

We next show how to encode the mean and the eigenvectors.

Lemma 5.7. Let C be a sufficiently large absolute constant, and let S be an i.i.d. sample of size

2m = 2Cd from Q , where TV (Q,N (μ, Σ)) ≤ 1/3. Then, with probability at least 2/3, one can encode

vectors v̂1, . . . , v̂d , μ̂ ∈ Rd satisfying

‖Ψ−1 (v̂j −vj )‖2 ≤ ε/24d2 ∀j ∈ [d], and (12)

‖Ψ−1 (μ̂ − μ )‖2 ≤ ε/2, (13)

using O (d2 log(d/ε )) bits and the points in S .

Proof. The samples in S will be denoted X1, . . . ,X2m .

Encoding v̂1, . . . , v̂d . Define the “standardized” samples

Yi �
1
√

2
Ψ−1 (X2i − X2i−1) ∀i ∈ [m].

We claim that, for each i ∈ [m],Yi has TV distance at most 2/3 fromN (0, I ). Indeed, IfX2i andX2i−1

had distributionN (μ, Σ), thenYi would have distributionN (0, I ). Instead, bothX2i andX2i−1 have
TV distance at most 1/3 from N (μ, Σ), so, by Lemma 4.7 and Proposition 2.1, Yi has TV distance
at most 2/3 from N (0, I ). Define the event

E �
{

1

C
Bd

2 ⊆ conv { ±Yi : i ∈ I }
}
, where I �

{
i ∈ [m] : ‖Yi ‖2 ≤ 4

√
d

}
.

SinceC is large, and in particularC ≥ 20, by Lemma 5.6, we have Pr [E] ≥ 5/6. Our encoding will
assume E happens.
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Fix some j ∈ [d]. Referring to Equations (11), we see that Ψ−1vj = vj/‖vj ‖2 has unit norm. Since
E occurs, we can write

Ψ−1vj

C
=

∑
i ∈[m]

θ j,iYi

for some vector θ j ∈ [−1, 1]m supported on I. Applying Ψ to both sides, we obtain

vj =
C
√

2

∑
i ∈I

θ j,i (X2i − X2i−1).

To discretize θ j , consider the natural (ε/96Cmd3)-net for [−1, 1]m in the �∞ distance formed
by the Cartesian product of one-dimensional nets, namely, {nε/48Cmd3 : −�48Cmd3/ε� ≤ n ≤
�48Cmd3/ε�}m . This net has size at most (97Cmd3/ε )m . Recalling that m = O (d ), it follows that

any element of the net can be described using O (d log(d/ε )) bits. Let θ̂ j be an element in the net
that is closest to θ j . Since each θ j is supported on I and due to the structure of the net, we may

choose θ̂ j also to be supported on I. Define

v̂j �
C
√

2

∑
i ∈I

θ̂ j,i (X2i − X2i−1).

The vectors v̂1, . . . , v̂d are encoded using the points in S and θ̂1, . . . , θ̂d . Encoding each θ̂i requires
O (d log(2d/ε )) bits, so encoding all of them requires O (d2 log(2d/ε )) bits.

The error of this encoding is

‖Ψ−1 (v̂j −vj )‖2 =
C
√

2

������
∑
i ∈I

(θ j,i − θ̂ j,i )Ψ−1 (X2i − X2i−1)
������2

≤ C
√

2
|I |

(
max
i ∈I
|θ j,i − θ̂ j,i |

) (
max
i ∈I

√
2‖Yi ‖2

)
.

‖Ψ−1 (v̂j −vj )‖2 ≤
C
√

2
m

( ε

96Cmd3

) (
4
√

2
√
d
)
≤ ε

24d2
,

By the definition of θ̂ j , we have ‖θ̂ j − θ j ‖∞ ≤ ε/96Cmd3. By the definition of I, we have ‖Yi ‖2 ≤
4
√
d , leading to the bound

‖Ψ−1 (v̂j −vj )‖2 ≤
C
√

2
m

( ε

96Cmd3

) (
4
√

2
√
d
)
≤ ε

24d2
, (14)

establishing Inequality (12).

Encoding μ̂. Let Zi � Ψ−1 (Xi − μ ) and observe that Zi has a distribution with TV distance at
most 1/3 to N (0, I ). Define the event

E′ �
{

min{‖Z1‖2, ‖Z2‖2} ≤ 4
√
d

}
.

Corollary 2.3 implies that

Pr[‖Zi ‖2 ≥ 4
√
d] ≤ exp(−3) + 1/3 <

√
1/6.

Thus, Pr [E′] ≥ 5/6. Our encoding will assume that E′ happens.
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By symmetry, assume that ‖Z1‖2 ≤ 4
√
d , and suppose that Z1 =

∑
j ∈[d] λjvj/‖vj ‖2. Thus, we

have (λ1, . . . , λd ) ∈ 4
√
dBd

2 . Also, by the definition of Ψ, we have

μ = X1 − ΨZ1 = X1 − ��
d∑

i=1

viv
T
i

‖vi ‖2
�	 ���

d∑
j=1

λj

vj

‖vj ‖2
��	 = X1 −

∑
j ∈[d]

λjvj .

To discretize (λ1, . . . , λd ), consider an (ε/3d )-net for 4
√
dBd

2 of size O (d1.5/ε )d (see Lemma 2.13).

Let λ̂ = (λ̂1, . . . , λ̂d ) be the closest element to (λ1, . . . , λd ) in this net. The encoding is

μ̂ � X1 −
∑
j ∈[d]

λ̂jv̂j .

The error of this encoding is

‖Ψ−1 (μ − μ̂ )‖2 =
�������
∑
j ∈[d]

Ψ−1 (λjvj − λ̂jv̂j )

�������2

≤
∑
j ∈[d]

‖λ̂j (Ψ−1vj − Ψ−1v̂j ) + (λj − λ̂j )Ψ
−1vj ‖2

≤ d ·max
j ∈[d]
{|λ̂j | · ‖Ψ−1vj − Ψ−1v̂j ‖2 + |λj − λ̂j | · ‖Ψ−1vj ‖2}.

By the definition of λ̂, we have maxj |λ̂j | ≤ 4
√
d and maxj |λj − λ̂j | ≤ ε/3d . From Equations (11),

we have ‖Ψ−1vj ‖2 = 1. Last, using Equation (14), we have ‖Ψ−1 (v̂j −vj )‖2 ≤ ε/24d2, leading to the
bound

‖Ψ−1 (μ − μ̂ )‖2 ≤ d ·
(
4
√
d · ε

24d2
+

ε

3d
· 1

)
≤ ε/2,

establishing Inequality (13). The encoding for μ̂ consists ofX1, the already encoded v̂1, . . . , v̂d , and

λ̂. Since λ̂ comes from a net of size O (d1.5/ε )d , the additional number of required bits to encode
μ̂ is O (d log(d/ε )). Finally, note that all encodings succeed so long as both E and E′ occur, which
happens with probability at least 2/3. �

Lemma 5.3 now follows immediately from the following lemma:

Lemma 5.8. Suppose that the vectors v̂1, . . . , v̂d , μ̂ ∈ Rd satisfy

‖Ψ−1 (v̂j −vj )‖2 ≤ ρ ≤ 1/6d ∀j ∈ [d], and (15)

‖Ψ−1 (μ̂ − μ )‖2 ≤ ζ . (16)

Then

TV
(
N

(
μ,

∑
i ∈[d]viv

T
i

)
, N

(
μ̂,

∑
i ∈[d]v̂iv̂

T
i

) )
≤

√
9d3ρ2 + ζ 2

2
.

