
ar
X

iv
:1

80
6.

06
42

1v
1

 [
cs

.D
S]

 1
7

Ju
n

20
18

Greedy and Local Ratio Algorithms in the MapReduce Model

Nicholas J. A. Harvey
University of British Columbia

Vancouver, Canada
nickhar@cs.ubc.ca

Christopher Liaw
University of British Columbia

Vancouver, Canada
cvliaw@cs.ubc.ca

Paul Liu
Stanford University

Stanford, California, USA
paulliu@stanford.edu

Abstract

MapReduce has become the de facto standard model for designing
distributed algorithms to process big data on a cluster. There has
been considerable research on designing efficient MapReduce al-
gorithms for clustering, graph optimization, and submodular op-
timization problems. We develop new techniques for designing
greedy and local ratio algorithms in this setting. Our randomized
local ratio technique gives 2-approximations for weighted vertex
cover andweightedmatching, and an f -approximation forweighted
set cover, all in a constant number of MapReduce rounds. Our ran-
domized greedy technique gives algorithms for maximal indepen-
dent set, maximal clique, and a (1+ε) ln∆-approximation forweighted
set cover. We also give greedy algorithms for vertex colouringwith
(1 + o(1))∆ colours and edge colouring with (1 + o(1))∆ colours.

CCS Concepts

• Theory of computation→ Packing and covering problems;
MapReduce algorithms;Distributed computingmodels;Algorithm
design techniques;

Keywords

local ratio, vertex cover, weightedmatching, mapreduce, graph colour-
ing

1 Introduction

A wealth of algorithmic challenges arise in processing the large
data sets common in social networks, machine learning, and data
mining. The tasks to be performed on these data sets commonly in-
volve graph optimization, clustering, selecting representative sub-
sets, etc. — tasks whose theory is well-understood in a sequential
model of computation.

The modern engineering reality is that these large data sets
are distributed across clusters or data centers, for reasons includ-
ing bandwidth and memory limitations, and fault tolerance. New
programming models and infrastructure, such as MapReduce and
Spark, have been developed to process this data efficiently. The
MapReduce model is attractive to theoreticians as it is clean, sim-
ple, and has rigorous foundations in the work of Valiant [41] and
Karloff et al. [25]. Designing MapReduce algorithms often involves
concepts arising in parallel, distributed, and streaming algorithms,
so it is necessary to understand classic optimization problems in a
new light.

In the formalization of the MapReduce model [25], the data for
a given problem is partitioned across many machines, where each
machine has memory sublinear in the input size. Computation pro-
ceeds in a sequence of rounds: in each round, a machine performs
a polynomial-time computation on its local data. Between rounds,

each machine simultaneously sends data to all other machines, the
size of which is restricted only by the sender’s and recipients’ mem-
ory capacity. The primary efficiency consideration in this model is
the number of rounds, although it is also desirable to constrain
other metrics, such as the memory overhead, the amount of data
communicated, and the processing time.

Greedy approximation algorithms have been a popular choice
for adapting to the MapReduce model, in the hopes that their sim-
ple structure suits the restrictions of themodel. Unfortunately, many
greedy algorithms also seem to be inherently sequential, a prop-
ertywhich is rather incompatiblewith the parallel nature ofMapRe-
duce computations. This phenomenon is, of course, well known
to parallel and distributed algorithm researchers, as it was the im-
petus for Valiant’s [40] and Cook’s [13] encouragement to study
the maximal independent set problem in a parallel setting. Primal-
dual approximation algorithms have received comparably less use
in the MapReduce setting, perhaps because they seem even more
sequential than greedy algorithms.

1.1 Techniques and Contributions

We develop two new techniques for designing MapReduce algo-
rithms. The first is a “randomized local ratio” technique, which
combines the local ratio method [6] with judicious random sam-
pling in order to enable parallelization. At a high level, the tech-
nique choses an i.i.d. random sample of elements, then runs an
ordinary local ratio algorithm on this sample. The crux is to show
that the weight adjustments performed by the local ratio algorithm
cause a significant fraction of the non-sampled elements to be elim-
inated. Repeating this several times allows us to execute the lo-
cal ratio method with no loss in the approximation ratio. We use
this technique to give a 2-approximation for min-weight vertex
cover (Section 2) and a 2-approximation for max-weight match-
ing (Section 5). The vertex cover result is a special case of our
f -approximation for min-weight set cover, where f is the largest
frequency of any element. Additional subtleties arise in applying
this technique to the max-weight b-matching problem (b ≥ 2), for
which we obtain a (3−2

b
+ε)-approximation (Appendix D). Adapting

these randomized local ratio algorithms to the MapReduce setting
is straightforward: all machines participate in the random sam-
pling, and a single central machine executes the local ratio algo-
rithm. It is worth emphasizing that these algorithms are very sim-
ple and could easily be implemented in practice.

Our second technique we call the “hungry-greedy” technique.
Whereas randomized local ratio uses i.i.d. sampling, hungry-greedy
first samples “heavy” elements, not to maximize an objective func-
tion, but to disqualify a large fraction of elements from the solution.
Doing so allows us to rapidly shrink the problem size, and thereby
execute the greedy method in just a few rounds. We emphasize
that the hungry-greedy technique is applicable even to problems

http://arxiv.org/abs/1806.06421v1

without an objective function or an a priori ordering on the greedy
choices. We use this technique to give efficient algorithms for max-
imal independent set (Section 3), maximal clique (Appendix B), and
a (1 + ε) ln∆ approximation to weighted set cover (Section 4).

At first glance one may think that the maximal clique result fol-
lows by a trivial reduction from the independent set result, but
this is not the case. The formalization of the MapReduce model
requires that computations be performed in linear space, so it is
not possible to complement a sparse graph. Other problems that
are widely studied in the distributed computing literature and can
usually be solved by a trivial reduction to maximal independent
set include vertex colouring with ∆+ 1 colours and edge colouring
with 2∆−1 colours; see themonograph of Barenboim and Elkin [8].
Again, these reductions are not possible in the MapReduce model
due to space restrictions. We make progress on these problems by
giving algorithms for (1 + o(1))∆ vertex colouring and (1 + o(1))∆
edge colouring (Section 6).

1.2 Related work

Within the theory community, part of the appeal of theMapReduce
model is the connection to several established topics, including dis-
tributed algorithms, PRAM algorithms, streaming algorithms, sub-
modular optimization and composable coresets.

One of the earliest papers on MapReduce algorithms is due to
Lattanzi et al. [27], in which the filtering technique is introduced.
Filtering involves choosing a random sample, from which a par-
tial solution is constructed and used to eliminate candidate ele-
ments from the final solution; the process is repeated until all el-
ements are exhausted. This technique has been quite influential,
and many subsequent papers can be viewed as employing a simi-
lar methodology. Indeed, our randomized local ratio technique can
be viewed as a descendant of the filtering technique in which the lo-
cal ratio weights are used to eliminate elements. The original filter-
ing technique yielded 2-approximations for unweighted matching
and vertex cover, and was combined with layering ideas to give
an 8-approximation for weighted matching [27]. These layering
ideas were improved by Crouch and Stubbs [14] and Grigorescu et
al. [21] to give a (3.5+ ε)-approximation for weighted matching in
the semi-streaming and MapReduce models. In addition, it is also
known that any c-approximation to maximum weighted matching
can be automatically converted to a (2 + ε)-approximation algo-
rithm by using the former as a blockbox [30].

Recently Paz and Schwartzman [37] gave a (2+ε)-approximation
for weighted matching in the semi-streaming model, using the lo-
cal ratio method with clever pruning techniques to bound the re-
cursion depth. This result was slightly improved and substantially
simplified by Ghaffari [18]. Unfortunately, this work does not ap-
ply to the MapReduce setting: it is very space-efficient, but not dis-
tributed. Our randomized local ratio technique is inspired by this
work, but different. Whereas [18, 37] are deterministic and process
the input in a streaming fashion, our technique achieves its space
efficiency through random sampling and requires several rounds
to process the entire input.

Submodular optimization has also been a fruitful avenue for
MapReduce algorithms. Kumar et al. [26] gave a general frame-
work for maximizing monotone submodular functions over hered-
itary constraints in the MapReduce setting while losing only ε in
the approximation ratio. Their Sample-and-Prune and ε-Greedy
techniques are vaguely related to our hungry-greedy technique,
but nevertheless different as our technique does not maximize an
objective. Barbosa et al. [16] develop a different framework that
achieves the same approximation ratio while using fewer MapRe-
duce rounds; it also supports the continuous greedy algorithm and
non-monotone functions. A specific result relevant to ourwork is a
1

3+ε -approximation for weighted matching in bipartite graphs [26]
inO(log(wmax

wmin
)/µε) rounds andO(nmµ) space per machine. The re-

sults of Barbosa et al. seem to improve this to O(1/ε) rounds and
O(
√
nm) space per machine.

Another problem related to submodularmaximization is the sub-
modular set cover problem [43], which generalizes the weighted
set cover problem, and has been studied∗ in the MapReduce model
by Mirzasoleiman et al. [34, 35]. Both of our techniques are appli-
cable to weighted set cover. Our randomized local ratio technique
matches the classic f -approximation [7], where f is the largest fre-
quency of an element. Our hungry-greedy technique gives a (1 +
ε) ln∆ approximation, nearlymatching the optimal ln∆-approximation
for polynomial-time algorithms [12]. It is worth noting that our
f -approximation is intended (as with vertex cover) for the sce-
nario that n ≪ m, whereas our second algorithm assumesm ≪ n.
Our latter result has several advantages over the work of Mirza-
soleiman et al.: we handle the weighted case, improve the lnm in
the approximation ratio to ln∆, our space usage is controllable by
an arbitrary parameter µ, and use significantly less space when
m ≪ n.

The classical PRAM model admits algorithms for many of the
problemswe consider. There are general simulations of EREWPRAMs
[25] and CREW PRAMs [20] by MapReduce algorithms, although
these lead to polylog(n)-rounds algorithms, which does not meet
the MapReduce gold standard ofO(1) rounds.

Composable core-sets have recently emerged as a useful prim-
itive for the design of distributed approximation algorithms; see,
e.g., [5, 23, 33] and the references therein. The idea is to partition
the data, compute on each part a representative subset called a
core-set, then solve the problem on the union of the core-sets. Rel-
evant to this is the work of Assadi et al. [3] (extending work by
Assadi and Khanna [4]), which designs 3/2 + ε (resp. 3 + ε) ap-
proximate core-sets for unweighted matching (resp. vertex cover).
They obtain 2-round MapReduce algorithms as a corollary. Com-
bining with the technique of Crouch and Stubbs [14], these can
be extended to O(1) (resp. O(logn)) approximations for weighted
variants of the problem.

Primal-dual algorithms have previously been studied in theMapRe-
duce model, notably in the work of Ahn and Guha [1]. They de-
velop sophisticated multiplicative-weight-type techniques to ap-
proximately solve the matching (and b-matching) LP in very few
iterations. Their technique gives a (1+ε)-approximation inO(1/µε)

∗ The set cover problem was studied earlier in the MapReduce setting by Stergiou and
Tsioutsiouliklis [39], although their work appears not to have rigorous guarantees
regarding concurrent access to shared state.