Proof. Recall the definition of log-det divergence: LD (A,B) � Tr(B−1A − I ) − log det(B−1A).

Define Σ̂ �
∑

i v̂iv̂
T
i . We will show that

LD(Σ̂, Σ) ≤ 9d3ρ2. (17)

If this is true, then Lemma 2.10 and Inequality (16) yield

TV
(
N (μ, Σ),N (μ̂, Σ̂)

)2
≤ 1

4

(
LD(Σ̂, Σ) + (μ − μ̂)TΣ−1 (μ − μ̂ )

)
≤ 1

4
(9d3ρ2 + ζ 2),

which completes the proof of the lemma.
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Thus, we need only prove Inequality (17). Recall from Equations (11) that Ψ = Σ1/2 is positive

definite. Define B � Σ−1/2Σ̂Σ−1/2 = Ψ−1Σ̂Ψ. We will show that ‖B − I ‖s ≤ 3dρ. Then Lemma 2.9

will imply that LD(Σ̂, Σ) ≤ 9d3ρ2, which establishes Inequality (17).
To complete the proof, note that by the triangle inequality

‖B − I ‖s =
������

d∑
i=1

(
Ψ−1v̂iv̂

T
i Ψ−1 − Ψ−1viv

T
i Ψ−1

)������s

≤
d∑

i=1

���Ψ−1v̂iv̂
T
i Ψ−1 − Ψ−1viv

T
i Ψ−1���s

=

d∑
i=1

���xix
T
i − yiy

T
i

���s
,

with xi � Ψ−1v̂i andyi � Ψ−1vi . From Equations (11), we have ‖yi ‖2 = ‖Ψ−1vi ‖2 = 1. By Inequal-
ity (15), ‖xi − yi ‖2 ≤ ρ. By applying the following simple lemma, we conclude that ‖B − I ‖s ≤ 3dρ,
completing the proof of the lemma. �

Lemma 5.9. Let x and y be vectors satisfying ‖y‖2 = 1 and ‖x − y‖2 ≤ ε ≤ 1. Then, we have

‖xxT − yyT‖s ≤ 3ε .

Proof. Suppose x = y + z with ‖z‖2 ≤ ε . Then,

‖xxT − yyT‖s = ‖yzT + zyT + zzT‖s ≤ ‖yzT‖s + ‖zyT‖s + ‖zzT‖s ≤ ε + ε + ε2 ≤ 3ε .

The first inequality is the triangle inequality for the operator norm. The second inequality uses the
facts that ‖AB‖s ≤ ‖A‖s · ‖B‖s for any two size-compatible matrices A and B (see, e.g., Reference
[25, Fact 7(c) in Section 24.4]) and that, for any vector v , the operator norm of v as a matrix
coincides with its Euclidean norm as a vector. �

6 THE LOWER BOUND FOR GAUSSIANS AND THEIR MIXTURES

In this section, we establish a lower bound of Ω̃(d2/ε2) for learning a single Gaussian, and then

lift it to obtain a lower bound of Ω̃(kd2/ε2) for learning mixtures of k Gaussians in d dimensions.
Both of our lower bounds are for the realizable setting and thus also hold in the agnostic setting.

The high-level strategy for our proof is similar to that adopted in earlier work for mixtures of
spherical Gaussians [44]. The idea is to create a large number of distributions that are pairwise
close in KL divergence (roughly ε2) but pairwise far in TV distance (roughly ε). An application of
the following lemma will then yield the desired sample complexity lower bound.

Lemma 6.1. Let κ : R→ R be a function and let F be a class of distributions such that, for all

small enough ε > 0, there exist distributions f1, . . . , fM ∈ F with

KL( fi ‖ fj ) ≤ κ (ε ) and TV( fi , fj ) > 2ε ∀i � j ∈ [M].

Then any method that learns F to within total variation distance ε with success probability at least

2/3 has sample complexity Ω
(

log M

κ (ε ) log(1/ε )

)
.

The preceding lemma is a straightforward consequence of the following result, which is a gen-
eralized form of Fano’s inequality in information theory [12, Theorem 2.10.1].

Lemma 6.2 (Generalized Fano’s Ineqality [49, Lemma 3]). Let the distributions f1, . . . , fM

satisfy

KL( fi ‖ fj ) ≤ β and ‖ fi − fj ‖1 > α ∀i � j ∈ [M].

Consider any density estimation method that has an explicit description of f1, . . . , fM , receives n

i.i.d. samples from some fi without knowing i , then outputs an estimate f̂ for fi . For each i , define
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ei � E‖ fi − f̂ ‖1 for the case in which the method receives samples from fi . Then

max
i

ei ≥ α ·
(

logM − nβ + log 2

2 logM

)
.

Proof of Lemma 6.1. Consider a distribution learning method A that takes m(ε ) samples and
learns F to within total variation distance ε with success probability at least 2/3. Our goal is
to prove m(ε ) = Ω(logM/κ (ε ) log(1/ε )). Consider M distributions f1, . . . , fM satisfying the hy-

potheses. We will design an estimator f̂ for the finite class { f1, . . . , fM } with sample complexity
n = km(ε ) and then apply Lemma 6.2 to this estimator.

Suppose we are given km(ε ) samples from the unknown fj . We partition the sample into k equal
parts and runA on each part. This gives us k outputs д1, . . . ,дk . If some f� is within TV distance ε

of more than half of these outputs, then we output f̂ = f� ; otherwise, we output f̂ = f1. Note that,
since f1, . . . , fM are 2ε-separated in the TV distance, there will be no ambiguity. We now analyze
the error of this estimator.

By the guarantee ofA, for each i ∈ [k], with probability at least 2/3, we have TV(дi , fj ) ≤ ε . Let
E be the event that more than half of the дi satisfy TV(дi , fj ) ≤ ε . When E happens, the estimate

will be f̂ = fj , i.e., ‖ fj − f̂ ‖1 = 0. Moreover, by the Chernoff bound (Theorem 2.4), Pr[E] ≥ 1 −
exp(−Ω(k )). Thus, the expected error is

ej = E‖ fj − f̂ ‖1 ≤ Pr[Ec ] · 2 ≤ exp(−Ω(k )) ∀j ∈ [M].

The total number of samples is n = km(ε ), so Lemma 6.2 gives

2ε ·
(

logM − (km(ε ))κ (ε ) + log 2

2 logM

)
≤ exp(−Ω(k )).

Choosing k = Θ(log(1/ε )) and rearranging gives m(ε ) = Ω(logM/κ (ε ) log(1/ε )), as required. �

6.1 The Lower Bound for Learning a Single Gaussian

Our lower bound for learning a single Gaussian is the following theorem:

Theorem 6.3. Any algorithm that learns the class of d-dimensional Gaussians in the realizable

setting within total variation distance ε and with success probability 2/3 has sample complexity

Ω( d2

ε2 log(1/ε )
).