2

Figure 1: Results for MapReduce algorithms. For graph algorithms, the number of vertices is n, the number of edges is assumed to be n1+c , and the maximum
degree is ∆. For set cover, the number of sets is n, the size of the ground set ism, the size of the largest set is ∆, and the largest number of sets containing any

element is f , the maximum (resp. minimum) weight is wmax (resp. wmin). For Theorem 2.4 it is assumed thatm = n1+c . The space per machine is typically n1+µ ,
which for most results (except [1]) need not be constant; taking µ = 1/logn one can often get O (n) space and O (logn) rounds. For Theorem 4.6, n can depend
arbitrarily onm.

Problem Weighted? Approximation MapReduce Rounds Space per machine Reference

Vertex Cover 2 O (c/µ) O (n1+µ) [26]

Y O (log2 n) 2 Õ (n1.5) [4]

Y 2 O (c/µ) O (n1+µ) Theorem 2.4

Set Cover O (logm) O (log(m) |OPT |) not analyzed [34]

(1 + ε) lnm O
(
log(n

|OPT |) log(∆)/ε + logm
)

O (
√
n |OPT |∆) [35]

Y f O ((c/µ)2) O (f · n1+µ) Theorem 2.4

Y (1 + ε) ln∆ O

(
log

(wmax
wmin

∆

)
µ2ε

)
if n = poly(m) O (m1+µ) Theorem 4.6

Maximal Indep. Set O (c/µ) O (n1+µ) Theorem A.3

Maximal Clique O (1/µ) O (n1+µ) Corollary B.1

Matching 2 O (c/µ) O (n1+µ) [26]

Y 8 O (c/µ) O (n1+µ) [26]

Y 4 + ε O (c/µ) O (n1+µ) [14]

Y 3.5 + ε O (c/µ) O (n1+µ) [21]

Y 2 + ε O ((c/µ) log(1/ε)) O (n1+µ) [30]

Y 1 + ε O (1/µε) O (n1+µ) [1]

Y O (1) 2 Õ (n1.5) [4]

2 + ε O ((log logn)2 log(1/ε)) O (n) [15]

1 + ε (1/ε)O (1/ε) log logn Õ (n) [3]

Y 2 O (c/µ) O (n1+µ) Theorem 5.6

Vertex Colouring (1 + o(1))∆ colours O (1) O (n1+µ) Theorem 6.4

Edge Colouring (1 + o(1))∆ colours O (1) O (n1+µ) Theorem 6.6

MapReduce rounds while using only O(n1+µ) space per machine.
While their algorithm achieves a superior approximation factor to
ours, it is also highly technical. Our algorithm is concise, simple,
and could plausibly be the end-of-the-road for filtering-type tech-
niques for the matching problem.

Very recently there have been some exciting developments in
MapReduce algorithms. Im et al. [22] have given a general dynamic
programming framework that seems very promising for design-
ing more approximation algorithms. Czumaj et al. [15] introduced
a round compression technique for MapReduce and applied it to
matching to obtain a linear space MapReduce algorithm which
gives a (2 + ε)-approximation algorithm for unweighted matching
in only O((log logn)2 log(1/ε)) rounds. For unweighted matching,
Assadi et al. [3] built on this work and gave a (2+ε)-approximation
algorithm in O((log logn) log(1/ε)) rounds with Õ(n) space and
a (1 + ε)-approximation algorithm in (1/ε)O (1/ε) log logn rounds
with Õ(n) space. Round compression has also been used to give a
O(logn) approximation for unweighted vertex cover usingO(log logn)
MapReduce rounds [2].

1.3 The MapReduce Model

In this paper we adopt the MapReduce model as formalized by
Karloff et al. [25]; see also [19]. In their setting, there is an input
of size N distributed across O(N δ) machines, each with O(N 1−δ)
memory. This models the property that modern big data sets must
be stored across a cluster of machines. Computation proceeds in
a sequence of rounds. In each round, each machine receives input
of size O(N 1−δ); it performs a computation on that input; then it

produces a sequence of output messages, each of which is to be de-
livered to another machine at the start of the next round. The total
size of these output messages must also be O(N 1−δ). In between
rounds, the output messages are delivered to their recipients as
input.

The data format and computation performed is not completely
arbitrary. Data is stored as a sequence of key-value pairs, and the
computation is performed by the eponymousmap and reduce func-
tions that operate on such sequences. The requirements of these
functions are not particularly relevant to our work, so we refer the
interested reader to standard textbooks [29] or the work of Karloff
et al. [25].

For graph algorithms, we will assume that the space per ma-
chine is bounded as a function ofn, the number of vertices, whereas
the input size is O(N) where N =m is the number of edges. As in
Lattanzi et al. [27], we will typically assume that the space per ma-
chine is O(n1+µ) and the graph has m = n1+c edges, c > µ. This
conforms to the requirements of Karloff et al. with δ =

c−µ
1+c .

The memory constraints of graph problems in the MapReduce
model stem from the early work of Karloff et al. [25] and Leskovec
et al. [28]. In these papers, graph problems with n nodes and n1+c

edges were examined. Specifically, Leskovec et al. [28] found that
real world graph problems were often not sparse, but had n1+c

edges where c varied between 0.08 and larger than 0.5. In practice,
MapReduce algorithms also require Ω(n) memory per machine.
One such example is the diameter estimation algorithm of Kang et
al. [24], in which O((n +m)/M) memory is required per machine,
where M is the number of machines in total.

3

Related models. There have been a series of refinements to the
original MRC model of Karloff et al. [25], the most prominent of
which is the massive parallel computation (MPC) model developed
by Beame et al. [9]. Themain difference with theMPCmodel is that
the space requirements are more stringent than in MRC. Given an
input of size N and M machines, each machine is only allowed to
have at most S = O(N /M) space. In each round, each machine can
sendO(S)words to othermachines. Themajority of our algorithms
apply in the MPC model as well as the MRC model. The only ex-
ceptions are our set cover and b-matching algorithms, where our
space bound depends on structural parameters of the input.

1.4 Organization

In Sections 2 and 3, we develop our “randomized local ratio” and
“hungry-greedy” techniques through the weighted set cover and
maximal independent set problems respectively. We then apply
these techniques to specific problems in the subsequent sections.
Our randomized local ratio technique is applied tomaximumweight
matching (Section 5) andb-matching (Appendix D), and our hungry-
greedy technique is applied tomaximal clique (Appendix B) as well
as an alternate approximation of weighted set cover (Section 4). Al-
gorithms for vertex and edge colouring that may be of independent
interest are given in Section 6.

2 f -approximation for weighted set cover

For notational convenience, let [n] = {1, . . . ,n}, S(X) = ⋃
i ∈X Si

and w(X) = ∑
i ∈X wi for all X ⊆ [n]. In the weighted set cover

problem,we are givenn setsS1, . . . , Sn ⊆ [m]withweightsw1, . . . ,wn ∈
R>0. The goal is to find a subset X such that w(X) is minimal
amongst all X with S(X) = [m].

Let OPT denote a fixed set X achieving the minimum. The fre-
quency of element j ∈ U is defined to be |{ i : j ∈ Si }|. Let f

denote the maximum frequency of any element.

Theorem2.1 (Bar-Yehuda and Even [7]). The following algorithm
gives an f -approximation to weighted set cover.

Sequential local ratio algorithm for minimum weight set
cover

Arbitrarily select an element j ∈ U such that theminimum
weight of all sets containing j is strictly positive, then re-
duce all those weights by that minimum value. Remove all
sets with zero weight, and add them to the cover. Repeat
so long as uncovered elements remain.

More explicitly, the weight reduction step works as follows. If el-
ement j ∈ U was selected, then we compute ϵ = mini ∈[n] : j∈Si wi

then perform the updatewi ← wi − ϵ for all i with j ∈ Si .

2.1 Randomized local ratio

The local ratio method described above is not terribly paralleliz-
able, as it processes elements sequentially. Nor is it terribly space-
efficient, as it might require processing every element in [m]. How-
ever, it does have the virtue that elements can be processed in a
fairly arbitrary order. Our randomized local ratio technique takes

advantage of that flexibility and combines the local ratio algorithm
with random sampling. There are essentially two components to
our randomized local ratio technique: (1) we can cover a large frac-
tion of the remaining sets with just a random sample of elements,
and (2) this random sample will be comparable in weight to the
optimal solution since the processing order of local ratio is fairly
arbitrary. Intuitively, property (1) ensures that the algorithm runs
in a few number of rounds, and property (2) ensures a good ap-
proximation ratio. These two ideas will come up frequently in the
algorithms we present in this paper.

In Algorithm 1, the size of each sample U ′ is O(η) w.h.p., and η
will be taken to be n1+µ , the space available on each machine.

Algorithm 1 An f -approximation for minimum weight set cover. The
lines highlighted in blue are run sequentially on a central machine, and all
other lines are run in parallel across all machines.

1: procedure ApproxSC(S1, . . . , Sn ⊆ U = [m])
2: U1 ← U , r ← 1
3: while Ur , ∅ do
4: ⊲:Ur is the set of all j ∈ [m] such that mini : j∈Si wi > 0
5: Compute U ′ by sampling each element of Ur indepen-

dently with probability p = min(1, 2η
|Ur |)

6: if |U ′ | > 6η then fail

7: Run the local ratio algorithm for set cover on the sets
S1 ∩U ′, . . . , Sn ∩U ′

8: Let C ⊆ [n] be the indices of all sets with zero weight
9: Ur+1 ← Ur \ S(C)
10: r ← r + 1
11: return the indices C of all sets with zero weight

Our analysis uses the following useful fact, relating to the filter-
ing technique of Lattanzi et al. [27].

Lemma 2.2. Let Ur+1 be the set computed on line Line 9 of Al-
gorithm 1. If p = 1 then Ur+1 = ∅, otherwise |Ur+1 | < 2n/p with
probability at least 1 − e−n .

Proof. If p = 1 then U ′ = Ur , so the local ratio method pro-
duces C covering all ofUr , and so Ur+1 = ∅. So assume p < 1.

For each X ⊆ [n], let S(X) be the elements left uncovered by

X . Let EX be the event that U ′ ∩ S(X) = ∅. Say that X is large if

|S(X)| ≥ 2n/p =: τ . For large X , Pr[EX] ≤ (1−p)τ ≤ e−pτ = e−2n .
By a union bound, the probability that all large EX fail to occur is
at least 1 − e−n . Since the local ratio method produces a set C for

which U ′ ∩ S(C) = ∅, with high probability it must be that |C | is
not large. �

Theorem2.3. Suppose thatm ≤ n1+c . Let η = n1+µ , for any µ > 0.
Then Algorithm 1 terminates within ⌈c/µ⌉ iterations and returns
an f -approximate set cover, w.h.p.

Proof. Correctness: Observe that the sequential local ratio algo-
rithm for set cover can pick elements in an arbitrary order. Algo-
rithm 1 is an instantiation of that algorithm that uses random sam-
pling to partially determine the order in which elements are picked.
It immediately follows that Algorithm1 outputs an f -approximation

4

to the minimum set cover, assuming it does not fail. By a stan-
dard Chernoff bound, an iteration fails with probability at most
exp(−n1+µ) ≤ exp(−n).

Efficiency: By Lemma 2.2, while p < 1 we have |Ur+1 | ≤ 2n/p =
2n |Ur |/η = 2|Ur |/nµ ≤ 2n1+c−r µ , whp. By iteration r = ⌈c/µ⌉ − 1,
we will have |Ur | ≤ 2n1+c = 2η and so p = 1. After one more
iteration the algorithm will terminate, again by Lemma 2.2. �

2.2 MapReduce implementation

Theorem 2.4. There is a MapReduce algorithm that computes an
f -approximation for the minimum weight set cover where each
machine has memoryO(f ·n1+µ). The number of rounds isO(c/µ)
in the case f = 2 (i.e., vertex cover) andO((c/µ)2) in the case f > 2.

Proof. Instead of representing the input as the sets S1, . . . , Sn ,
we instead assume that it is represented as the “dual” set system
T1, . . . ,Tm where Tj = { i : j ∈ Si }. By definition of frequency,
we have |Tj | ≤ f .

Each element j ∈ [m] will be assigned arbitrarily to one of the
machines, with n1+µ elements per machine, so M := m/n1+µ =
nc−µ machines are required. Element j will store on its machine
the setTj and a bit indicating if j ∈ Ur . Thus, the space permachine
is O(f · n1+µ).

The main centralized step is the local ratio computation (lines
7-8). The centralized machine receives as input the sets Tj for all
j ∈ U ′. As |U ′ | ≤ 6η, the input received by the central machine
is O(f η) = O(f n1+µ) words. After executing the local ratio algo-
rithm, the centralized machine then computes C .

There are two key steps requiring parallel computation: the sam-
pling step (line 5) and the computation of Ur+1 (line 9). After the
central machine computes C , it must send C to all other machines.
Sending this directly could require |C | ·M = Ω(n1+c−µ) bits of out-
put, which could exceed the machine’s space of O(n1+µ). Instead,
we can form a broadcast tree over all machines with degree nµ

and depth c/µ, allowing us to send C to all machines in O(c/µ)
MapReduce rounds. Since each machine knows C , each element j
can determine if j ∈ Ur+1 by determining if Tj ∩C , ∅. The same
broadcast tree can be used to compute |Ur+1 | and send that to all
machines. Since each element j knows if j ∈ Ur and knows |Ur |, it
can independently perform the sampling step.

In the case f = 2 (i.e., vertex cover), this can be improved. Each
set Si (i.e., vertex) will also be assigned to one of the M machines,
randomly chosen. By a Chernoff bound (using that |Si | ≤ n) the
space required permachine isO(f ·n1+µ)w.h.p. After computingC ,
the central machine sends a bit to each set Si indicating whether
i ∈ C or not. Each set Si then forwards that bit to each element
j ∈ Si . Thus j can determine whether j ∈ Ur+1. Each machine can
send to a central location the number of edges on that machine
that lie in Ur+1, so the central machine can compute |Ur+1 | and
send it back to all machines. �

3 Maximal independent set

As a warm-up to the “hungry-greedy” technique, we first present
an algorithm to find a maximal independent set (MIS) in a con-
stant number of MapReduce rounds. In order to clearly explain the
concepts, this section presents a simple algorithm using O(1/µ2)

rounds. In Appendix A, we show how to further parallelize this
algorithm so that it takes O(c/µ) rounds.

The algorithm, shown in Algorithm 2, proceeds in phases where
each phase takes O(1/µ) rounds. In phase i ≥ 1, we reduce the
maximum degree from n1−(i−1)α to n1−iα . We will choose α = µ/2
so that after O(1/µ) phases, the maximum degree will be at most
nµ . Following this, we can finish the algorithm in one more round
by placing the entire graph onto a central machine.

For a vertexv , we defineN (v) as the neighbours ofv andN+(v) =
N (v) ∪ {v}. For a set I ⊆ V , we define N+(I) = ∪v ∈IN+(v) and
NI (v) = N (v) \ N+(I). In other words, NI (v) is the set of neigh-
bours of v which are not in I and not adjacent to a vertex in I .
Finally let dI (v) = |NI (v)| if v < N+(I), otherwise dI (v) = 0.

Algorithm 2 A simple algorithm for maximal independent set. The lines
highlighted in blue are run sequentially on a central machine, and all other
lines are run in parallel across all machines.

1: procedureMIS1(G = (V ,E))
2: I ← ∅ ⊲ I is the current independent set
3: for i = 1, . . . , 1/α do

4: ⊲: dI (v) ≤ n1−(i−1)α for all v ∈ V
5: VH ← {v : dI (v) ≥ n1−iα } ⊲ Heavy vertices
6: while |VH | ≥ niα do

7: Draw niα groups of nµ/2 vertices from VH , say
X1, . . . ,Xniα

8: for j = 1, . . . ,niα do

9: if ∃vj ∈ Xj such that dI (vj) ≥ n1−iα then

10: I ← I ∪ {vj }
11: VH ← {v : dI (v) ≥ n1−iα } ⊲ Update heavy

vertices
12: Find maximal independent set in VH and add it to I ⊲
|VH | < niα

13: return I

Remark 3.1. In the algorithm, a vertex can lose its label as a heavy
vertex during the for loop. This is intentional as when we add a
vertex to I , we want to make sure we make substantial progress.
Moreover, since a vertex sends all its neighbours, it is easy to tell
whether a vertex is heavy and to update N+(I).

Lemma 3.2. Let VH be the set of heavy vertices at the beginning
of the inner for loop (line 9) and V ′

H
be the set of heavy vertices

after the for loop. Then |V ′
H
| ≤ |VH |/nµ/4 w.h.p.

Proof. Observe that the first groupX1 of vertices will definitely
contain a heavy vertex so it will remove at least n1−iα vertices
from the graph.∗ Now suppose we are currently processing group
Xj . If the number of heavy vertices is at most |VH |/nµ/4 at this
point then we are done. So suppose the number of heavy vertices
is at least |VH |/nµ/4. Since we sample the vertices uniformly at
random, the group Xj contains a heavy vertex with probability at

least 1−
(
1 − 1/nµ/4

)nµ/2
≥ 1− exp

(
−nµ/4

)
. At this point, we add

another heavy vertex to I and remove it and all its neighbours.

∗We will say v is removed from the graph if it is added to N +(I).
5

The above process can happen at mostniα times before the num-
ber of heavy vertices is at most |VH |/nµ/4. This is because if it hap-
pens niα times then no vertices remain. Hence, by taking a union
bound over all groups, we have that |V ′

H
| ≤ |VH |/nµ/4 with proba-

bility at least 1 − n · exp
(
−nµ/4

)
. �

Theorem 3.3. There is a MapReduce algorithm to find a maximal
independent set inO(1/µ2) rounds andO(n1+µ) space permachine,
w.h.p.

Proof sketch. As before, there areM := nc−µ machines. Each
vertex and its adjacency list is assigned to one of theM machines,
randomly chosen. By a Chernoff bound, the space required per ma-
chine isO(n1+µ)whp. Each vertexv willmaintain its value ofdI (v),
allowing it to determine ifv ∈ VH . Thus, the sampling step (line 7)
can be performed in parallel.

A central machine maintains and updates the sets I and N (I). It
receives as input the sets of vertices X1, . . . ,Xniα and their lists of
alive neighbours, so the total input size is proportional to

niα∑
j=1

∑
v ∈Xj

dI (v) ≤ niα · nµ/2 · n1−(i−1)α = n1+µ/2+α .

After executing the for-loop, the central machine can use these lists
of neighbours to also compute N+(I).

The next step requiring parallelization is line 11. To execute this,
the central machine sends a bit to each vertex v indicating if v ∈
N+(I). Then, every v < N+(I) asks each neighbour w ∈ N (v) if
w ∈ N+(I). The results of these queries allow v to compute dI (v).

By Lemma 3.2, the while loop takesO(1/µ) rounds, so the entire
algorithm takes O(1/µ2) rounds. �

Maximal clique. One might initially assume that an algorithm
for maximal independent set immediately implies an algorithm
for maximal clique. But, as mentioned in Section 1, it is not clear
how to reduce maximal clique to maximal independent set inO(m)
space: complementing the graph might require Ω(n2) space. Nev-
ertheless, it is possible to adapt Algorithm 2 so that it will compute
a maximal clique. A description of the necessary modifications ap-
pears in Appendix B.

4 (1+ε) ln∆-approximation forweighted set cover

For convenience, we reuse the same notation from Section 2. The
standard greedy algorithm for weighted set cover is as follows. We
maintain a set C of covered elements (initially C = ∅). In each iter-
ation, we find the set Si which maximizes |Si \C |/wi . We add Si to
our solution and add the elements of Si toC . It is known [13] that
this algorithm has approximation ratio H∆ where ∆ = maxℓ |Sℓ |
and Hk =

∑k
i=1

1
k
.

Unfortunately, implementing this greedy algorithm is tricky in
MapReduce but, following Kumar et al. [26], we can implement the
ε-greedy algorithm, which differs from the standard greedymethod
as follows. Instead of choosing the set Si to maximize |Si \C |/wi ,
we choose Si such that |Si \C |/wi ≥ 1

1+ε maxj {|Sj \C |/wj }. The
standard dual fitting argument [13, 42] can be easily modified to
prove that this gives a (1 + ε)H∆-approximate solution.

Our algorithm for set cover is also inspired by some of the PRAM
algorithms for set cover (see, for example, [10, 11, 17, 38]). Indeed,
we use a similar bucketing approach as [10, 11, 17, 38] which we
now describe. Let L = maxℓ{|Sℓ |/wℓ }. We first consider only the
“bucket” of sets that have a cost ratio of at least L/(1 + ε) and con-
tinue to add sets from this bucket to the cover until the bucket is
empty (after which we decrease L by 1 + ε and repeat). However,
note that once we add a set from the bucket to the cover, some of
the sets in the bucket may no longer have a sufficiently cost ratio
to remain in the bucket; in this case, we need to remove them from
the bucket.

It is shown in [11] (improving on [10]) that exhausting a bucket
can be done in O(log2 n) time in the PRAM model; this can be
easily translated to aO(log2(n)/(µ log(m)))-round algorithm in the
MapReducemodel. Ourmain contribution is to show that, inMapRe-
duce, one can exhaust a bucket in O(log2(n)/(µ2 log2(m))) rounds.
In particular, when n = poly(m) and µ is a constant, the number of
rounds decreases from O(logn) to O(1).

The high level idea of our parallel algorithm for approximate
minimum set cover is as follows. LetC denote the current elements
in the partial solution constructed so far (initially C = ∅). At this
point, the algorithm considers only considers sets, Sℓ , which are
almost optimal, i.e. |Sℓ \ C |/wℓ ≥ L(1 + ε), where initially, L =
maxℓ {|Sℓ |/wℓ } but is decreased as the algorithm runs. We then
partition these sets into 1/α groups where group i consists of sets
whose cardinatliy is in [m1−(i+1)α ,m1−iα). From each group i , we
then samplem1−(i+1)α collections ofmµ/2 sets. Starting from the
group 1, we will see that either every collection contains an almost
optimal set or we have made a large amount of progress. It will also
turn out thatwe can decrease a certain potential function by a large
amount in each iteration so within a few iterations, there will be
no more profitable sets. If we have not covered the universe at this
point then we decrease L by (1 + ε) and repeat this process.

We now beginwith amore formal treatment of the algorithm for
minimum weight set cover. We will assume that each machine has
O(m1+µ log(n)) space and

∑n
i=1 |Si | ≥ m1+c so that the memory

is sublinear in the input size. The pseudocode for the algorithm is
given in Algorithm 3.