Proof. To apply Lemma 6.1, we must create a large number M of Gaussian distributions whose
pairwise KL divergences are at most κ (ε ) and whose pairwise TV distances are at least 2ε . We

will accomplish this with parameters M = 2Ω(d2 ) and κ = O (ε2), and Lemma 6.1 yields the desired
lower bound.

The existence of such M distributions is shown using the probabilistic method. Let us fix the
parameters r = 9 and λ = Θ(εd−1/2). Assume, for simplicity, thatd/r is an integer. For eacha ∈ [M],
we pickUa to be a uniformly randomd × d/r matrix with orthonormal columns. That is,Ua consists
of the first d/r columns of a uniformly random d × d orthogonal matrix (a random matrix with
Haar measure on the group of d × d orthogonal matrices). From this, we create the distribution

fa � N (0, Σa ), where Σa = Id + λUaU
T
a ∀a ∈ [M].

To apply Lemma 6.1, we must analyze the pairwise KL divergences and TV distances between
f1, . . . , fM . Observe that, by the construction of Ua , for any fixed d × d orthogonal matrixW , the
matrices Ua and WUa have the same distribution, that is, Ua is rotationally invariant (see, e.g.,
Reference [36, Section 1.2]).
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Bounding the KL divergences. This analysis is straightforward, since there is a closed-form ex-
pression for the KL divergence between Gaussians. First, observe that all Σa have the same spec-
trum: There are d/r eigenvalues equal to 1 + λ and the remaining eigenvalues equal 1. Conse-
quently,

log det
(
Σb Σ−1

a

)
= log

(
det Σb · det Σ−1

a

)
= 0. (18)

Next observe that

Σ−1
a = I − λ

1 + λ
UaU

T
a , (19)

which can be verified simply by multiplying by Σa . Thus,

2 · KL ( fa ‖ fb ) = Tr
(
Σ−1

a Σb − I
)

(by Equation (18) and Lemma 2.10)

= Tr ��
(
I − λ

1 + λ
UaU

T
a

) (
I + λUbU

T
b

)
− I�	 (by Equation (19))

= Tr ��λUbU
T
b −

λ

1 + λ
UaU

T
a −

λ2

1 + λ
UaU

T
aUbU

T
b

�	
= λ · d

r
− λ

1 + λ
· d
r
− λ2

1 + λ
· ���U T

aUb
���2

F

≤ λ · d
r
− λ

1 + λ
· d
r
=

λ2d

(1 + λ)r
≤ λ2d

r
= O (ε2).

This bound holds with probability 1.

Bounding the TV distances. The remaining step is to show that TV ( fa , fb ) = Ω(ε ) for all a � b.
Then, by scaling ε by a constant factor, Lemma 6.1 completes the proof.

First, we provide some intuition on why such a bound should hold. Let Sa be the subspace
spanned by the columns ofUa . A vector drawn fromN (0, Σa ) has a slightly larger projection onto
Sa than a vector drawn from N (0, Σb ). This reveals an event that has slightly higher probability
under the former distribution than under the latter. Recalling the definition of the TV distance as a
supremum over events (see Equation (1)), such an argument gives the desired lower bound on the
TV distances up to logarithmic factors. This approach was used in a preliminary version of this
work [5, version 2], but it is fairly technical.

Here, we use a simpler argument, formulated as Lemma 6.6 below, which shows that if
‖U T

aUb ‖2F ≤ d/2r , then TV ( fa , fb ) = Ω(ε ). The condition ‖U T
aUb ‖2F ≤ d/2r means that the columns

ofUa are nearly pairwise orthogonal to the columns ofUb , which intuitively should hold, sinceUa

andUb are chosen randomly. This is formalized in Lemma 6.4 below, which states that, with posi-
tive probability, ‖U T

aUb ‖2F ≤ d/2r for all a � b. Then Lemma 6.6 implies that, by our choice of pa-

rameters, for alla � b, we have TV ( fa , fb ) = Ω
(
min{1, λ

√
d/r }

)
= Ω(ε ), completing the proof. �

The main technical lemma underlying our lower bound is Lemma 6.4.

Lemma 6.4. Suppose d ≥ r ≥ 9. There exists M = 2Ω(d2/r 2 ) such that the following holds. Construct

M independentd × d/r matrices {Ua }Ma=1 such that the columns of eachUa are the firstd/r columns of a

uniformly randomd × d orthogonal matrix. Then, with positive probability, we have ‖U T
aUb ‖2F ≤ d/2r

for all distinct pairs a,b ∈ [M].

For its proof, we will need a basic lemma about Gaussian matrices.

Lemma 6.5. LetG be a random matrix with i.i.d. Gaussian entries, and letG = U ΣV T be its singular

value decomposition. (To make the decomposition unique, we assume that 0 < Σ11 < Σ22 < · · · .) Then

the matricesU , Σ,V are mutually independent. Moreover,U is a uniformly random orthogonal matrix.
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Proof. For any orthogonal matrix A, by rotational invariance of the Gaussian distribution (see,

e.g., Reference [47, Proposition 3.3.2]), we haveAG
d
= G. Thus, lettingW ,X be size-compatible uni-

formly random orthogonal matrices (i.e., having Haar measure on the set of orthogonal matrices

of appropriate sizes), independent of each other and of G, we have G
d
=WGX T = (WU )Σ(XV )T,

whereWU , Σ, and XV are mutually independent, andWU is a uniformly random orthogonal ma-
trix, as required. (We have used the fact that, by the definition of Haar measure, e.g., Reference [36,
Section 1.2], ifW ,X are independent uniformly random orthogonal matrices andU ,V are orthog-
onal matrices with compatible dimensions such that the products WU and XV are well-defined,
thenWU and XV are also independent uniformly random orthogonal matrices.) �

Proof of Lemma 6.4. We will show that, for any two matrices Ua and Ub constructed inde-
pendently as described, with probability 1 −O (exp(−Ω(d2/r 2))), we have ‖U T

aUb ‖2F ≤ d/2r . The
lemma then follows from the union bound.

Let s = d/r and fix a,b ∈ [M] with a � b. By the rotational invariance of the distribution of

Ub , we may assume without loss of generality that Ua = [
I
0]. Thus, ‖U T

aUb ‖2F
d
= ‖U (s ) ‖2F , where

U (s ) is an s × s principal submatrix of a uniformly random d × d orthogonal matrix U . (Alter-

natively, the columns of U (s ) are the first s coordinates of s orthonormal vectors in Rd chosen
uniformly at random.) Hence, it suffices to show that ‖U (s ) ‖2F ≤ d/2r with probability at least

1 −O (exp(−Ω(d2/r 2))). The main difficulty is that U (s ) does not have independent entries due to
the orthonormality, but intuitively it should behave similarly to a matrix with independent Gauss-
ian entries.

Before proceeding, we review some useful facts about Gaussian matrices. Let G ∈ Rd×s be a
Gaussian matrix with i.i.d. N (0, 1/d ) entries. Let G = UG ΣGV

T
G be its singular value decomposi-

tion, where UG ∈ Rd×s , ΣG ,VG ∈ Rs×s , and the diagonal entries of ΣG are sorted ascendingly. By
Lemma 6.5, UG is a uniformly random orthogonal matrix, so the top s rows of UG , denoted by

U (s )
G

, has the same distribution asU (s ) . LetG (s ) denote the top s rows ofG; then,G (s ) = U (s )
G

ΣGV
T

G .
Moreover, by Lemma 6.5 again, UG is independent of ΣG ,VG .