In Section 4.1, we will describe the MapReduce implementation
of this algorithm. Of particular note is that the second while loop
can be implemented in a small number of MapReduce rounds. Our
goal in this section is to show that the number of times the while
loop is executed is small.

To that end, let us fix L and analyze the number of iterations
of the second while loop starting at Line 7. To do this, it will be
convenient to introduce the potential function

Φk ≔

∑
ℓ∈[n]: |Sℓ \Ck |wℓ

≥ L
1+ε

|Sℓ \Ck |.

Observe that we have the trivial upper bound Φk ≤ nm. Moreover,
Φk = 0 if and only if we finished with the second while loop by
iteration k .

Using a straightforward Chernoff bound (Theorem E.1), we can
show that each iteration has a small proabilility of failure, i.e. in
each iteration, we make it into line 16 with very small probability.

6

Algorithm 3 A (1+ε) ln∆-approximation for minimumweight set cover.
Blue lines are centralized.

1: procedure ApproxSC(S1, . . . , Sn ⊆ U = [m], w1, . . . ,wn ∈
R>0)

2: L← maxℓ
{
|Sℓ |
wℓ

}
3: S ← ∅
4: C ← ∅ ⊲ C ⊆ [m] maintains set of covered elements
5: while C , [m] do
6: k ← 1
7: while ∃ℓ s.t. |Sℓ \Ck |/wℓ ≥ L/(1 + ε) do
8: Ck ← C ⊲ Maintain temporary set of covered

elements; used only for proof.
9: Let Sk,i = {Sℓ : m1−iα ≤ |Sℓ \ Ck | <
m1−(i−1)α and |Sℓ \Ck |/wk ≥ L/(1 + ε)}

10: for i = 1, . . . , 1/α do

11: for j = 1, . . . , 2m(i+1)α do

12: Include each Sℓ ∈ Sk,i into groupXi, j with
probability min{1,mµ/2/|Sk,i |}

13: if |Xi, j | ≤ 4mµ/2 then
14: Send each Xi, j to the central machine.
15: else ⊲ At least one Xi, j is too big so fail and

continue to next iteration.
16: k ← k + 1
17: continue

18: for i = 1, . . . , 1/α do

19: for j = 1, . . . , 2m(i+1)α do

20: if ∃Sℓ ∈ Xi, j such that |Sℓ \ C | ≥
m1−(i+1)α /2 then

21: S ← S ∪ {Sℓ}
22: C ← C ∪ Sℓ
23: k ← k + 1
24: L← L/(1 + ε)
25: return S

Claim 4.1. Fix an iteration k . We have |Xi, j | ≤ 4mµ/2 for all i, j

with probability at least 1 − m
α exp

(
−mµ/2

)
.

The first lemma states that for a good fraction of the sets, a good
fraction of their remaining elements has been covered. This will
be useful for showing that Φk decreases significantly after each
iteration.

Lemma 4.2. Fix i and an iteration k . Let Sk,i be as in Algorithm 3
and

S′
k,i
= {Sℓ ∈ Sk,i : |Sℓ \Ck+1 | ≥ m1−(i+1)α /2

and |Sℓ \Ck+1 |/wk ≥ L/(1 + ε)}.

Then |S′
k,i
| ≤ |Sk,i |/2mµ/4with probability at least 1−m exp

(
−mµ/4/2

)
.

Proof. Suppose we are currently processing group Xi, j . If at
this point, the number of sets Sℓ ∈ Sk,i with both |Sℓ \ C | ≥
m1−(i+1)α /2 and |Sℓ \ C |/wk ≥ L/(1 + ε) is at most |Si,k |/2mµ/4

then we are done (since C ⊆ Ck+1). Otherwise, with probability at

least 1 −
(
1 −mµ/2/|Sk,i |

) |Sk, i |/2mµ/4

≥ 1 − exp
(
−mµ/4/2

)
, the

group Xi, j contains a set Sℓ with both |Sℓ \C | ≥ m1−(i+1)α/2 and
|Sℓ \ C |/wk ≥ L/(1 + ε). The algorithm then adds Sℓ to the solu-
tion. Note that if this happens 2m(i+1)α times thenwe have covered
the ground set and so the conclusion of the lemma holds trivially.

Hence, we conclude thatwith probability at least 1−m exp
(
−mµ/4/2

)
,

we have |S′
k,i
| ≤ |Sk,i |/2mµ/4. �

Let us now fix α = µ/8. The following lemma shows that the
potential function decreases geometrically after every iteration.

Lemma 4.3. Fix an iteration k . Then Φk+1 ≤ Φk /mµ/8 with prob-

ability at least 1 − 16m
µ exp

(
−mµ/4/2

)
.

Proof. By Claim 4.1, an iteration fails with probability at most
m
α exp

(
−mµ/2

)
=

8m
µ exp

(
−mµ/2

)
.

For i ∈ [1/α], let Ai =

{
Sℓ ∈ Sk,i ∩ S′k,i : |Sℓ\Ck+1 |wℓ

≥ L
1+ε

}
and Bi =

{
Sℓ ∈ Sk,i \ S′k,i : |Sℓ\Ck+1 |wℓ

≥ L
1+ε

}
. Then

Φk+1 =

1/α∑
i=1

(∑
Sℓ ∈Ai

|Sℓ \Ck+1 | +
∑

Sℓ ∈Bi
|Sℓ \Ck+1 |

)
.

By Lemma 4.2 and the definition of S′
k,i

, we have∑
Sℓ ∈Ai

|Sℓ \Ck+1 | ≤ |S′k,i |m
1−(i−1)α ≤ |Sk,i |m1−(i−1)α−µ/4/2.

On the other hand, we have
∑
Sℓ ∈Bi |Sℓ\Ck+1 | ≤ |Sk,i |m

1−(i+1)α/2.
Plugging in α = µ/8, we have

Φk+1 ≤
1/α∑
i=1

|Sk,i |m1−i µ/8/mµ/8.

Finally, we can also write

Φk =

1/α∑
i=1

∑
Sℓ ∈Sk, i

|Sℓ \Ck | ≥
1/α∑
i=1

|Sk,i |m1−i µ/8
.

Hence, we conclude that Φk+1 ≤ Φk /mµ/8. �

We now show that the number of iterations of the inner while
loop is quite small with high probability.

Lemma 4.4. Let K = inf{k > 0 : Φk = 0}. Then K ≤ 18 logΦ0

µ logm with

probability ≥ 1 − 32m
µ exp

(
−mµ/4/2

)
.

Proof. Let us define a new random process Φ′
k
, which is cou-

pled to Φk as follows. First, Φ′0 = Φ0. For k ≥ 1 we have two cases.
If Φk ≥ 1 then we set

Φ
′
k+1 =

{
Φ
′
k
/mµ/8 if Φk+1 ≤ Φk/mµ/8

0 otherwise
.

On the other hand if Φk = 0 then we set Φ′
k+1
= Φ

′
k
/mµ/8 with

probability 1− 16m
µ exp

(
−mµ/4/2

)
.With the remainder probability,

we set Φ′
k+1
= Φk .

7

Observe that with this coupling, we have Φk ≤ Φ
′
k
for all k ≥ 0.

Set K ′ = 18 lnΦ0
µ lnm . We will show that Φ′

K ′ < 1 with probability at

least 1 − 32m
µ exp

(
−mµ/4/2

)
. This then implies that K ≤ K ′ with

the same probability since ΦK ′ must be a nonnegative integer.
Let us say iteration k is good if Φ′

k+1
≤ Φ
′
k
/mµ/8. Otherwise, we

say it is bad. By Lemma 4.3 and the definition of {Φ′
k
}k , it follows

that iterationk is goodwith probability at least 1− 16m
µ exp

(
−mµ/4/2

)
.

After 8 lnΦ0
µ lnm + 1 ≤

9 lnΦ0
µ lnm good iterations, we have Φ′

k
< 1 so it suf-

fices to show that after K ′ iterations there are at most 9 lnΦ0
µ lnm =

K ′/2 bad iterations. Indeed, after K ′ iterations, the expected num-

ber of bad iterations is atmostK ′· 16mµ exp
(
−mµ/4/2

)
so byMarkov’s

Inequality, there are more than K ′/2 bad iterations with probabil-

ity at most 32m
µ exp

(
−mµ/4/2

)
. This completes the proof. �

We are now ready to prove the main theorem in this section.
Define Φ =

∑
ℓ∈[n] |Sℓ |.

Theorem 4.5. Algorithm 3 returns (1 + ε)H∆-approximate mini-
mum set cover. Moreover, the inner loop is executed at most

O

(
ln(Φ) log1+ε (∆wmax/wmin)

µ lnm

)

times with probability at least

1 − 64m

µ
exp

(
−mµ/4/2

)
.

Proof. The correctness follows because the algorithm imple-
ments the ε-greedy algorithm for set cover.

Let M = maxℓ
{
|Sℓ |
wℓ

}
. We can prove the running time as fol-

lows. Let K =
18 logΦ
µ logm and consider splitting up the iterations of

the inner while loop into blocks of size K . By block t , we will refer
to iterations tK , . . . , (t + 1)K − 1 of the inner while loop. We say
that a block t is good if L has decreased at least once during that
block. If the algorithm has already completed by that point, we will
instead just flip a coin which comes up heads with probability at

least 1− 32m
µ exp

(
−mµ/4/2

)
. If it comes up heads we will call that

block good. Otherwise, we call the block bad.
Note that after log1+ε (Mwmax) good blocks, we are guaranteed

that the algorithm has terminated. If we consider 2 log1+ε (Mwmax)
blocks then it suffices that at most log1+ε (Mwmax) blocks are bad.
The expected number of bad blocks is 32m

α exp
(
−mµ/4/2

)
so ap-

plyingMarkov’s Inequality shows that afterO
(
ln(Φ) log1+ε (Mwmax)

µ lnm

)
iterations, the algorithm has terminated with probability at least

1 − 64m
α exp

(
−mµ/4/2

)
. Using the trivial boundM ≤ ∆/wmin and

replacing α with µ/8 completes the proof. �

4.1 MapReduce Implementation

It is straightforward to implement most steps in Algorithm 3 in
MapReduce. However, we will highlight two nontrivial step here.
The first is how to propagate information such as the set of cov-
ered elements C to all the machines. To do this, it is convenient to

imagine all the machines as arranged in an O(mµ)-ary tree where
the root of the tree is the central machine. Then the central ma-
chine can pass C down to its children. These machines then pass
down to their children and so on. By doing this, all machines will

know C in O
(

lnn
µ lnm

)
MapReduce rounds.

The machines can also determine |Sk,i | in a similar manner but
starting at the leaves of tree. Here, each machine will compute the
number of sets that are inSk,i and send that quantity to its parents.
The parents then sum up the input and their own contribution to
|Sk,i | which they send to their own parents. Eventually the root is
able to compute |Sk,i | and then propagates the number back down

to the leaves as done above. This again takes O
(

lnn
µ lnm

)
rounds in

MapReduce.
We can also use a similar strategy to check that |Xi, j | is small

in Line 16 of Algorithm 3. We thus have the following theorem.

Theorem 4.6. There is a MapReduce algorithm that returns a
(1 + ε)H∆-approximate minimum set cover which uses memory

O(m1+µ logn) and runs inO
(
ln(Φ) log1+ε (∆wmax/wmin) ln(n)

µ 2 ln2(m)

)
with prob-

ability at least 1 −O
(
m
µ

)
exp

(
−mµ/4/2

)
.