Let σmin (·) and σmax (·) denote the smallest and largest singular values of a matrix, respectively.
Note that σmin (ΣG ) = σmin (G ). Theorem 2.13 in Reference [15] states that, for any t > 0,

Pr

[
σmin (ΣG ) ≤ 1 − 1/

√
r − t

]
≤ exp(−t2d ). (20)

Finally, we will use that for any two size-compatible matrices A,B, we have

max{σmin (A)‖B‖F ,σmin (B)‖A‖F } ≤ ‖AB‖F ≤ min{σmax (A)‖B‖F ,σmax (B)‖A‖F }, (21)

see, e.g., Reference [25, Fact 7(c) in Section 24.4].

We now proceed with the rest of the proof. Recall that our goal is to show that ‖U (s ) ‖2F ≤ d/2r

with probability at least 1 −O (exp(−Ω(d2/r 2))), where U (s ) is the s × s principal submatrix of a
uniformly random orthogonal d × d matrix U .

The matrix U is naturally related to G. Similarly, the matrix U (s ) is naturally related to the
Gaussian matrix G (s ) ∈ Rs×s . More precisely, since UG is independent of ΣG ,VG , we have

G (s ) = U (s )
G

ΣGV
T

G

d
= U (s )ΣGV

T
G . (22)

Observe that E‖G (s ) ‖2F = s
2/d = d/r 2, so our goal is to show that ‖U (s ) ‖2F is unlikely to exceed this

by a multiplicative factor of r/2.
By the definition of the singular value decomposition, VG is orthogonal, so all its singular val-

ues are 1, hence, using Inequality (21), we get ‖U (s )ΣGV
T

G ‖F = ‖U
(s )ΣT

G ‖F . The Frobenius norms

Journal of the ACM, Vol. 67, No. 6, Article 32. Publication date: October 2020.



Sample Complexity of Learning Mixtures of Gaussians 32:31

‖G (s ) ‖F and ‖U (s ) ‖F can be related as

‖G (s ) ‖F
d
=

���U (s )ΣGV
T

G
���F
= ‖U (s )ΣG ‖F ≥ σmin (ΣG )‖U (s ) ‖F ,

the first equality is by (22) and the inequality follows from (21).

Since ΣG and U (s ) are independent, for any real α and β , we have

Pr

[
‖G (s ) ‖2F ≥ αβ

]
≥ Pr

[
σmin (ΣG )2 ≥ α and ‖U (s ) ‖2F ≥ β

]
= Pr

[
σmin (ΣG ) ≥

√
α

]
Pr

[
‖U (s ) ‖2F ≥ β

]
.

In particular, setting α = 1/3 and β = d/2r gives

Pr

[
‖U (s ) ‖2F ≥ d/2r

]
≤

Pr

[
‖G (s ) ‖2F ≥ d/6r

]
Pr

[
σmin (ΣG ) ≥ 1/

√
3

] .
For the numerator, since d ‖G (s ) ‖2F

d
= χs2 , we have

Pr

[
‖G (s ) ‖2F ≥ d/6r

]
= Pr[χs2 ≥ d2/6r ] ≤ Pr[χs2 ≥ 3s2/2] ≤ exp(−s2/25) = exp(−Ω(d2/r 2)),

where we have used r ≥ 9 for the first inequality and Lemma 2.2 for the second inequality. For the

denominator, setting t = 1 − 1/
√
r − 1/

√
3 > 0.08 in Inequality (20) gives

Pr

[
σmin (ΣG ) ≥ 1/

√
3

]
≥ 1 − exp(−t2d ) > 0.006,

hence Pr[‖U (s ) ‖2F ≥ d/2r ] = O (exp(−Ω(d2/r 2))), completing the proof. �

Lemma 6.6. Suppose that λ ≤ 1/4. If Ua and Ub are d × d/r matrices satisfying ‖U T
aUb ‖2F ≤ d/2r ,

then TV(N (0, Id + λUaU
T
a ),N (0, Id + λUbU

T
b

)) = Ω(min{1, λ
√
d/r }).

Proof. We will use the following approximate characterization of the TV distance between two
zero-mean Gaussians: For positive definite matrices Σa and Σb ,

TV (N (0, Σa ),N (0, Σb )) = Θ
(
min

{
1,

���Σ−1/2
a Σb Σ−1/2

a − I���F

})
.

This result appears in Reference [18, Theorem 1.1]; see also Reference [7, Corollary 2]. Hence, to

complete the proof it suffices to show that ‖Σ−1/2
a Σb Σ−1/2

a − I ‖F ≥ 4
5λ
√
d/r . Since Σ−1/2

a Σb Σ−1/2
a −

I = Σ−1/2
a (Σb − Σa )Σ−1/2

a , applying the left inequality in (21) twice gives���Σ−1/2
a Σb Σ−1/2

a − I���F
≥ σmin

(
Σ−1/2

a

)2
‖Σb − Σa ‖F .

Since the eigenvalues of Σa are 1 and 1 + λ, we have σmin (Σ−1/2
a ) = (1 + λ)−1/2 ≥

√
4/5 as λ ≤ 1/4.

Moreover, ‖Σb − Σa ‖F = λ‖UbU
T
b
−UaU

T
a ‖F , and since UbU

T
b
−UaU

T
a is symmetric, we have���UbU

T
b −UaU

T
a

���2

F
= Tr

((
UbU

T
b −UaU

T
a

) (
UbU

T
b −UaU

T
a

))
= Tr

(
UbU

T
bUbU

T
b

)
+ Tr

(
UaU

T
aUaU

T
a

)
− Tr

(
UbU

T
bUaU

T
a

)
− Tr

(
UaU

T
aUbU

T
b

)
= Tr

(
UbU

T
b

)
+ Tr

(
UaU

T
a

)
− Tr

(
U T

bUaU
T
aUb

)
− Tr

(
U T

aUbU
T
bUa

)
= d/r + d/r − ���U T

aUb
���2

F
− ���U T

aUb
���2

F

≥ 2d/r − 2d/2r = d/r ,

hence ‖Σ−1/2
a Σb Σ−1/2

a − I ‖F ≥ 4
5λ
√
d/r , completing the proof of the lemma. �
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6.2 The Lower Bound for Learning Gaussian Mixtures

For proving our lower bound for mixtures, Theorem 1.6, we will need a standard result. This
lemma follows from the Gilbert-Varshamov bound in coding theory (see, e.g., Reference [32, The-
orem 5.2.6]); we include a proof for completeness.

Lemma 6.7. LetT ≥ 4 and k ∈ N . There exists a set of k-tuplesX ⊆ [T ]k such that |X| ≥ T k/4 and

every distinct x ,y ∈ X differ in at least k/4 components.

Proof. For any x ∈ [T ]k , the number of k-tuples in [T ]k that differ with x in at most k/4 com-
ponents is bounded by

k/4∑
i=0

(
k

i

)
(T − 1)i < T k/4

k/4∑
i=0

(
k

i

)
≤ (4eT )k/4 < T 3k/4,

where we have used the inequality
∑m

i=0

(
n
i

)
≤ (en/m)m , valid for all 1 ≤ m ≤ n (see, e.g., Reference

[47, Exercise 0.0.5]). We give an iterative algorithm to build X: Choose an arbitrary k-tuple from
[T ]k , put it in X, remove from [T ]k the k-tuples that differ with the chosen k-tuple in at most
k/4 components, and repeat. By the above calculation, the size of the final set X will be at least
T k/4. �

Theorem 1.6 follows immediately from the following result.

Theorem 6.8. Any algorithm that learns the class of mixtures of k Gaussians in Rd in the real-

izable setting within total variation distance ε and with success probability at least 2/3 has sample

complexity Ω( kd2

ε2 log(1/ε )
).

Proof. Recall that Gd,k denotes the class of k-mixtures of d-dimensional Gaussian distribu-
tions. As we will use Lemma 6.1 again to obtain the sample complexity lower bound, it suffices

to construct 2Ω(kd2 ) distributions in Gd,k with pairwise KL divergences O (ε2) and pairwise TV
distances Ω(ε ). Our family of distributions will use the covariance matrices constructed in Theo-
rem 6.3. Some care is required to ensure that the TV distances are large, and we will adopt some
ideas used in earlier work for mixtures of spherical Gaussians [44, Appendix C.2].

The proof of Theorem 6.3 shows that there exists a family of symmetric positive definite matrices

Σ1, . . . , ΣT with T = 2Ω(d2 ) satisfying

KL
(
N (0, Σi ) ‖ N (0, Σj )

)
≤ O (ε2) ∀i � j (23a)

TV
(
N (0, Σi ),N (0, Σj )

)
≥ Ω(ε ) ∀i � j (23b)

‖Σi ‖s ≤ 2 ∀i . (23c)

Next, we will create a family of distributions in Gd,k , where each Gaussian in each mixture uses
one of these Σi as its covariance matrix. However, there is a tension. On the one hand, we want any
two of these mixture distributions to use disjoint sets of covariance matrices so the TV distance
between the mixtures is large. On the other hand, this constraint reduces the number of mixture
distributions we can create, while we want many distributions to maximize the lower bound. This
tension is resolved by a compromise obtained via error-correcting codes (Lemma 6.7).

The construction proceeds as follows: First, we pick μ1, . . . , μk ∈ Rd , which will serve as the
means for the Gaussians. We choose them to be far apart: For some Δ, to be chosen later, we pick
them in such a way that ‖μi − μ j ‖2 ≥ Δ for all i � j. Each mixture distribution will be a uniform
mixture of k Gaussians, for which the ith Gaussian has mean μi . The choice of covariance matrices
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is determined using the error-correcting code. Specifically, let X ⊂ [T ]k be a set as in Lemma 6.7
above. The family of mixture distributions is

F � { fx : x ∈ X}, where fx �
1

k

(
N (μ1, Σx1 ) + · · · +N (μk , Σxk

)
)
.

As desired, we have |F | = T Ω(k ) = 2Ω(kd2 ) .
To analyze F , the first task is to prove the pairwise KL divergence upper bound. This is straight-

forward. Fix distinct x ,y ∈ X. For each i , Inequality (23a) shows that

KL
(
N (μi , Σxi

) ‖ N (μi , Σyi
)
)
= KL

(
N (0, Σxi

) ‖ N (0, Σyi
)
)
≤ O (ε2).

The convexity of KL divergence [12, Theorem 2.7.2] then shows that KL( fx ‖ fy ) ≤ O (ε2).
The remaining task is to prove TV( fx , fy ) ≥ Ω(ε ) for all distinct fx , fy ∈ F . The intuition is as

follows: Say that index i ∈ [k] disagrees if xi � yi . Whenever i disagrees, the ith Gaussian in fx and
ith Gaussian in fy have TV distance Ω(ε ) by Inequality (23b). Moreover, the total mixture weight
apportioned to disagreeing indices is at least 1/4, since Lemma 6.7 ensures that the number of
disagreements is at least k/4, and each mixture uses uniform weights on its components. Thus, the
disagreeing coordinates should suffice to imply that the TV distance is Ω(ε ). Proving this formally
requires some care, because each Gaussian is supported on all ofRd , so there is interaction between
all Gaussians involved in the mixtures. However, choosing a large enough Δ ensures that the means
are far apart, so the interaction is negligible.

Formally, for each j ∈ [k], let A′j ⊆ Rd be such that

Prд∼N (μ j ,Σxj )[д ∈ A′j ] − Prд∼N (μ j ,Σyj )[д ∈ A′j ] = TV
(
N (μ j , Σx j

),N (μ j , Σyj
)
)
, (24)

and define

Aj = A′j ∩ Bj , where Bj =
{
x ∈ Rd : ‖x − μ j ‖2 < Δ/2

}
.

Note that the separation of μ1, . . . , μk implies that the balls B1, . . . ,Bk are disjoint. Consequently,
the sets A1, . . . ,Ak are also disjoint.

Several preliminary inequalities are required concerning these events. First, for each i ∈ [k],

Prд∼N (μi ,Σxi )[д � Bi ] = Prд∼N (μi ,Σxi )

[
‖д − μi ‖22 ≥ (Δ/2)2

]
= Prд∼N (0,Σxi )

[
‖д‖22 ≥ (Δ/2)2

]
(translating to zero-mean)

≤ Prд∼N (0, Id )

[
‖д‖22 ≥ Δ2/8

]
(by Inequality (23c))

≤ ε2/k2, (25)

by applying Lemma 2.2 with t = 2 ln(k/ε ) and choosing Δ to satisfy Δ2/8 = d + 2
√
dt + 2t . Inequal-

ity (25) also holds replacing xi with yi . Since A′i \Ai ⊆ Bc
i , Inequality (25) shows that���� Prд∼N (μi ,Σxi )[д ∈ Ai ] − Prд∼N (μi ,Σxi )[д ∈ A′i ]

���� ≤ Prд∼N (μi ,Σxi )[д � Bi ] ≤ ε2/k2. (26)

This inequality also holds using yi instead of xi . For i � j, we have Aj ⊆ Bc
i , so

Prд∼N (μi ,Σyi )[д ∈ Aj ] ≤ Prд∼N (μi ,Σyi )[д � Bi ] ≤ ε2/k2. (27)

Finally, by Equation (24), Inequality (26), and the triangle inequality,

Prд∼N (μ j ,Σxj )[д ∈ Aj ] − Prд∼N (μ j ,Σyj )[д ∈ Aj ] ≥ TV
(
N (μ j , Σx j

),N (μ j , Σyj
)
)
− 2ε2/k2. (28)
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The total variation distance is lower bounded as follows: Let A � A1 ∪ · · · ∪Ak . Then

TV( fx , fy )

≥ Prд∼fx
[д ∈ A] − Prд∼fy

[д ∈ A]

=

k∑
j=1

(
Prд∼fx

[д ∈ Aj ] − Prд∼fy
[д ∈ Aj ]

)
(by disjointness of the Aj )