Using the bound Φ ≤ nm yields the bound given in Figure 1.

Remark 4.7. Lemma 2.5 in [10] gives a simple way to prepro-
cess the input so that wmax/wmin ≤ mn/ε as follows. Let γ =
maxi ∈[m] minS ∋i w(S). This is a lower bound on the cost of any
cover. First, we add every set with cost at most γε/n to the cover;
this constributes a cost of at most γε ≤ ε · OPT . Next, we remove
any set with cost more thanmγ since OPT ≤ mγ . All these steps
can be done using a broadcast tree in O(log(n)/(µ log(m))) rounds
of MapReduce.

5 Maximum weight matching

We have a graphG = (V , E,w) but noww : E → R is a weight func-
tion on the edges. A matching in a graph is a subset M ⊆ E such
that e1 ∩ e2 = ∅ for any distinct e1, e2 ∈ M . The maximum weight
matching in a graph is a matching M that maximizes

∑
e ∈M we .

5.1 The local ratio method

Sequential local ratio algorithm for maximum weight
matching

Arbitrarily select an edge e with positive weight and re-
duce its weight from itself and its neighboring edges. Push
e onto a stack and repeat this procedure until there are no
positive weight edges remaining. At the end, unwind the
stack adding edges greedily to the matching.

If the edge e = (u,v) was selected, then the weight reduction
makes the updateswe ′ ← we ′−we for any edge e ′ such that e ′∩e ,
∅. In contrast to the minimum vertex cover algorithm, weights in
the graph can be reduced to negative weights.

Theorem 5.1 (Paz-Schwartzman [37]). The above algorithm re-
turns a matching which is at least half the optimum value.

8

5.2 Randomized local ratio

As in Section 2.1, we apply our randomized local ratio technique
to make the algorithm above amenable to parallelization. For intu-
ition, consider a fixed a vertex v and suppose we sample approx-
imately nµ of its edges uniformly at random. If e is the heaviest
sampled edge then there are only about d(v)/nµ edges incident to
v that are heavier than e . Hence, in the local ratio algorithm, if we
choose e as the edge to reduce then this effectively decreases the
degree of v by a factor of n−µ .

Algorithm 4 2-approximation for maximumweight matching. Blue lines
are centralized.

1: procedure ApproxMaxMatching(G = (V ,E))
2: E1 ← E, d1(v) ← d(v), i ← 1
3: S ← ∅ ⊲ Initialize an empty stack.
4: while Ei , ∅ do
5: for each vertex v ∈ V do

6: if |Ei | < 4η then

7: Let E′v be all edges in Ei incident to v
8: else

9: Construct E′v ⊆ Ei∩δ (v) by sampling i.i.d. with
probability p = min

{ η
|Ei | , 1

}
10: if

∑
v |E′v | > 8η then

11: Fail

12: for each vertex v ∈ V do

13: Let e ∈ E′v be the heaviest edge and apply weight
reduction to e

14: Push e onto the stack S
15: Let Ei+1 be the subset of Ei with positive weights
16: ⊲: Let di+1(v) denote |{e ∈ Ei+1 : v ∈ e}|
17: i ← i + 1
18: Unwind S , adding edges greedily to the matching M
19: returnM

The following claim follows by a simple Chernoff bound.

Claim 5.2. For i ≥ 1 and conditioned on iteration i − 1 not failing,
iteration i fails with probability at most exp(−η).

Lemma 5.3. Suppose η = n1+µ for some constant µ > 0 and
|E | = n1+c for some c > µ. Then, with probability at least 1 − (n +
1) · exp(−nµ):
• the first iteration does not fail; and
• d2(v) ≤ nc for all v ∈ V , where d2 is as defined in Line 16
of Algorithm 4.

Proof. Let kv be the number of edges incident to v with posi-
tive weight when we reach v in the for loop in Line 13. If kv ≤ nc

then we are done so suppose kv > nc . The probability that we
do not sample any of the heaviest nc edges that are currently in-

cident to v is at most
(
1 − n1+µ

|E |

)nc
≤ exp

(
−n1+µ+c

|E |

)
≤ exp(−nµ).

Combining with Claim 5.2 and taking a union bound completes the
proof. �

In the subsequent analysis, we will assume that µ is a positive
constant. (Actually, it suffices to take µ = ω(log logn/logn).)

Lemma 5.4. Suppose η = n1+µ for any constant µ > 0. Let ∆i =
maxv di (v). For i > 2 and conditioning on the past i − 1 iterations
not failing, with probability at least 1 − (n + 1) · exp(−nµ/2):
• iteration i does not fail; and
• ∆i+1 ≤ ∆i/nµ/4.

Proof. Let kv be the number of edges incident to v with pos-
itive weight when we reach v in the for loop in Line 13. If kv ≤
∆i/nµ/4 then we are done so suppose kv > ∆i/nµ/4. The prob-
ability that we do not sample any of the heaviest kv/nµ/4 edges

that are currently incident to v is at most
(
1 − n1+µ

|E |

)kv /nµ/4
≤

exp
(
−n

1+µ/2
∆i

|E |

)
≤ exp(−nµ/2). Hence, we havedi+1(v) ≤ kv/nµ/4 ≤

di (v)/nµ/4with probability at least 1−exp(−nµ/2) = 1−exp(−ω(logn)).
Combining with Claim 5.2 and taking a union bound completes the
proof. �

Theorem 5.5. Suppose η = O(n1+µ) for any constant µ > 0. With
probability 1−O(cn/µ) exp(−nµ), Algorithm 7 terminates inO(c/µ)
iterations and returns a 2-approximate maximum matching.

Proof. By Lemma 5.3, the first iteration does not fail andd2(v) ≤
nc for all v ∈ V . By Lemma 5.4, after at mostO(c/µ) iterations, the
algorithm has not failed and the total number of edges with posi-
tive weight remaining is at most 8n1+µ . At this point, the algorithm
completes its last iteration of weight reduction then unwinds the
stack and returns a matching. The correctness of the algorithm fol-
lows from Theorem 5.1. �

The preceding analysis assumes that µ = ω(log logn/logn). In
Appendix C we additionally handle the case µ = 0 (or equivalently,
µ = Θ(1/logn)).

5.3 MapReduce implementation

Theorem 5.6. There is a MapReduce algorithm that computes a
2-approximation to the maximum weight matching usingO(n1+µ)
space permachine andO(c/µ) rounds (when µ = ω(log logn/logn))
or O(logn) rounds (when µ = 0).

Proof. As a sequential algorithm, the correctness ofAlgorithm7
is established by Theorem 5.5 in the case µ is constant and Theo-
rem C.2 when µ = 0. We now show how to parallelize Algorithm 7.

As in Theorem 2.4, there are nc−µ machines and each edge is
assigned to one of the machines with O(n1+µ) edges per machine.
Each vertex (and its adjacency list) is randomly assigned to one of
the machines, so the space per machine isO(n1+µ)whp. Each edge
e stores its original weight and maintains a bit indicating if e ∈ Ei .

The local ratio steps (lines 12-14) are performed sequentially on
the central machine. The input to the central machine is the sets
E′v , together with the original weights of those edges. The total
size of the input is proportional to

∑
v |E′v |, which is guaranteed

to be O(η) by line 11. The central machine is stateful: it maintains
values ϕ(v) for each vertex v , initially zero. The value ϕ(v) will
always equal the total value of the weight reductions for all edges
incident to v . Thus, for any edge e = {u,v} that was never added
to the stack, if its original weight is we , then its modified weight
is we − ϕ(u) − ϕ(v). The weight reduction operation for edge e =

9

{u,v} is then straightforward: simply decrease both ϕ(u) and ϕ(v)
bywe − ϕ(u) − ϕ(v).

The main step requiring parallelization is line 15. After the for-
loop terminates, the central machine sends ϕ(v) to each vertex v ,
and informs each edge whether it was added to the stack. If so,
the edge’s modified weight is definitely non-positive so it cannot
belong to Ei+1. Afterwards, each vertex v then sends ϕ(v) to each
edge e ∈ δ (v). Each edge e = {u,v} receives ϕ(u) and ϕ(v) and, if it
was not added to the stack, computes its modified weight; if this is
positive then e belongs to Ei+1. Given the knowledge of whether
e ∈ Ei and given |Ei | (which is easy to compute in parallel), an
edge can independently perform the sampling operation on line
9. �

b-matching. Using similar techniques, one can obtain a (3−2/b+
ε)-approximation to b-matching; see Appendix D.

6 Vertex and edge colouring

In this section, we show how to colour a graph with maximum de-
gree ∆ using (1+o(1))∆ colours in a constant number of rounds. As
is the case withMIS, (∆+1)-vertex colouring is one of themost fun-
damental problems of distributed computing. In the CREW PRAM
model, both MIS and (∆+1)-vertex colouring have algorithms that
can be easily translated toO(logn)-round algorithms in theMapRe-
duce model. Luby’s randomized algorithms for both MIS [31] and
(∆ + 1)-vertex colouring [32] have clean MapReduce implemen-
tations by using one machine per processor in the CREW PRAM
algorithm. Within the CREW PRAM and LOCAL model, both MIS
and (∆ + 1)-vertex colouring have well established lower bounds.
However, we are unaware of non-trivial (i.e. non-constant) lower
bounds on round complexity in the MapReduce model.

Although our algorithm does not use the randomized local ratio
or the hungry-greedy paradigm developed in the previous sections,
we feel that it is of independent interest as it is the first constant
round algorithm for ∆ + o(∆)-vertex colouring within the MapRe-
duce model that we are aware of.

Recall that the number of edges is n1+c , so ∆ ≥ nc since the
maximum degree is at least the average degree. Our algorithm is
very simple; first we randomly partition the vertex set into κ ≔

n(c−µ)/2 groups. Within each group, the maximum degree is (1 +
o(1))∆/κ with high probability, so (1+o(1))∆/κ+1 colours suffices
to colour each group. The colour of a vertex is determined by the
group that it is in and its colour within each group. Hence, this
gives a colouring with (1 + o(1))∆ colours. Furthermore, we show
that the subgraph induced by each group has a small number of
edges. As a corollary we get a MapReduce algorithm for (1+o(1))∆-
colouring.

Lemma 6.1. For all µ > 0 and κ = n(c−µ)/2 then we have ∆i ≤
(1 + n−µ/2

√
6 lnn)∆/κ for all i with probability at least 1 − 1/n.

Proof. For a single vertex v of degree d , the probability that
v has degree greater than (1 + ε)∆/κ (in the subgraph induced by

its group) is at most exp
(
−ε2 ∆

3κ

)
by a standard Chernoff bound

(Theorem E.1). Since ∆/κ ≥ nc/2+µ/2 ≥ nµ , we may take ε =

Algorithm 5 (1 + o(1))∆-vertex colouring
1: procedure VertexColouring(Graph G = (V ,E))
2: Randomly partitionV into κ groups, V1, . . . ,Vκ
3: Define Ei = E[Vi] and Gi = (Vi , Ei)
4: if ∃i such that |Ei | > 13n1+µ then

5: Fail

6: for every vertex v in parallel do
7: if v ∈ Vi then send N (v) ∩Vi to central machine i

8: for every central machine i in parallel do
9: Let ∆i be max degree ofGi

10: ColourGi using the standard (∆i + 1)-vertex colouring
algorithm

11: for every v ∈ Vi do
12: Let ci (v) be colour of v ∈ Vi in this colouring
13: Output (i, ci (v)) as colour for v .

n−µ/2
√
6 lnn in which case the probability that a vertex v has de-

gree greater than (1+ ε)∆/κ is at most 1/n2. Taking a union bound
then yields the lemma. �

Lemma 6.2. We have |Ei | ≤ 13n1+µ with probability at least 1 −
n2 · exp (−nµ).