=
1

k

k∑
j=1

k∑
i=1

(
Prд∼N (μi ,Σxi )[д ∈ Aj ] − Prд∼N (μi ,Σyi )[д ∈ Aj ]

)
(expanding fx and fy )

=
1

k

k∑
j=1

(
Prд∼N (μ j ,Σxj )[д ∈ Aj ] − Prд∼N (μ j ,Σyj )[д ∈ Aj ]

)
(summands with i = j)

+
1

k

k∑
j=1

∑
i�j

(
Prд∼N (μi ,Σxi )[д ∈ Aj ]︸���������������������︷︷���������������������︸

≥0

− Prд∼N (μi ,Σyi )[д ∈ Aj ]︸���������������������︷︷���������������������︸
≤ε2/k2 by (27)

)
(summands with i � j)

≥ 1

k

k∑
j=1

(
Prд∼N (μ j ,Σxj )[д ∈ Aj ] − Prд∼N (μ j ,Σyj )[д ∈ Aj ]

)
− ε2

≥ 1

k

k∑
j=1

(
TV

(
N (μ j , Σx j

),N (μ j , Σyj
)
)
− 2ε2/k2

)
− ε2 (by (28))

≥ 1

k
(k/4)Ω(ε ) − 3ε2 = Ω(ε ),

where the last inequality is because TV(N (μ j , Σx j
),N (μ j , Σyj

)) ≥ Ω(ε ) whenever x j � yj

(see (23b)), which is the case for at least k/4 of the indices j. �

7 DISCUSSION AND OPEN PROBLEMS

We have built a connection between distribution learning and compression. Another concept re-
lated to compression is that of core-sets. The idea of core-sets is to summarize the training data,
using a small subset of them, in a way that any algorithm minimizing the error on the subset will
have small error on the whole set. Core-sets have been used in maximum likelihood estimation
[35] and to solve clustering problems [43]. There is one important distinction between compres-
sion and core-sets: Compression can be more powerful, since it can use complex class-specific
decoders.

Our work opens several avenues for further research.

Eliminating the polylogarithmic factors. Our sample complexity lower and upper bounds (in both
axis-aligned and general cases) differ by multiplicative polylogarithmic factors. Can one remove
these factors? In this direction, we propose the following conjecture. (See page 5 for the relevant
definitions.)

Conjecture 7.1. The minimax estimation rate for Gd,k and Ad,k is Θ(
√
kd2/n) and Θ(

√
kd/n),

respectively.

Note that this conjecture is true for the case k = 1 (see Reference [19]). For general k , the lower
bound for Gd,k follows from the proof of Theorem 1.6 (see Theorem 6.8), and the lower bound
for Ad,k follows from the lower bound proof in Reference [44]. The upper bounds hold up to
polylogarithmic factors (see Theorem 1.5 and Theorem 1.7).
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Learning mixtures of sparse Gaussians. Our main results imply that the sample complexity for
learning mixtures of axis-aligned Gaussians is smaller than that of mixtures of general Gaussians

by a factor of Θ̃(d ). Can one interpolate between these two extremes by exploiting some notion of
sparsity of the target distribution?

Consider the class of d-dimensional Gaussians whose inverse covariance matrices have at most
m off-diagonal nonzero entries. Note that m measures the amount of correlation between the
Gaussian components: If we build a probabilistic graphical model (also known as a Markov random
field) whose nodes are the Gaussian components, then an axis-aligned Gaussian corresponds to
an empty graph with no correlation between the components, in which case m = 0, and a Gauss-

ian with fully correlated components corresponds to the complete graph, in which case m =
(
d
2

)
.

In general, m counts the number of edges in this graph (see Reference [31, Proposition 5.2] for a
proof).

The sample complexity of learning with respect to the class of d-dimensional Gaussians whose

inverse covariance matrices have at most m off-diagonal nonzero entries is Θ̃((m + d )/ε2) (see
Reference [19]). This result on learning a single Gaussian and the fact that in some applications
the underlying Gaussians are sparse motivates the following question: Can one extend the bound
of Reference [19] to mixtures of Gaussians, obtaining sample complexity bounds that depend on
some notion of sparsity of the mixture components?

Polynomial time algorithms for learning mixtures of Gaussians. The running time of our density

estimation algorithm is 2kd2 polylog(d,k,1/ε,1/δ ) , which is not polynomial in the problem parame-
ters. An important open question is whether there exists an algorithm for learning mixtures of
Gaussians that runs in time poly(k,d, 1/ε, 1/δ ) (see also Reference [20, Open Problem 15.5]). If the
covariance matrices for all the Gaussians are multiples of the identity matrix (known as spherical
Gaussians), Reference [44] gives an algorithm with running time that is polynomial in d and 1/ε
but exponential in k . However, for mixtures of general Gaussians, it is shown in Reference [23]
that no polynomial time (in all the parameters) algorithm exists for the case that the learner has
access to the distribution only via statistical queries. (See Reference [23] for the definition of this
model.)

What if k is not known? Our density estimation algorithms assume that k is given as input, while
in some applications k might be unknown. One approach is to perform a binary search: Run our
algorithm for k = 1, 2, 4, 8, . . . , and stop as soon as the output of our algorithm has total variation
distance less than ε from the target distribution. Unfortunately, it is not clear how to approximate
this total variation distance. It is also not clear how to apply this approach to the robust learning
scenario.

Is robust compression closed under taking mixtures? Lemma 4.8 states that for any distribution
class F , non-robust compression of F implies non-robust compression of k-mix(F ). Does an
analogous statement hold for robust compression? That is, does robust compression of F imply
robust compression of k-mix(F ) for a general class F ?

Sample complexity for learning with respect to the KL divergence. Theorem 3.1 states that there
does not exist a function д(k,d, ε ) such that there exists an algorithm that upon receiving д(k,d, ε )

i.i.d. samples from an unknown f ∈ Gd,k , outputs f̂ such that KL( f ‖ f̂ ) ≤ ε with probability
more than 0.02. Recalling that the KL divergence is asymmetric, we pose the following question:
What is the smallest function д(k,d, ε,δ ) such that there exists an algorithm that, upon receiv-

ing д(k,d, ε,δ ) i.i.d. samples from an unknown f ∈ Gd,k , outputs f̂ such that KL( f̂ ‖ f ) ≤ ε with
probability at least 1 − δ?
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Characterizing the sample complexity of learning a class of distributions. A central open problem
in distribution learning and density estimation is characterizing the sample complexity of learn-
ing a distribution class (Reference [20, Open Problem 15.1]). An insight from supervised learning
theory is that the sample complexity of learning a class (of concepts, functions, or distributions)
is typically proportional, up to logarithmic factors, to (some notion of) intrinsic dimension of that
class divided by ε2, where ε is the error tolerance. For the case of binary classification, the intrinsic
dimension is captured by the VC dimension of the concept class (see References [9, 46]). For the
case of distribution learning with respect to “natural” parametric classes, we expect this dimen-
sion to be equal to the number of parameters. This is indeed true for the class of Gaussians (which
have d2 parameters) and axis-aligned Gaussians (which have d parameters), and we showed in this
article that it holds for their mixtures as well (which have kd2 and kd parameters, respectively).

One may wonder if the VC dimension of the Yatracos family associated with a class of distribu-
tions can characterize its sample complexity, but it is not hard to come up with examples where
this VC dimension is infinite while the class can be learned with finite samples. Covering numbers
do not characterize the sample complexity either: For instance, the class of Gaussians does not
have a finite covering number in the TV metric, nevertheless it is learnable with finitely many
samples. Thus, we leave characterizing the sample complexity of learning a class of distributions
as an important open problem.

Do learnable classes have bounded compression schemes? In binary classification, the combina-
torial notion of Littlestone-Warmuth compression has been shown to be sufficient [33] and nec-
essary [39] for learning. In this work, we showed that the new but related notion of distribution
compression is sufficient for distribution learning (Theorem 4.5). Whether the existence of com-
pression schemes is necessary for learning a class of distributions remains an intriguing open
problem. In this direction, we conjecture the following converse for Theorem 4.5: Let mF (ε,δ )
denote the sample complexity function associated with learning the class F of distributions (see
Definition 1.2).

Conjecture 7.2. There exists a universal constant C such that any class F admits an

(Cε2m(ε ) log(ε2m(ε ))C ,Cε2m(ε ) log(ε2m(ε ))C ,Cm(ε ) log(m(ε ))C ) (non-robust) compression, where

m(ε ) � mF (ε, 1
2 ).

The value ε2m(ε ) is a candidate for the notion of “intrinsic dimension” of the class. We also
propose the following weaker conjecture:

Conjecture 7.3. There exist universal polynomials P ,Q, and R such that any class F admits

a (P (ε2m(ε ), log(1/ε )),Q (ε2m(ε ), log(1/ε )),R (m(ε ), 1/ε )) (non-robust) compression, where m(ε ) �
mF (ε, 1

2 ).

APPENDICES

A PROOFS OF THEOREM 3.1 AND THEOREM 3.2

In this section, let ν denote the Lebesgue measure on R. We will first prove Theorem 3.1. To that
end, we begin with a simple calculation that will be useful later.

Lemma A.1. Suppose I ⊆ R satisfies ν (I ) ≥ γ . Moreover, let f ,h : R→ R≥0 be measurable den-

sity functions such that f (x ) ≥ β and h(x ) ≤ α for all x ∈ I , and f (x ) > 0 for all x ∈ R. Then

KL ( f ‖ h) ≥ γ β log(β/α ) − 1/e .

Proof. Write

KL ( f ‖ h) =

∫
I

f (x ) log
f (x )

h(x )
dx +

∫
I c

f (x ) log
f (x )

h(x )
dx .
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For the first integral, we have∫
I

f (x ) log
f (x )

h(x )
dx ≥

∫
I

β log
β

α
dx ≥ γ β log(β/α ).

Next, we bound the second integral and show that it has value at least−1/e , which completes the

proof. Let F =
∫

I c f (x ) dx and H =
∫

I c h(x ) dx . Note that F ≥ 0 as f (x ) > 0 for all x ∈ R. If H = 0,

then h(x ) = 0 almost everywhere on I c so the second integral is +∞. So, assume that H > 0. Then
f /F and h/H are densities on I c . Hence, we have∫

I c

f (x ) log
f (x )

h(x )
dx = F

∫
I c

f (x )

F
log

f (x )/F

h(x )/H
dx︸����������������������������︷︷����������������������������︸

≥0

+F

∫
I c

f (x )

F
log

F

H
dx ≥ F log(F/H ),

where the inequality is because the KL divergence of two densities is always nonnegative. Since
H ≤ 1, we have − log(H ) ≥ 0 so F log(F/H ) = F log F − F logH ≥ F log F ≥ −1/e , as required. �

Proof of Theorem 3.1. We allow the algorithm to be randomized. Denote byA (X1, . . . ,Xm ,R)
the output of A given the sample X1, . . . ,Xm and an independent source of randomness R. We
will first analyze the behavior of the algorithm when the true distribution is N (0, 1) and show
that there exists some a′ ∈ R for which the algorithm’s output puts almost no probability mass on
around a′. We then show that if the true distribution is a carefully chosen mixture of N (0, 1) and
N (a′, 1), then the algorithm’s output does not change with high probability, so it still puts almost
no mass on around a′; hence, the KL divergence of the output and the true distribution is large.

Define the parameters δ = 0.01
m

, β = δ√
2π

exp(−1/32), and α = β exp
(−4τ−4/e

β

)
. LetX1, . . . ,Xm ∼

N (0, 1) and set h = A (X1, . . . ,Xm ,R). Note that h is random. Define the (random) set H =
{ x ∈ R : h(x ) ≥ α }. Then ν (H ) ≤ 1/α . For any a ∈ Z, define Ia = [a − 1/4,a + 1/4]. Note that the
Ia are disjoint intervals. Hence,

∑
a∈Z ν (Ia ∩ H ) ≤ 1/α deterministically so E [

∑
a∈Z ν (Ia ∩ H )] ≤

1/α . Note that the left-hand side of the inequality is an infinite sum while the right-hand side is a
finite number. Since expectation is linear, we can find a′ ∈ Z such that E [ν (Ia′ ∩ H )] ≤ 1/400. By
Markov’s Inequality, ν (Ia′ ∩ H ) ≤ 1/4 with probability at least 0.99. We condition on this event.

Define f = (1 − δ )N (0, 1) + δ · N (a′, 1) and note that f is positive everywhere, and, for all x ∈
Ia′ , we have f (x ) ≥ δ√

2π
exp(−1/32) = β . Let Ja′ = Ia′ \ H . Then ν (Ja′ ) ≥ ν (Ia′ ) − ν (Ia′ ∩ H ) ≥ 1/4,

and for all x ∈ Ja′ , we have f (x ) ≥ β and h(x ) < α . So,

KL ( f ‖ h) ≥ β log(β/α )/4 − 1/e = τ ,

where the inequality is by Lemma A.1 and the equality is by the definition ofα . Hence, KL ( f ‖ h) ≥
τ with probability at least 0.99.

Note that TV ( f ,N (0, 1)) ≤ δ . If S = (X1, . . . ,Xm ) and S ′ = (X ′1, . . . ,X
′
m ) where Xi ∼ N (0, 1)

and X ′i ∼ f , then Proposition 4.7 gives TV (S, S ′) ≤ mδ = 0.01. Hence, if h = A (S,R) and h′ =
A (S ′,R), then TV (h,h′) ≤ 0.01 so Pr[KL ( f ‖ h′) ≥ τ ] ≥ Pr[KL ( f ‖ h) ≥ τ ] − 0.01 ≥ 0.98, com-
pleting the proof. �

Next, we prove Theorem 3.2.