Proof. By the Hajnal-Szemerédi Theorem (Theorem E.2) ap-
plied to the line graph of G, we may partition the edges into 2∆
sets F1, . . . , F2∆ such that the following holds for all j ∈ [2∆]:

• |Fj | ≥ n1+c/(4∆); and
• if e, e ′ ∈ Fj and e , e ′ then e ∩ e ′ = ∅.

For analysis, fix Ei and an edge class Fj . For each e ∈ Fj , let
X j,e be the indicator random variable which is 1 if edge e ends
up in Ei . Then E

∑
e ∈Fj X j,e = |Fj |/κ2. Since any distinct e, e ′ ∈

Fj do not share a common vertex, it follows that {X j,e }e ∈Fj are
mutually independent random variables. Therefore, we may apply
a Chernoff bound (Theorem E.1) to get

Pr
[∑
e ∈Fj

X j,e > 13|Fj |/κ2
]
≤ exp

(
−12
|Fj |
3κ2

)

≤ exp

(
−n

1+c

∆κ2

)
≤ exp

(
−n

c

κ2

)
= exp

(
−nµ

)
.

Taking a union bound over all i and j gives the claim. �

Corollary 6.3. Algorithm 5 returns a
(
1 + n−µ/2

√
6 lnn + n−µ

)
∆-

colouring ofG with high probability.

Proof. We can colour each Gi with ∆i + 1 colours using the
standard greedy colouring algorithm. By Lemma 6.1 ∆i ≤ (1 +
n−µ/2

√
6 lnn)∆/κ with probability at least 1 − 1/n. Hence, we use

at most κ(∆i + 1) ≤
(
1 + n−µ/2

√
6 lnn + n−µ

)
∆ colours. �

Theorem 6.4. If µ = ω(log logn/logn) and the memory on each
machine is O(n1+µ) then there is a MapReduce algorithm for (1 +
o(1))∆-colouring which succeeds with high probability.

10

Remark 6.5. (1 + o(1))∆-edge colouring can be achieved with al-
most the same algorithm, partitioning the edges into groups in-
stead of vertices and colouring the groups with the algorithm of
Misra and Gries [36].

Theorem 6.6. There are constant-round MapReduce algorithms
for (1+o(1))∆-vertex colouring and (1+o(1))∆-edge colouring that
succeed w.h.p.

11

A Improved algorithm formaximal independent
set

In this section, we discuss how to improve the algorithm in Sec-
tion 3 to obtain an algorithm that rounds inO(c/µ) rounds instead
ofO(1/µ2). The basic idea is that if we samplen(i+1)α vertices from
the set of vertices that have degree [n1−iα ,n1−(i−1)α) and proceed
as in Algorithm 2, then the degree of almost all vertices decreases
by a factor of nα . In particular, this implies that the number of
edges decrease by a factor of nα which gives a algorithm using
O(c/α) rounds. We will set α = µ/8 in the analysis below.

Algorithm 6 Improved algorithm for maximal independent set.
Blue lines are centralized.

1: procedureMIS2(G = (V , E))
2: I1 ← {v : d(v) = 0},E1 ← E,V1 ← V ,k ← 1
3: while |Ek | ≥ n1+µ do

4: I ← Ik
5: Let Vk,i = {v ∈ Vk : n

1−iα ≤ dI (v) < n1−(i−1)α }, for
i ∈ {1, . . . , 1/α}.

6: for i = 1, . . . , 1/α do

7: Draw n(i+1)α groups of nµ/2 vertices fromVk,i , say
Xi,1, . . . ,Xi,n(i+1)α

8: for i = 1, . . . , 1/α do

9: for j = 1, . . . ,n(i+1)α do

10: if ∃vi, j ∈ Xi, j such that dI (vi, j) ≥ n1−(i+1)α

then

11: I ← I ∪ {vi, j }
12: Ik+1 ← I ,Vk+1 ← {v : dIk+1 (v) > 0},Ek+1 ← E[Vk+1]
13: k ← k + 1
14: Find maximal independent set in (Vk ,Ek) and add it to I ⊲

Total edges is < n1+µ

15: return I

In the algorithm, the set Vk,i corresponds to the set of vertices

in iteration k with degree between n1−iα and n1−(i−1)α . We first
show that most vertices in Vk,i lose a significant number of their
neighbours. This will be important to show good progress in re-
moving the edges.

LemmaA.1. LetVk,i be as in the algorithm andV ′
k,i
= {v ∈ Vk,i :

dIk+1 (v) ≥ n1−(i+1)α }. In other words, V ′
k,i

is the set of vertices

within Vk,i that did not decrease their degree by at least a factor

of niα . Then |V ′
k,i
| ≤ |Vk,i |/nµ/4 w.h.p.

Proof. Suppose we are currently processing group Xi, j . If the
number of vertices v in Vk,i with dI (v) ≥ n1−(i+1)α is at most

|Vk,i |/nµ/4 then we are done. Otherwise, with probability at least

1−(1−n−µ/4)nµ/2 ≥ 1−exp(−nµ/4), the groupXi, j contains a vertex
vi, j with dI (vi, j) ≥ n1−(i+1)α and we add it to the independent set.

This can only happen at most n(i+1)α times because if it happens
n(i+1)α times then there are no more vertices in the graph. Since
we sampled preciselyn(i+1)α groups of vertices, we expect |V ′

k,i
| ≤

|Vk,i |/nµ/4 w.h.p. �

By choosing α = µ/8, we can guarantee that every vertex class
Vk,i decrease their degree by a factor of nα with high probability.
This gives the following lemma.

Lemma A.2. We have |Ek+1 | ≤ 2|Ek |/nµ/8 w.h.p.

This lemma implies that after O(c/µ) rounds, we can fit all the
data onto a single machine.

Proof. Let S ⊆ V and definedI (S) =
∑
v ∈S dI (v). We will lower

bound dIk (Vk,i) and upper bound dIk+1(Vk,i). We have dIk (Vk,i) ≥
|Vk,i |n1−iα . On the other hand,

dIk+1(Vk,i) ≤ |V
′
k,i
|n1−(i−1)α + |Vk,i \V ′k,i |n

1−(i+1)α

≤ |Vk,i |n−µ/4n1−(i−1)α + |Vk,i |n1−(i+1)α

= 2|Vk,i |n1−(i+1)µ/8,

by Lemma A.1 and using α = µ/8. Since the sets Vk,i ∩Vk+1 form
a partition ofVk+1, we have

2|Ek+1 | =
∑
i

dIk+1 (Vk,i ∩Vk+1)

=

∑
i

dIk+1 (Vk,i) ≤ 2
∑
i

|Vk,i |n1−(i+1)µ/8

≤ 2
∑
i

dIk (Vk,i)n
−µ/8

= 4|Ek |n−µ/8,

proving the claim. �

TheoremA.3. There is a MapReduce algorithm to find a maximal
independent set inO(c/µ) rounds and O(n1+µ) space per machine,
w.h.p.

Proof sketch. The pseudocode in Algorithm 6 is written in the
manner of a sequential algorithm, but it is easy to parallelize. The
main step that is performed in parallel is the sampling (lines 6-7).
The sets Xi, j are then sent to a central machine. Lines 8-11 are
performed sequentially on the central machine. All other steps are
straightforward to perform in the MapReduce model.

The space usage on the central machine is dominated by the to-
tal size of the neighbourhoods of all vertices in the sets Xi, j . Thus,
the required space per machine is proportional to

1/α∑
i=1

n(i+1)α∑
j=1

∑
v ∈Xi, j

dI (v) ≤
1/α∑
i=1

n(i+1)α · nµ/2 · n1−(i−1)α

= (1/α) · n1+µ/2+2α .

Since α = µ/8, this gives the claimed space bound. �

B Maximal clique

We can compute a maximal clique via a reduction to MIS. This
is, however, nontrivial because naively complementing the graph
could result in a graph that is too large to fit into memory. To re-
solve this, we will use a relabeling scheme which satisfies the fol-
lowing properties:

• if there are k active vertices then every active vertex has a
label in [k].

12

• every vertex knows k and the label of all its neighbours.

Suppose we had such a labelling and consider a vertex v . Sup-
pose N is the set of active neighbours of v . Then its degree in the
complement graph is k − |N | and its active neighbourhood in the
complement graph is [k] \N . Observe that, while the complement
graph could have Ω(n2) edges, there is no space issue because each
round only requires us to compute O(n1+µ) edges of the comple-
ment graph in total.

We now describe the relabelling scheme. Initially, the two con-
ditions are trivially satisfied if we assume each vertex has a unique
label in [n]. To maintain the invariant, we add the following rela-
beling procedure:

(1) Suppose there are k active vertices (the central machine al-
ways knows which vertices are active). Pick a permutation
σ : V → [n] such that if v is active then σ (v) ∈ [k] and if v
is inactive then σ (v) > k . Send σ (v) and k to vertex v .

(2) Each vertex v knows σ (v). If u is a neighbour of v then v

queries u for σ (u). It then knows which of its neighbours
are still active (since it knows k).

Corollary B.1. There is aMapReduce algorithm to find amaximal
clique in O(1/µ) rounds w.h.p.

C Matching withO(n) space per machine

In this section we discuss the matching algorithm (Algorithm 7)
in the case µ = 0, which corresponds to having O(n) space per
machine.

LemmaC.1. Supposeη = n. Then none of the iterations fail w.h.p.
Moreover, conditioned on none of the iterations failing, we have
E [|Ei+1 | | Ei] ≤ 0.975|Ei |.

Proof. The first part of the lemma is by Claim 5.2.
Let Hi = {v : di (v) ≥ |E |/n} and Li = V \ Hi . We call Hi the

heavy vertices at iteration i and Li the light vertices at iteration
i . Let c = 0.9. We claim that if v is heavy then with probability at
least 1/2, we havedi+1(v) ≤ c ·di (v). Let kv be the number of edges
incident tov with positive weight when we reach v in the for loop
in Line 13. If kv ≤ c · di (v) then we are done so suppose kv >
c ·di (v). The probability that we do not sample any of the heaviest

ckv edges that are currently incident tov is at most
(
1 − n

|E |

)ckv
≤

exp
(
−c2

)
< 1/2.

Observe that
∑
v ∈Li di (v) ≤ |Ei | so

∑
v ∈Hi

di (v) ≥ |Ei |. Hence,
conditioned on Ei , we have

E|Ei+1 | ≤
1

2
©­
«
∑
v ∈Li

di (v) +
∑
v ∈Hi

[
1

2
di (v) +

1

2
cdi (v)

]ª®¬
≤ 3 + c

4
|Ei | = 0.975|Ei |,

proving the second part of the lemma. �

TheoremC.2. With probability at least 1−1/n, Algorithm4 termi-
nates inO(logn) iterations and returns a 2-approximate maximum
matching.

Proof. Let us consider amodified version of Algorithm 4where
the condition to terminate when |Ei | < 8η is removed. Let E′i de-
note the sequence of edges in the modified algorithm and Ei to
denote the sequence of edges in the unmodified version of Algo-
rithm 4. There is a simple coupling which ensures that:

• E′1 = E1;
• E′i+1 = Ei+1 if |Ei | ≥ 8n; and
• if |Ei | < 8n then Algorithm 4 terminates in iteration i + 1.

Observe that the final condition implies that

Pr[Algorithm 7 terminates by iteration τ + 1] ≥ Pr[|E′τ | < 8n].

Choose τ = 200 log(n) > log(n2)/log(1/0.975). By the previous
lemma, we have E|E′τ | ≤ 1 so by Markov’s Inequality we have
Pr[|E′τ | ≥ 8n] ≤ 1/(8n). In particular, Algorithm 7 terminates in
O(log(n)) iterations with probability at least 1 − 1/n.

The correctness follows from Theorem 5.1. �

D Maximum weight b-matching

D.1 Local ratio method

Sequential local ratio algorithm for maximum weight b-
matching

Arbitrarily select an edge e = (u,v) with positive weight,
say w(e). Reduce the weight of e by w(e). For all other
e ′ ∋ u , reduce its weight byw(e)/b(u). For all other e ′ ∋ v ,
reduce its weight by w(e)/b(v). Push e onto a stack and
repeat this procedure until there are no positive weight
edges remaining. At the end, unwind the stack adding
edges greedily to the matching.

Theorem D.1. Let b = maxv b(v). The above algorithm returns a
(3 − 2/max{2,b})-approximate matching.

Proof. We assume b ≥ 2 since the case b = 1 is exactly Theo-
rem 5.1.

Let M0 = ∅ and, for i ≥ 1, let Mi be the matching maintained
after we have unwinded i edges from the stack. Next, letG0 be the
(weighted) graph just before we begin unwinding the edges and,
for i ≥ 1, let Gi be the graph with the last i weight reductions
reversed. (So, G0,G1, . . . all have the same vertex and edge sets;
only the edge weights are different.)

We claim thatMi is a (3− 2/b)-approximate matching toGi for
all i = 0, 1, 2, . . . which proves the claim. The case i = 0 is trivial
sinceG0 has no positive edge weights, so an empty matching is an
optimal matching.

Now suppose thatMi−1 is a (3− 2/b)-approximate matching to
Gi−1. Let OPTi−1,OPTi denote an optimal matching of Gi−1,Gi ,
respectively and wi−1,wi be the respective weight functions. Let
ei = (ui ,vi) be the ith edge that was popped from the stack. Note

13

that

wi (OPTi) ≤ wi−1(OPTi−1) +wi (ei) +
(
b(ui) − 1
b(ui)

+

b(vi) − 1
b(vi)

)
wi (ei)

= wi−1(OPTi−1) +wi (ei)
(
3 − 1

b(ui)
− 1

b(vi)

)
≤ wi−1(OPTi−1) +wi (ei)(3 − 2/b).

Next, we give a lower bound forwi (Mi). Suppose first that we add
ei to the matching, i.e. Mi = Mi−1 ∪ {ei }. Then

wi (Mi) ≥ wi−1(Mi−1) +wi (ei).

On the other hand, suppose we do not add ei to the matching,
i.e.Mi = Mi−1. In this case,Mi must contain at least b(ui) edges in-
cident to ei orb(vi) edges incident to ei . This implies thatwi (Mi) ≥
wi−1(Mi−1)+wi (ei) because undoing theweight reduction increases
the weight of the edges incident toui (other than ei) byw(ei)/b(ui)
and similarly for vi . In either case, we have

(3 − 2/b)wi (Mi) ≥ (3 − 2/b)(wi−1(Mi−1) +wi (ei))
≥ wi−1(OPTi−1) + (3 − 2/b)wi (ei)
≥ wi (OPTi),

where the second inequality used the assumption that Mi−1 is a
(3 − 2/b)-approximate matching toGi−1. �

D.2 Randomized local ratio

Unfortunately, we cannot translate the above local ratio method
for b-matching to the MapReduce model in the same way that we
did for matching. The issue is as follows. Consider a vertex and
suppose that it has b edges all of unit weight. In the matching case
(i.e. b = 1) if any of these edges were chosen by the local ratio
algorithm then every edge incident to the vertex would be killed
off by the weight reduction step. On the other hand if b > 1 then
the weight of the remaining edges after looking at t < b edges is
(1 − 1/b)t > 0. In particular, we have only managed to kill all the
edges after we have looked at all the edges!

To fix this, we will consider an ε-adjusted local ratio method
which is inspired by the algorithm of Paz and Schwartzman [37]
for weighted matchings in the semi-streaming model. As in Theo-
rem 5.6, we maintain a variable ϕ(v) for each vertex v which cor-
responds to the sum of the weight reductions incident to vertex v .
However, rather than killing an edge (u,v) ifw(u,v) ≤ ϕ(u)+ϕ(v),
we kill the edge ifw(u,v) ≤ (1+ε)(ϕ(u)+ϕ(v)). This corresponds to
applying a reduction with a multiplier of either 1 or 1+ ε . It is not
hard to show that this gives a (3−2/max{2,b}+2ε)-approximateb-
matching. Indeed, the only change to the above proof is to replace
the inequality wi (OPTi) ≤ wi−1(OPTi−1) + (3 − 2/b)wi (ei) with
wi (OPTi) ≤ wi−1(OPTi−1) + (3 − 2/b + 2ε)wi (ei).

Let us now give some intuition for the MapReduce implementa-
tion of the ε-adjusted local ratio method. Consider a fixed a vertex
v and suppose we sample approximately 2b(v) of its edges uni-
formly at random. In expectation, b(v) of the sampled edges will
have weight at least the median weight edge adjacent to v . By re-
ducing all of these edges in the local ratio algorithm, we can effec-
tively remove half of the edges adjacent tov . Similarly, by drawing
Õ(b(v)nµ) edges, we decrease the degree of v by a factor of n−µ .

To implement the sequential local ratio algorithm in MapRe-
duce, we essentially use the same algorithm as the one for maxi-
mummatching, adding up tob log

(
δ−1

)
edges to the stack for each

vertex, where δ = ε/(1 + ε). To simplify the analysis of the algo-
rithm, we randomly sample a fixed number of edges from each ver-
tex instead of sampling with uniform probability from the graph.

Algorithm 7 (3 − 2/b + 2ε)-approximation for maximum weight
b-matching. Blue lines are centralized.

1: procedure ApproxBMaxMatching(G = (V ,E))
2: δ ← ε/(1 + ε)
3: E1 ← E, d1(v) ← d(v), i ← 1
4: S ← ∅ ⊲ Initialize an empty stack.
5: while Ei , ∅ do
6: for each vertex v ∈ V do

7: if |Ei | < 2b ln
(
δ−1

)
n1+µ then

8: Let E′v be all edges in Ei incident to v
9: else

10: Randomly sample b(v) ln
(
δ−1

)
nµ edges from

Ei incident to v and add to E′v
11: for each vertex v ∈ V do

12: j ← 1
13: while j ≤ b(v) ln

(
δ−1

)
do

14: Let e ∈ E′v be the heaviest edge and apply an
ε-adjusted weight reduction

15: Push e onto the stack S
16: Remove e from E′v
17: j ← j + 1

18: Let Ei+1 be the subset of Ei with positive weights
19: di+1(v) ← |{e ∈ Ei+1 : v ∈ e}|
20: i ← i + 1
21: Unwind S , adding edges greedily to the b-matching M
22: returnM

The analysis of the algorithm is similar to the proof for maxi-
mum matching. Instead of repeating the entire proof, we show a
variant of Lemma 5.4 below and note that all the other lemmas
extend similarly.

LemmaD.2. Suppose η = n1+µ for some constant µ > 0. Let ∆i =

maxv di (v). For i > 2 with probability at least 1− n2

δ
·exp(−nµ/2/2),

it holds that ∆i+1 ≤ ∆i/nµ/4.

Proof. If |Ei | < 2b ln(δ−1)n1+µ then the local ratio algorithm
is performed on the entire graph, and so Ei+1 = ∅ and the lemma
is trivial. So, assume that |Ei | ≥ 2b ln(δ−1)n1+µ .

Let kv be the number of edges incident tov with positive weight
when we reach v in the for loop in line 13. If kv ≤ ∆i/nµ/4 then
we are done, so suppose kv > ∆i/nµ/4.

Define an edge to be heavy if it is one of the top kv/nµ/4 heav-
iest edges. We claim that we sampled at least b(v) ln(1/δ) distinct
heavy edges w.h.p. To see this, first split the sampled edges into
b(v) ln(1/δ) groups eachwithnµ edges. Then, using a union bound,
the probability that we cannot pick a distinct heavy edge from each

14

group is bounded above by

b (v) ln(1/δ)∑
t=1

(
1 − kv/nµ/4 − t

∆i

)nµ

≤ b(v) ln(1/δ)
(
1 − ∆i/nµ/2 − b(v) ln(1/δ)

∆i

)nµ
.

(D.1)

By assumption, we have |Ei | ≥ 2b(v) ln
(
δ−1

)
n1+µ , so since max-

imum degree is at least average degree, ∆i/nµ/2 ≥ 2b(v) log(1/δ).
Hence, (D.1) is at most

b(v) ln(1/δ)
(
1 − 1

2nµ/2

)nµ
≤ b(v) ln(1/δ) exp

(
−nµ/2/2

)
.

So we have sampled at least b(v) ln(1/δ) heavy edges with proba-

bility at least 1−b(v) ln(1/δ) exp
(
−nµ/2/2

)
. We will condition on

this event for the rest of the proof.
Recall that in the algorithmwe add the topb(v) ln(1/δ) edges to

the stack (note that the ordering of the remaining weights are un-
changed in the while loop starting at Line 13 because we subtract
the same quantity from each edge). Let wL be the weight of the
lightest of these edges before we perform the weight reductions.
Imagine for now that the algorithm performs ordinary weight re-
ductions rather than ε-adjusted reductions. Then, after performing
the weight reductions, the weight of all non-heavy edges is at most
wL (1−1/b(v))b (v) ln(1/δ) ≤ wLδ . Since we chooseδ = ε/(1+ε), this
implies that we have reduced the weight of all non-heavy edges by
a 1/(1+ ε) fraction of their original weight. So, since the algorithm
actually performs ε-adjustedweight reductions, it actually reduces
the weight of the non-heavy edges to a non-positive value. These
edges can now be safely discarded from the graph, so we have
di+1(v) ≤ kv/nµ/4 after the end of the weight reduction phase
(line 19). Taking a union bound completes the proof. �

Theorem D.3. There is a MapReduce algorithm that computes a
(3 − 2/b + 2ε)-approximation to the maximum weight b-matching
in O(c/µ) rounds when µ > 0 and O(logn) rounds when µ = 0.
The memory requirement is O(b log(1/ε)n1+µ).

E Auxiliary Results

Theorem E.1 (Chernoff bound). Let X1, . . . ,Xn be independent
random variables such that Xi ∈ [0, 1] with probability 1. Define
X =

∑n
i=1Xi and let µ = EX . Then, for any ε > 0, we have

Pr[X ≥ (1 + ε)µ] ≤ exp

(
−min{ε, ε2}µ

3

)
.