Proof of Theorem 3.2. Define the parameters δ = 0.01
m

, σp−1 = δ p

τ p 6p

√
ln(9/2π ), and M =

4σ
√

ln(9/2π ).
Let X1, . . . ,Xm ∼ N (0, 1) and set h = A (X1, . . . ,Xm ,R), where, as in the proof of Theorem 3.1,

R is the algorithm’s independent source of randomness. Note that h is random. Next, let H =
{ x ∈ R : h(x ) ≥ δ/6σ }. Thenν (H ) ≤ 6σ/δ . Fora ∈ Z, define the intervals Ia = [aM −M/4,aM +
M/4] and note that Ia are disjoint intervals. Hence,

∑
a∈Z ν (Ia ∩ H ) ≤ 6σ/δ deterministically so
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E [
∑

a∈Z ν (Ia ∩ H )] ≤ 6σ/δ . Note that the left-hand side of the inequality is an infinite sum while
the right-hand side of the inequality is a finite number. Since expectation is linear, there exists
a′ ∈ Z such that E [ν (Ia′ ∩ H )] ≤ M/400. By Markov’s Inequality, ν (Ia′ ∩ H ) ≤ M/4 with proba-
bility at least 0.99. We condition on this event.

Define f = (1 − δ )N (0, 1) + δ · N (a′,σ 2), and note that for all x ∈ Ia′ , we have f (x ) ≥
δ 1√

2π σ
exp(−(M/4)2/2σ 2) = δ/3σ .

Let Ja′ = Ia′ \ H . Then ν (Ja′ ) ≥ M/2 −M/4 = M/4 = σ
√

ln(9/2π ), and, for all x ∈ Ja′ , we have
f (x ) ≥ δ/3σ and h(x ) ≤ δ/6σ . So,

��f − h��p
p ≥

∫
Ja′
| f (x ) − h(x ) |p dx ≥ δp

(6σ )p
σ
√

ln(9/2π ) =
δp

6pσp−1

√
ln(9/2π ) = τp ,

where the last equality is by the definition of σ . Hence, ��f − h��p ≥ τ with probability at least 0.99.

Note that TV ( f ,N (0, 1)) ≤ δ . If S = (X1, . . . ,Xm ) and S ′ = (X ′1, . . . ,X
′
m ) where Xi ∼ N (0, 1)

and X ′i ∼ f , then Proposition 4.7 gives TV (S, S ′) ≤ mδ = 0.01. Hence, if h = A (S,R) and h′ =
A (S ′,R), then TV (h,h′) ≤ 0.01, so Pr[��f − h��p ≥ τ ] ≥ Pr[��f − h��p ≥ τ ] − 0.01 ≥ 0.98. �

B PROOF OF LEMMA 4.10

We restate the lemma for convenience.

Lemma B.1. Let f =
∑

i ∈[k]wi fi be a density with (w1, . . . ,wk ) ∈ Δk and each fi ∈ F . Let д be a

density such that ��д − f ��1 ≤ ρ. Then, we can write д =
∑

i ∈[k]wiдi such that each дi is a density and

for any r > 0, ∑
i : ‖дi−fi ‖1>r

wi < ρ/r .

LetX � {x : д(x ) < f (x )}. Our goal is to “transform” each fi into another density дi so that д =∑
i ∈[k]wiдi . Note that X consists of the domain points on which f exceeds д. Hence, to transform

each fi into дi , we will scale it down multiplicatively on points in X, and scale it up additively on
points not in X. These transformations need to be done carefully for each function дi to end up
being nonnegative and integrate to 1.

To that end, we define

дi (x ) �
{
fi (x )д(x )/f (x ) for x ∈ X,
fi (x ) + Δi (x ) for x � X,

where

Δi (x ) �
(
д(x ) − f (x )

) (∫
X
fi (y) · f (y) − д(y)

f (y)
dy

) /∫
X

(
f (y) − д(y)

)
dy. (29)

Recall that Z is the domain of д and the densities in F . We now check that each дi is a density and
that д =

∑
i ∈[k]wiдi .

Lemma B.2. For all i ∈ [k], дi is a density on Z .

Proof. We first check that дi (x ) ≥ 0 for all x . If x ∈ X, then дi (x ) ≥ 0, because fi ,д, f are all
densities and hence nonnegative. If x � X, then Δi (x ) ≥ 0, because д(x ) − f (x ) ≥ 0 on Xc and

f (x ) − д(x ) ≥ 0 on X. We now check that
∫

Z
дi (x ) dx = 1. Since both д and f are densities, both

integrate to 1 over Z , and therefore∫
Xc

(д(x ) − f (x )) dx =

∫
X

( f (x ) − д(x )) dx . (30)
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The following calculation completes the proof:

∫
Xc

дi (x ) dx =

∫
Xc

(Δi (x ) + fi (x )) dx

=

∫
Xc (д(x ) − f (x )) dx∫
X ( f (y) − д(y)) dy

·
∫
X

(
fi (y) · f (y) − д(y)

f (y)

)
dy (by Equation (29))

+

∫
Xc

fi (x ) dx

=

∫
X

(
fi (y) · f (y) − д(y)

f (y)

)
dy +

∫
Xc

fi (x ) dx (by Equation (30))

=

∫
X
fi (y) ·

(
1 − д(y)

f (y)

)
dy +

∫
Xc

fi (y) dy

=

∫
X
fi (y) dy −

∫
X
fi (y) ·

(
д(y)

f (y)

)
dy +

∫
Xc

fi (y) dy

= 1 −
∫
X
fi (y) · д(y)

f (y)
dy (fi is a density)

= 1 −
∫
X
дi (y) dy �

Lemma B.3. We have д =
∑

i ∈[k]wiдi .

Proof. For x ∈ X, since
∑

i ∈[k]wi fi = f , we have

∑
i ∈[k]

wiдi (x ) =
∑

i ∈[k]

wi fi (x )
д(x )

f (x )
= д(x ).

And for x � X, we have∑
i ∈[k]

wiдi (x ) =
∑

i ∈[k]

wi Δi (x ) +wi fi (x ) (definition of дi )

=
∑

i ∈[k]

wi
�� (д(x ) − f (x ))∫
X ( f (y) − д(y)) dy

·
∫
X

(
fi (y) · f (y) − д(y)

f (y)

)
dy�	 (by Equation (29))

+
∑

i ∈[k]

wi fi (x )

=
(д(x ) − f (x ))∫

X ( f (y) − д(y)) dy
·
∫
X

��
∑

i ∈[k]

wi fi (y) · f (y) − д(y)

f (y)
�	 dy

+ f (x )
(∑

i ∈[k]wi fi = f
)

=
(д(x ) − f (x ))∫

X ( f (y) − д(y)) dy
·
∫
X

( f (y) − д(y)) dy + f (x )
(∑

i ∈[k]wi fi = f
)

= д(x ) − f (x ) + f (x ) = д(x ). �

Let I � { i ∈ [k] : ‖ fi − дi ‖1 > r }. It remains to show that
∑

i ∈I wi < ρ/r . Observe from the
definition of the дi that we also have X = {

x : дi (x ) < fi (x )
}

for each i ∈ [k]. Thus, using
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Lemma B.3,

‖ f − д‖1 = 2

∫
X

( f (x ) − д(x )) dx = 2
∑

i ∈[k]

wi

∫
X

( fi (x ) − дi (x )) dx =
∑

i ∈[k]

wi ‖ fi − дi ‖1.

Thus, from the hypothesis of the lemma,

ρ ≥ ‖ f − д‖1 =
∑

i ∈[k]

wi ‖ fi − дi ‖1 ≥
∑
i ∈I

wi ‖ fi − дi ‖1 >
∑
i ∈I

wir ,

by definition of I . This gives
∑

i ∈I wi < ρ/r , as required.
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