Theorem E.2 (Hajnal-Szemerédi). Every graph with n vertices
and maximum degree bounded by k − 1 can be coloured using k

colours so that each colour class has at least ⌊n/k⌋ ≥ n/(2k) ver-
tices.

References
[1] Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual

primal algorithms for maximum matching under resource constraints. In Pro-
ceedings of the 27th ACM symposium on Parallelism in Algorithms and Architec-
tures (SPAA), pages 202–211, June 2015.

[2] Sepehr Assadi. Simple round compression for parallel vertex cover. arXiv
preprint arXiv:1709.04599, 2017.

[3] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni,
and Cliff Stein. Coresets meet edcs: Algorithms for matching and vertex cover
on massive graphs. arXiv preprint arXiv:1711.03076, 2017.

[4] Sepehr Assadi and Sanjeev Khanna. Randomized composable coresets for match-
ing and vertex cover. In ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA), 2017.

[5] Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang. Distributed k-means
and k-median clustering on general communication topologies. In Advances in
Neural Information Processing Systems (NIPS), pages 1995–2003, 2013.

[6] Reuven Bar-Yehuda, Keren Bendel, Ari Freund, and Dror Rawitz. Lo-
cal ratio: A unified framework for approximation algorithms in memo-
riam: Shimon Even 1935-2004. ACM Comput. Surv., 36(4):422–463, 2004.
doi:10.1145/1041680.1041683.

[7] Reuven Bar-Yehuda and Shimon Even. A local-ratio theorem for approximating
the weighted vertex cover problem. Annals of Discrete Mathematics, 25:27–45,
1985. doi:10.1016/S0304-0208(08)73101-3.

[8] Leonid Barenboim and Michael Elkin. Distributed Graph Coloring. Morgan &
Claypool, 2017. Draft manuscript.

[9] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for par-
allel query processing. In Proceedings of the 32Nd ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’13, pages 273–284, New
York, NY, USA, 2013. ACM. URL: http://doi.acm.org/10.1145/2463664.2465224,
doi:10.1145/2463664.2465224.

[10] Bonnie Berger, John Rompel, and Peter W. Shor. Efficient nc al-
gorithms for set cover with applications to learning and geome-
try. Journal of Computer and System Sciences, 49(3):454 – 477, 1994.
30th IEEE Conference on Foundations of Computer Science. URL:
http://www.sciencedirect.com/science/article/pii/S0022000005800686,
doi:https://doi.org/10.1016/S0022-0000(05)80068-6.

[11] Guy E. Blelloch, Richard Peng, and Kanat Tangwongsan. Linear-work
greedy parallel approximate set cover and variants. In Proceedings of the
Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA ’11, pages 23–32, New York, NY, USA, 2011. ACM. URL:
http://doi.acm.org/10.1145/1989493.1989497, doi:10.1145/1989493.1989497.

[12] Vasek Chvatal. A greedy heuristic for the set covering problem. Mathematics of
Operations Research, 4(3):233–235, August 1979.

[13] Stephen A. Cook. An overview of computational complexity. Communications
of the ACM, 26(6):400–408, June 1983.

[14] Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for
weighted matching, via unweighted matching. In International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems (APPROX),
pages 96–104, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.

[15] Artur Czumaj, Jakub ÅĄÄĚcki, Aleksander MÄĚdry, Slobodan Mitrović,
Krzysztof Onak, and Piotr Sankowski. Round compression for parallel matching
algorithms, 2017. URL: http://arxiv.org/abs/1707.03478.

[16] Rafael da Ponte Barbosa, Alina Ene, Huy L. Nguyen, and Justin Ward. A new
framework for distributed submodular maximization. In Proceedings of the IEEE
57th Annual Symposium on Foundations of Computer Science, 2016.

[17] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A framework
for parallel graph algorithms using work-efficient bucketing. In Proceed-
ings of the 29th ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’17, pages 293–304, New York, NY, USA, 2017. ACM. URL:
http://doi.acm.org/10.1145/3087556.3087580, doi:10.1145/3087556.3087580.

[18] Mohsen Ghaffari. Space-optimal semi-streaming for (2+ϵ)-approximate match-
ing, 2017. URL: http://arxiv.org/abs/1701.03730.

[19] Michael T. Goodrich. Simulating parallel algorithms in the MapReduce frame-
work with applications to parallel computational geometry. 2010. URL:
http://arxiv.org/abs/1004.4708.

[20] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and
simulation in the MapReduce framework. In 22nd International Symposium on
Algorithms and Computation (ISAAC), 2011.

[21] Elena Grigorescu, Morteza Monemizadeh, and Samson Zhou. Stream-
ing weighted matchings: Optimal meets greedy. 2016. URL:
http://arxiv.org/abs/1608.01487.

[22] Sungjin Im, Benjamin Moseley, and Xiaorui Sun. Efficient massively parallel
methods for dynamic programming. InACMSymposium on Theory of Computing
(STOC), 2017.

[23] Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian, and Vahab S. Mirrokni.
Composable core-sets for diversity and coverage maximization. In Symposium
on Principles of Database Systems (PODS), 2014.

[24] U. Kang, Charalampos E. Tsourakakis, Ana Paula Appel, Christos Falout-
sos, and Jure Leskovec. HADI: mining radii of large graphs. TKDD,
5(2):8:1–8:24, 2011. URL: http://doi.acm.org/10.1145/1921632.1921634,
doi:10.1145/1921632.1921634.

[25] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of
computation for MapReduce. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 938–948, 2010.

15

http://dx.doi.org/10.1145/1041680.1041683
http://dx.doi.org/10.1016/S0304-0208(08)73101-3
http://doi.acm.org/10.1145/2463664.2465224
http://dx.doi.org/10.1145/2463664.2465224
http://www.sciencedirect.com/science/article/pii/S0022000005800686
http://dx.doi.org/https://doi.org/10.1016/S0022-0000(05)80068-6
http://doi.acm.org/10.1145/1989493.1989497
http://dx.doi.org/10.1145/1989493.1989497
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
http://arxiv.org/abs/1707.03478
http://doi.acm.org/10.1145/3087556.3087580
http://dx.doi.org/10.1145/3087556.3087580
http://arxiv.org/abs/1701.03730
http://arxiv.org/abs/1004.4708
http://arxiv.org/abs/1608.01487
http://doi.acm.org/10.1145/1921632.1921634
http://dx.doi.org/10.1145/1921632.1921634

doi:10.1137/1.9781611973075.76.
[26] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast

greedy algorithms in MapReduce and streaming. TOPC, 2(3):14:1–14:22, 2015.
doi:10.1145/2809814.

[27] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Fil-
tering: a method for solving graph problems in MapReduce. In Proceedings of
the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 85–94, 2011. doi:10.1145/1989493.1989505.

[28] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time: den-
sification laws, shrinking diameters and possible explanations. In Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and
DataMining, Chicago, Illinois, USA, August 21-24, 2005, pages 177–187, 2005. URL:
http://doi.acm.org/10.1145/1081870.1081893, doi:10.1145/1081870.1081893.

[29] Jure Leskovec, Anand Rajaraman, and Jeff Ullman. Mining of Massive Datasets.
Cambridge University Press, 2014.

[30] Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. Improved distributed
approximate matching. J. ACM, 62(5):38:1–38:17, 2015. URL:
http://doi.acm.org/10.1145/2786753, doi:10.1145/2786753.

[31] Michael Luby. A simple parallel algorithm for the maximal indepen-
dent set problem. SIAM J. Comput., 15(4):1036–1053, 1986. URL:
https://doi.org/10.1137/0215074, doi:10.1137/0215074.

[32] Michael Luby. Removing randomness in parallel computation
without a processor penalty. J. Comput. Syst. Sci., 47(2):250–
286, 1993. URL: https://doi.org/10.1016/0022-0000(93)90033-S,
doi:10.1016/0022-0000(93)90033-S.

[33] Vahab S. Mirrokni andMorteza Zadimoghaddam. Randomized composable core-
sets for distributed submodular maximization. In ACM Symposium on Theory of
Computing (STOC), pages 153–162, 2015.

[34] Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, and An-
dreas Krause. Distributed submodular cover: Succinctly summarizing massive
data. In Neural Information Processing Systems (NIPS), 2015.

[35] Baharan Mirzasoleiman, Morteza Zadimoghaddam, and Andreas Krause. Fast
distributed submodular cover: Public-private data summarization. In Neural In-
formation Processing Systems (NIPS), 2016.

[36] J. Misra and David Gries. A constructive proof of viz-
ing’s theorem. Inf. Process. Lett., 41(3):131–133, March
1992. URL: http://dx.doi.org/10.1016/0020-0190(92)90041-S,
doi:10.1016/0020-0190(92)90041-S.

[37] Ami Paz and Gregory Schwartzman. A (2 + ϵ)-approximation for maximum
weight matching in the semi-streaming model. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2153–2161, 2017. doi:10.1137/1.9781611974782.140.

[38] Sridhar Rajagopalan and Vijay V. Vazirani. Primal-dual rnc approximation
algorithms for set cover and covering integer programs. SIAM Journal on Com-
puting, 28(2):525–540, 1998. URL: https://doi.org/10.1137/S0097539793260763,
arXiv:https://doi.org/10.1137/S0097539793260763,
doi:10.1137/S0097539793260763.

[39] Stergios Stergiou and Kostas Tsioutsiouliklis. Set cover at web scale. In
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD), 2015.

[40] Leslie G. Valiant. Parallel computation. In Proceedings of the 7th IBM Symposium
on Mathematical Foundations of Computer Science, 1982.

[41] Leslie G. Valiant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103–111, August 1990.

[42] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc.,
New York, NY, USA, 2001.

[43] Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular
set covering problem. Combinatorica, 2(4):385–393, 1982.

16

http://dx.doi.org/10.1137/1.9781611973075.76
http://dx.doi.org/10.1145/2809814
http://dx.doi.org/10.1145/1989493.1989505
http://doi.acm.org/10.1145/1081870.1081893
http://dx.doi.org/10.1145/1081870.1081893
http://doi.acm.org/10.1145/2786753
http://dx.doi.org/10.1145/2786753
https://doi.org/10.1137/0215074
http://dx.doi.org/10.1137/0215074
https://doi.org/10.1016/0022-0000(93)90033-S
http://dx.doi.org/10.1016/0022-0000(93)90033-S
http://dx.doi.org/10.1016/0020-0190(92)90041-S
http://dx.doi.org/10.1016/0020-0190(92)90041-S
http://dx.doi.org/10.1137/1.9781611974782.140
https://doi.org/10.1137/S0097539793260763
http://arxiv.org/abs/https://doi.org/10.1137/S0097539793260763
http://dx.doi.org/10.1137/S0097539793260763

	Abstract
	1 Introduction
	1.1 Techniques and Contributions
	1.2 Related work
	1.3 The MapReduce Model
	1.4 Organization

	2 f-approximation for weighted set cover
	2.1 Randomized local ratio
	2.2 MapReduce implementation

	3 Maximal independent set
	4 (1+) ln-approximation for weighted set cover
	4.1 MapReduce Implementation

	5 Maximum weight matching
	5.1 The local ratio method
	5.2 Randomized local ratio
	5.3 MapReduce implementation

	6 Vertex and edge colouring
	A Improved algorithm for maximal independent set
	B Maximal clique
	C Matching with O(n) space per machine
	D Maximum weight b-matching
	D.1 Local ratio method
	D.2 Randomized local ratio

	E Auxiliary Results
	References

